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Abstract

Introduction

A common quality indicator for monitoring and comparing hospitals is based on death within

30 days of admission. An important use is to determine whether a hospital has higher or

lower mortality than other hospitals. Thus, the ability to identify such outliers correctly is

essential. Two approaches for detection are: 1) calculating the ratio of observed to expected

number of deaths (OE) per hospital and 2) including all hospitals in a logistic regression (LR)

comparing each hospital to a form of average over all hospitals. The aim of this study was to

compare OE and LR with respect to correctly identifying 30-day mortality outliers. Modifica-

tions of the methods, i.e., variance corrected approach of OE (OE-Faris), bias corrected LR

(LR-Firth), and trimmed mean variants of LR and LR-Firth were also studied.

Materials and methods

To study the properties of OE and LR and their variants, we performed a simulation study by

generating patient data from hospitals with known outlier status (low mortality, high mortal-

ity, non-outlier). Data from simulated scenarios with varying number of hospitals, hospital

volume, and mortality outlier status, were analysed by the different methods and compared

by level of significance (ability to falsely claim an outlier) and power (ability to reveal an out-

lier). Moreover, administrative data for patients with acute myocardial infarction (AMI),

stroke, and hip fracture from Norwegian hospitals for 2012–2014 were analysed.

Results

None of the methods achieved the nominal (test) level of significance for both low and high

mortality outliers. For low mortality outliers, the levels of significance were increased four- to

fivefold for OE and OE-Faris. For high mortality outliers, OE and OE-Faris, LR 25% trimmed

and LR-Firth 10% and 25% trimmed maintained approximately the nominal level. The
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methods agreed with respect to outlier status for 94.1% of the AMI hospitals, 98.0% of the

stroke, and 97.8% of the hip fracture hospitals.

Conclusion

We recommend, on the balance, LR-Firth 10% or 25% trimmed for detection of both low and

high mortality outliers.

Introduction

Mortality is commonly used as a quality indicator for monitoring and comparing hospitals,

and is publicly reported in many countries [1, 2]. Death for any reason within 30 days of

admission, occurring in the hospital or after discharge is frequently used for the calculation of

the indicator. An important use is to determine whether a hospital has a significantly higher or

lower mortality than other hospitals. Thus, the ability to identify such outliers correctly is

essential [3]. Failure to identify a high mortality outlier hospital may severely influence patient

safety, whereas incorrect status as a low-mortality hospital may lead to undeserved pay for per-

formance or unwarranted lack of attention to quality.

During the past couple of decades, much of the literature has been concerned with variables

that should be included to adjust for differences between hospital patient populations (case-

mix) and statistical modelling techniques [4–15]. However, less is reported about the ability to

falsely claim a hospital as an outlier (level of significance) and to reveal an outlier (power). One

simple approach for outlier detection is to calculate the ratio of observed to expected number

of deaths (OE) for each hospital. OE is based on the implicit assumption of negligible variabil-

ity of the expected number of deaths. As this may cause bias in the variance estimate, a correc-

tion of the estimator has been proposed by Faris et al. [16]. Another approach for outlier

detection is to include all hospitals in a logistic regression analysis (LR), comparing each hospi-

tal to a form of average over all hospitals [4]. A natural choice of average is the mean hospital

mortality, after correction for case-mix, on the logistic scale. In our experience, some hospitals

have very low mortality and will heavily distort this measure. One approach would then be to

exclude such hospitals, but it is desirable to have a method that avoids exclusion of hospitals.

One would then have to formulate objective criteria for such exclusions. Thus, a trimmed

mean is more appropriate [17, 18]. In practice, hospitals with no deaths may be observed, in

which case the maximum likelihood estimator for LR does not exist. To alleviate bias and con-

vergence problems associated with zero or low numbers of deaths in some hospitals, Firth’s

bias correction method for a logistic model can be used [19].

The aim of the present work was 1) to compare OE and LR, with respect to identifying out-

lier hospitals, 2) investigate whether modified versions of LR and OR improve the outlier

detection. We compared the level of significance, power, and probability of directional error

(claiming a high mortality hospital to be a low mortality hospital or vice versa) of the methods

in a simulation study. In addition, the methods were compared by analysing patient data from

all Norwegian hospitals for 2012–2014 for three medical conditions: first-time acute myocar-

dial infarction (AMI), stroke and hip fracture. The motivation for this study was to investigate

statistical properties of the two methods for using 30-day mortality as a quality indicator for all

Norwegian hospitals, i.e., about 55 hospitals.

Observed to expected or logistic regression
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Material and methods

To study the properties of OE and LR and their variants, we performed a simulation study by

generating patient data from hospitals with known outlier status.

Simulation study design

The simulation scenarios were designed to compare the methods with different combinations

of number of hospitals, number of patients per hospital (volume), and levels of hospital mor-

tality. We compared N = 10, 20, 50 or 100 hospitals, at a time. For each choice of N there were

three categories for hospital volume: large (500), medium (300), and small (60). Ten different

scenarios (A-J) were generated, and within each scenario true outlier status for each hospital

was defined as low mortality outlier, non-outlier or high mortality outlier, Table 1. In the A

scenarios all hospitals were non-outliers. A proportion of the large hospitals were high mortal-

ity outliers in the B scenarios, a proportion of the medium volume hospitals were high mortal-

ity outliers in the C scenarios, and a proportion of the small hospitals were high mortality

outliers in the D scenarios. The scenarios E-J comprised different combinations of outlier sta-

tus and hospital volume, Table 1.

Observed to expected ratio (OE)

The probability of death within 30 days can be estimated using a logistic regression model.

Let pij denotel the probability of death for patient j at hospital i, i = 1, 2, . . ., N and j = 1,

2, . . ., ni where N is the total number of hospitals and ni is the number of patients at hospital i.
pij is then given by the logistic model

ln
pij

1 � pij
¼ aþ g0zij ð1Þ

where α is a constant term, zij is the vector of case-mix variables for patient j at hospital i, and

γ is the vector of regression coefficients. The parameters in (1) are estimated by the maximum

likelihood method by using data from all hospitals or from a reference patient group, which

gives parameter estimates â and γ̂, and inserted into (1) we find the estimated probabilities of

death p̂ij.

For hospital i, the estimated, case-mix adjusted expected number of deaths is bEi ¼
Xni

j¼1
p̂ij

and Oi is the observed number of deaths. The ratio Oi=
bEi can be used as a quality indicator for

hospital i [4, 20]. A hospital with a ratio statistically significant below (above) one is a low

(high) mortality outlier. If we assume the variance of the estimated expected number of deaths

to be negligible, the estimated standard error of Oi=
bEi is given by

cSEOEi
¼

1

bEi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xni

j¼1
p̂ijð1 � p̂ijÞ

2

r

: ð2Þ

The corresponding outlier test statistic is

ZOEi
¼

Oi=
bEi � 1

cSEOEi

: ð3Þ

We denote the outlier detection method based on the test statistic (3) by OE. In practice,

hospital volumes will often vary widely, in which case the parameters of the mortality model

(1) will be strongly influenced by the largest hospitals.

Observed to expected or logistic regression
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Table 1. Design of simulation scenarios: Number of hospitals according to hospital volume (number of patients) and outlier status (low mortality, non-outlier,

high mortality).

Hospital volume, number of patients per hospital volume category Large, n = 500 Medium, n = 300 Small, n = 60

N = 10 2 3 5

True outlier status Low Non-outlier High Low Non-outlier High Low Non-outlier High

Scenario A 0 2 0 0 3 0 0 5 0

B 0 1 1 0 3 0 0 5 0

C 0 2 0 0 2 1 0 5 0

D 0 2 0 0 3 0 0 3 2

E 1 0 1 0 3 0 0 5 0

F 1 0 1 1 1 1 0 5 0

G 1 0 1 0 3 0 1 3 1

H 0 1 1 0 3 0 1 3 1

I 0 1 1 0 2 1 3 1 1

J 0 2 0 0 3 0 0 4 1

N = 20 3 6 11

True outlier status Low Non-outlier High Low Non-outlier High Low Non-outlier High

Scenario A 0 3 0 0 6 0 0 11 0

B 0 2 1 0 6 0 0 11 0

C 0 3 0 0 4 2 0 11 0

D 0 3 0 0 6 0 0 6 5

E 1 1 1 0 6 0 0 11 0

F 1 1 1 1 4 1 0 11 0

G 1 1 1 0 6 0 1 9 1

H 0 2 1 0 6 0 1 9 1

I 0 2 1 0 5 1 2 9 0

J 0 2 1 0 5 1 0 10 1

N = 50 5 14 31

True outlier status Low Non-outlier High Low Non-outlier High Low Non-outlier High

Scenario A 0 5 0 0 14 0 0 31 0

B 0 3 2 0 14 0 0 31 0

C 0 5 0 0 8 6 0 31 0

D 0 5 0 0 14 0 0 18 13

E 1 3 1 0 14 0 0 31 0

F 1 3 1 2 10 2 0 31 0

G 1 3 1 0 14 0 1 29 1

H 0 4 1 0 14 0 1 29 2

I 0 4 1 0 13 1 2 29 0

J 0 4 1 0 13 1 0 30 1

N = 100 10 35 55

True outlier status Low Non-outlier High Low Non-outlier High Low Non-outlier High

Scenario A 0 10 0 0 35 0 0 55 0

B 0 2 1 0 35 0 0 55 0

C 0 10 0 0 18 17 0 55 0

D 0 10 0 0 35 0 0 35 20

E 1 8 1 0 35 0 0 55 0

F 1 8 1 2 31 2 0 55 0

G 1 8 1 0 35 0 2 51 2

H 0 9 1 0 35 0 2 51 2

I 0 9 1 0 34 1 2 51 2

J 0 9 1 0 34 1 0 53 2

https://doi.org/10.1371/journal.pone.0195248.t001

Observed to expected or logistic regression
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The validity of the assumption of negligible variation in bEi for OE has been examined [16].

Faris et al. used propagation of error to derive a bias correction of the estimator, given by the

expression (formula A.15 (22)) for the asymptotic standard error

cSEOE� Farisi
¼

1

bEi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f½ðOi=
bEiÞ

2
� 2Oi=

bEi�
dVar ðEiÞ þ

dVar ðOiÞg

q

: ð4Þ

Note that cSEOEi
� cSEOE� Farisi

unless Oi=
bEi � 2.

We denote the outlier detection method using (4) for the standard error in the calculation

of the test statistic for Oi=
bEi, by OE-Faris.

Logistic regression (LR)

For direct comparison of the hospitals, the logistic regression model (1) is extended by includ-

ing the hospital specific mortality parameters μi, i = 1, . . ., N. The probability of death for

patient j at hospital i, pij, is now assumed to follow the logistic regression model

ln
pij

1 � pij
¼ mi þ g0zij ð5Þ

with zij and γ as in (1). In the standard model, the parameters of interest are the hospital

effects, defined as the deviation from the mean of the μis (4)

bi ¼ mi �
1

h

Xh

i¼1
mi: ð6Þ

The maximum likelihood estimate b̂i can be used as a quality indicator for hospital i: b̂i is

positive if hospital i performs worse (has higher mortality) than the average and vice versa.

To test if hospital i is an outlier, i.e., significantly deviating from the mean, the test statistic

ZLRi
¼ b̂i=SEðb̂ iÞ is used. We denote this method by LR.

When the distribution of hospitals is heavy tailed, i.e., some hospitals have very low or very

high mortality, the standard error of the sample mean can be relatively large and the mean is

then a non-robust measure of location for the hospital effects [18, 21]. It is well known that

trimmed means are more robust for heavy-tailed distributions, and are commonly used in

such situations [17, 18]. Thus, as a location measure for the hospital effects we studied the

mean and the trimmed mean (LR trimmed). For LR 5%, 10%, and 25% trimmed, the modified

hospital effects βi are defined as the deviation of the μi from their 5%, 10%, and 25% trimmed

mean, respectively. The estimates of the modified effects are calculated from the standard max-

imum likelihood estimators by subtracting the trimmed means. The test statistic is ZLRi
, where

the variance of the mean-standardized effects is used as an approximation to the variance of

the trimmed-mean-standardized effects.

For hospitals with no deaths, the maximum likelihood estimator does not exist. Asymptotic

bias of the maximum likelihood estimator can be removed by a modification using a maxi-

mum penalized likelihood estimate, as shown by Firth [19]. We denote the resulting method

by LR-Firth and the trimmed variants LR-Firth 5%, 10%, and 25% trimmed. Another

approach, commonly used in practice to deal with hospitals with no deaths, is to omit them

from the analysis. Thus, we also compared LR and LR-Firth when excluding 0-death hospitals.

Observed to expected or logistic regression
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Simulation of data

To avoid ambiguity about true outlier status, we simplified the data generating process by let-

ting hospitals of same outlier category have the same hospital parameter μi. We used three dif-

ferent sets for μi: one set corresponding to approximately 6.0% mortality for non-outlier

hospitals (low mortality�3.9%, high mortality�9.0%), one set corresponding to approxi-

mately 9.8% for non-outlier hospitals (low mortality�7.5%, high mortality�12.8%), and one

set corresponding to approximately 16.4% for non-outliers (low mortality�12.8%, high mor-

tality�20.6%), Table 2. The μis for outliers were chosen to avoid very difficult (power close to

nominal level) or very easy outlier identification (power close to 1).

Two case-mix variables were included: sex and age. Sex was sampled from a Bernoulli dis-

tribution with 40% females. Age was generated from a beta distribution with parameters

a = 7.5 and b = 2.5 for all scenarios and scaled by 100, Table 1. Our choices correspond roughly

to the age distribution and proportion of females for patients with AMI in Norway (see

Results).

Data were simulated from the logistic model (5) by generating 10,000 replications for each

scenario according to Table 1 by using parameter estimates as given in Table 2.

Hospital administrative patient data. The Norwegian Patient Registry receives hospital

administrative patient data from all Norwegian hospitals, and provided the following data:

type of admission (acute or elective), coded medical diagnoses and medical procedures, date

and time for admission/discharge, age, and gender. Records for AMI, stroke, and hip fracture

were identified according to ICD-10 [22] [22]: first time AMI (I21.0–3,9), stroke (I61, I63,

I64), and hip fracture (S72.0–2). Date of death was retrieved from the National Registry.

Unique personal identification numbers for all Norwegian residents enabled linkage of data

sources; for details see [23]. Deaths from any cause, occurring in- or out-of-hospital within 30

days of hospital admission were used for the estimation of 30-day mortality. We included the

first episode of care for each patient with AMI, stroke, or hip fracture during 2012–2014. For

patients treated at two or more hospitals during one episode of care, the episode was assigned

to the first hospital. All hospitals with 60 or more admissions per medical condition during the

3-year period were included: 51 hospitals for AMI, 51 for stroke, and 45 hospitals for hip frac-

ture. For the purpose of this study, we included only sex and age as covariates. The data for

each medical condition were analysed by the different methods, using 0.05 nominal level of

significance for outlier testing.

The Norwegian Data Inspectorate and the Ministry of Health approved the data collection.

Because the project employs only existing administrative data for quality improvement pur-

poses, approval from the Regional Ethical Committee was not required.

Table 2. Sampling probabilities and input regression estimates for simulation scenarios, logistic scale. μlow, μnon−outlier, and μhigh are the hospital specific mortality

effects for low mortality outliers, non-outliers, and high mortality outliers. γsex and γage are the regression coefficients for sex and age, respectively.

Outlier status

Low, μlow (average

mortality)

Non-outlier, μnon−outlier (average

mortality)

High, μhigh (average

mortality)

Mortality, logistic

scale

Set 1: Non-outliers have low mortality -7.0 (�3.9%) -6.55 (�6.0%) -6.1(�9.0%)

Set 2: Non-outliers have medium

mortality

-6.3 (�7.5%) -6.0 (� 9.8%) -5.7 (�12.8%)

Set 3: Non-outliers have high

mortality

-5.7 (�12.8%) -5.4 (�16.4%) -5.11(�20.6%)

Case-mix, logistic

scale

Sex ~ Bernoulli(1, 0.4), γsex = -3

Age ~ Beta(7.5, 2.5, scale = 100), γage = 0.05

https://doi.org/10.1371/journal.pone.0195248.t002

Observed to expected or logistic regression
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Comparison of the methods

For all the above methods, a hospital is declared a low (high) mortality outlier, at nominal ε
level of significance, if the test statistic is smaller (larger) than the lower (upper) ε-percentile

of the standard normal distribution. Otherwise, a hospital is categorized as a non-outlier.

Simulated data. For each iteration of the 10 000 runs, the data generated was analysed by

OE and LR and their variants, assigning low mortality outlier status, non-outlier, and high

mortality outlier status according to 0.01, 0.02, 0.05, and 0.10 nominal level of significance. For

each method, scenario and mortality parameter set, actual level of significance was estimated

as the proportion of non-outlier hospitals classified as low mortality outlier and as high mortal-

ity outlier. Power was estimated as the proportion of hospitals correctly classified as low or

high mortality outlier. Directional error probability was estimated as the proportion of outliers

classified as outliers in the wrong direction, i.e., low mortality hospitals that were identified as

high mortality outliers or vice versa.

For each method, the scenarios were summarized by maximum actual level of significance

(estimate for level of significance), and the mean power (estimate for power), as well as maxi-

mum directional error probability.

Hospital data. The hospital data did not contain any 0-death hospitals. The data for each

medical condition were analysed by the ten different methods: OE, OE-Faris, LR and LR 5%,

10% and 25% trimmed, and LR-Firth, LR-Firth 5%, 10% and 25% trimmed. The hospitals

were counted according to concurring status and the number of hospitals for which their sta-

tus was altered from non-outlier to high/low outlier by a subset of the methods. Fleiss’ kappa

was calculated for assessing agreement of outliers across the methods. Strength of agreement

was evaluated according to the Kappa cut-offs given by Landis and Koch [24]:<0.00 = ‘Poor’,

0.00–0.20 = ‘Slight’, 0.21–0.40 = ‘Fair’, 0.41–0.60 = ‘Moderate’, 0.61–0.80 = ‘Substantial’, 0.81–

1.00 = ‘Almost Perfect’.

The simulations and analyses were performed in R [25].

Results

Simulation study

None of the methods achieved nominal level of significance for all hospital volume categories,

when testing for both low and high mortality outliers. Trimming improved the actual level of

significance for LR and LR-Firth, but decreased the power. Aggregated over all scenarios A-J,

number and volume of hospitals compared, and the three mortality parameter sets, Fig 1

shows the actual level of significance and power for one-sided tests at 0.05 nominal level per

hospital volume and outlier category.

Plots and tables of summary statistics according to number of hospitals compared and hospi-

tal mortality set are available in Supporting Information files S1–S3 Figs and S1 and S2 Tables.

Level of significance. When testing for low mortality outliers at 0.05 nominal level of sig-

nificance, Fig 1 panel 1, OE and OE-Faris showed the highest actual level of significance, rang-

ing from around 0.06 for small hospitals to around 0.19 (OE) and 0.25 (OE-Faris) for large

hospitals. The high error probabilities were typically found for asymmetric cases, with large or

medium hospitals being high mortality outliers (data not shown). The actual levels for LR and

variants varied less, ranging from slightly above 0.05 for small hospitals, to slightly above 0.10

for large hospitals. For LR-Firth and variants, nominal level of significance was achieved for

small hospitals, and the actual level was below 0.15 for medium and large hospitals. The high

error probabilities for LR-Firth and variants typically occurred for asymmetric cases where

small hospitals were high mortality outliers (data not shown).

Observed to expected or logistic regression
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When testing for high mortality outliers, the variation in actual level of significance was

less: around 0.10 and lower across hospital volume categories, Fig 1 panel 2. LR-Firth 10% and

25% trimmed variants achieved nominal level of significance for large and medium hospitals.

For small hospitals, actual level of significance was around 0.07 for LR-Firth and LR-Firth

trimmed variants. Actual level of significance ranged from 0.05 to 0.065 for all hospital vol-

umes for OE, OE-Faris, and LR 10% and 25% trimmed variants. When excluding hospitals

with zero deaths, LR had the highest actual level of significance.

Power. When testing for low mortality outliers at 0.05 nominal level, the power ranged

from below 0.1 for small hospitals to around 0.7 for large hospitals, Fig 1 panel 3. LR and LR

trimmed variants had lowest power (below 0.6 for all hospital volumes). OE and OE-Faris had

somewhat higher power than the other methods. When testing for high mortality hospitals,

the power was higher and ranged from about 0.2 for small hospitals to 0.8 for large hospitals,

for all methods, Fig 1 panel 4. Trimming improved the actual level of significance for LR and

LR-Firth, but decreased the power.

Directional error probability. At 0.05 nominal level, maximum directional error was

below 0.016 for all methods and scenarios considered (results included in Supporting informa-

tion S1 and S2 Tables). Results for tests at nominal 0.01 level were similar to those for 0.05

level (data not shown).

Fig 1. Results of the simulation study. Level of significance and power for the different methods for one-sided tests at 0.05 nominal level

per hospital volume and outlier category, aggregated over all scenarios A-J, number of hospitals compared, and the three mortality sets.

OE = the ratio of observed to expected number of deaths; OE-Faris = variance corrected OE; LR = logistic regression using maximum

likelihood; LR-Firth = LR with bias correction; LR 5%, 10% and 25% trim. = trimmed mean variants of LR; LR-Firth 5%, 10%, and 25% trim. =

trimmed mean variants of LR-Firth; excl. 0-deaths = excluding hospitals with no deaths.

https://doi.org/10.1371/journal.pone.0195248.g001

Observed to expected or logistic regression
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Patient data

Hospital and patient characteristics are summarized in Table 3.

The methods agreed with respect to outlier status for 48 out of 51 AMI hospitals, Table 4.

Of the remaining AMI hospitals, two were identified as high mortality outliers by LR 10% and

25% trimmed and LR-Firth 10% and 25% trimmed. One additional AMI hospital was identi-

fied as a high mortality outlier by LR-Firth 25% trimmed. For stroke, the methods agreed for

50 out of 51 hospitals. The remaining hospital was identified as a high mortality outlier by OE

and OE-Faris. For hip fracture, the methods agreed for 44 out of 45 hospitals. The remaining

hospitals was identified as low mortality hospital by LR-Firth, LR-Firth 25% trimmed, LR

25% trimmed, OE, and OE-Faris. No hospital changed status from low mortality to high mor-

tality or vice versa. All Fleiss’ kappa values above 0.94 and indicated almost perfect agreement,

Table 4.

Discussion

We compared the level of significance, power, and probability of directional error for OE and

LR, with and without modifications in a simulation study. None of the methods were superior

overall with respect to both level of significance and power for detection of both low and high

mortality outlier hospitals.

The various methods for estimating 30-day mortality and profiling hospitals include e.g.

empirical Bayesian methods, hierarchical/multilevel models, and regression trees [4–6, 8, 12].

Comparisons of methods with respect to estimation or hospital outlier detection have been

done for selected medical conditions and by simulations [26–28]. Multilevel methods have

been reported to be more conservative than methods based on fixed effects [5, 11][9] and to

have convergence problems [9]. Whether to use a Baysian or a frequentist approach is still

Table 3. Hospital and patient characteristics, data from Norwegian hospitals 2012–2014.

AMI Stroke Hip fracture

Number of hospitals, (number of patients) 51 (33 950) 51 (26 935) 45 (24 258)

Number of patients per hospital, median (range) 463 (103–3794) 416 (78–2261) 452 (69–1838)

Overall unadjusted 30-day mortality (hospital

range)

11.3% (8.0%–

20.4%)

13.4% (8.4%–

21.5%)

8.9% (4.8%–

12.1%)

Age, years, mean (standard deviation) 71.6 (14.1) 74.6 (13.6) 83.4 (8.0)

Females (%) 37.9% 47.3% 71.1%

https://doi.org/10.1371/journal.pone.0195248.t003

Table 4. Number of hospitals and status (low mortality, non-outlier, high mortality) according to the various methods; the ratio of observed to expected number of

deaths (OE), variance corrected OE (OE-Faris), logistic regression (LR), bias corrected LR (LR-Firth), trimmed mean variants (LR trimmed and LR-Firth trimmed).

Fleiss’ kappa for agreement across methods.

AMI Stroke Hip fracture

Hospital status, identified by all methods Low 2 9 3

Non-outlier 40 38 38

High 6 3 3

High mortality according to LR 10% trimmedLR 25% trimmedLR-Firth 10% trimmedLR-Firth 25% trimmed 2 0 0

LR-Firth 25% trimmed 1 0 0

OEOE-Faris 0 1 0

Low mortality according to LR-FirthLR-Firth 25% trimmedLR 25% trimmedOEOE-Faris 0 0 1

Fleiss’ kappa 0.94 0.99 0.96

https://doi.org/10.1371/journal.pone.0195248.t004

Observed to expected or logistic regression
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debated [29]. However, it is generally accepted that for the purpose of testing hypotheses about

individual hospitals this should be formulated in a fixed effects model [30–32]. As our purpose

was to make inferences about the Norwegian hospitals, we used fixed effect models. In prac-

tice, the testing is followed by estimating the mortality for each hospital. For this purpose, it is

common practice to shrink the estimated regression coefficients for each hospital towards the

location measure by a hierarchical Bayesian method [6, 7]. This is also done for estimating

mortality (survival) for Norwegian hospitals [23].

Standard theory only guarantees control over asymptotic error probabilities under the

exact null hypotheses βi = 0 for the hospital in question for the LR-methods (and similarly for

OE). One can easily visualize situations where this is not the same as outlier status, e.g. the sce-

narios used in the simulation experiment. Thus, we may expect levels of significance different

from the nominal level. In terms of having actual level of significance close to the nominal

level for all three hospital volume categories, OE and OE-Faris were best when testing for

high mortality outliers, and LR performed worst. However, nominal level was achieved by

LR-Firth 10% and 25% trimmed for large and medium volume hospitals. When testing for low

mortality outliers, the actual level of significance increased considerably, particularly for OE

and OE-Faris. The most plausible explanation is the so-called swamping effect: When multiple

outliers are present, they distort the distribution of the presumed non-outliers, which is the

basis for comparison when assessing outlier status of a single observation [33][18]. When

using OE, the estimated expected number of deaths under the null hypothesis of equal proba-

bilities of deaths across hospitals is weighted by the number of cases in each hospital. In prac-

tice, hospital volumes will often vary widely, in which case the parameters of the mortality

model (1) will be strongly influenced by the largest hospitals. OE is thus subject to a hospital

volume effect which we regard as a weakness of the OE approach. In the standardizing condi-

tion of the LR model, however, the hospital (case-mix adjusted) average is unweighted, because

the objective is to measure the performance of each hospital relative to the hospital population.

Thus, the LR hospital effects can be regarded as hospital number-weighted measures of the

probability of death. OE is appropriate for outlier detection but not for inter-hospital compari-

sons because the case-mix adjustment is based on the risk factor distribution of the hospital

under evaluation rather than a common distribution. The question arises of whether a differ-

ent weighting scheme could be introduced in OE (and OE-Faris). The main appeal of OE is its

simplicity, which would be lost if a different scheme was used. Alternatively, hospital volume,

as measured by the number of cases, could be used for weighting in the LR methods. We

would then have measured the performance relative to the patient population. A hospital can

with minimal analytic expertise, calculate its OE when parameter estimates are provided. For

LR, all data from all hospitals need to be available and thus more expertise, usually an institu-

tion outside the hospitals, performs the calculations. The advantage of the latter, more complex

approach is that hospitals can be compared directly versus the location measure and versus

other hospitals.

With respect to power when testing for low mortality outliers, OE, OE-Faris, and LR-Firth

and trimmed variants performed best, and LR worst. In practice, hospitals with no deaths are

not included when compared by LR and trimmed variants. When excluding such 0-deaths

hospitals, LR and trimmed variants perform well for power when testing for high mortality, as

visualized by using the low mortality outlier set. For the simulations scenarios with the low

mortality set, there were few replications where deaths occurred in all hospitals. Thus, the con-

vergence of the iterative LR method was uncertain, making the estimates for actual level of sig-

nificance and power unreliable [34].

The simulation scenarios showed very low power for small hospitals. The Centres for Medi-

care & Medicaid Services found that�500 patients per hospital was appropriate for identifying

Observed to expected or logistic regression
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poor performers [35]. This is concordant with our findings. Many Norwegian hospitals are

small, and despite using data for a 3-year period, requiring at least 20 cases per year [23], the

simulations suggest that we may miss small, outlying hospitals, independent of method. One

can argue that when testing small hospitals, a somewhat increased level of significance may

be acceptable, if accompanied by higher power. However, due to the excess level of signifi-

cance for OE and OE-Faris when testing for low mortality outliers among medium and large

hospitals, only LR-Firth and trimmed variants and LR excluding 0-deaths 10% and 25%

trimmed showed overall more reliable performance. Somewhat surprisingly, OE-Faris did

not improve on OE. The reason may be that we compared 10 or more hospitals in the

simulations.

Our simulation study covered several scenarios for number of hospitals and ways of allo-

cation of outlier status to hospitals. The variation of hospital volume was chosen to mimic

the actual distribution in Norway, and presumably representative of the situation elsewhere.

Thus, we believe the probability model is realistic for 30-day mortality. In addition, we tested

the methods on real data for three medical conditions. The simulation scenarios were

designed so that true outlier status was unambiguous. This might have been more realistic by

having a continuous distribution of mortality among the hospitals. However, one would

then have to make a definition of outlier status in terms of the true parameter values. Our

comparisons could then be contingent on the choice of definition, which is not evident.

Future studies could investigate this problem. We have not covered scenarios where the

case-mix, e.g. age distribution, differs between hospitals. In principle, we could have

included hierarchical or multilevel methods in the comparison. However, as already noted,

these methods have been found to be inferior for the outlier detection problem. In practice,

one would use correction for multiple testing. The most common methods rely on compo-

nent tests for individual hospitals [36, 37], so that correction for multiplicity would not inval-

idate our conclusions.

When using hospital data, the objective was to compare the methods by analysing the same

data to see whether the identification of outliers differed with the different methods. We could

have used the last episode of care, or randomly selected an episode. For the sake of simplicity,

we chose the first episode of care for a patient. The methods agreed with respect to outlier sta-

tus for 94.1% of the AMI hospitals, 98.0% of the stroke and 97.8% of the hip fracture hospitals.

However, LR-Firth 25% trimmed identified the largest number of outliers, three high mortality

and one low mortality outliers. The simulation data showed good performance for LR 25%

trimmed, LR-Firth, and LR-Firth 10% and 25% trimmed. The results for the hospital data were

in agreement with this.

Summing up

One should carefully consider the choice of method for outlier detection, and be aware that

the actual level of significance may be higher than the nominal. In particular, none of the

methods we considered had satisfactory level when testing for low mortality outliers. A possi-

ble solution is to use different levels for the two kinds of test, e.g. 0.05 when testing for high

mortality outliers, and 0.02 when testing for low mortality outliers. Another would be to use

resampling methods, e.g. bootstrapping, to ensure correct level of significance.

In our opinion, 30-day mortality is as an important indicator for guiding quality improve-

ment. In particular, hospitals identified as outliers may have suboptimal care and need to

evaluate whether their practice is in accordance with guidelines, and take action to improve

quality [38]. Falsely claiming a hospital to be a low mortality hospital may give a hospital a mis-

leading well-performing reputation and undeserved economic advantages. Falsely claiming a

Observed to expected or logistic regression
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high mortality outlier can do harm by leading to closing down of departments or no renewal

of contracts [39]. When weighing the risk of not identifying a high mortality hospital versus

the risk of false classification of a hospital to have low mortality, we are of the opinion that

detecting high mortality hospitals is more important than identifying low mortality hospitals.

For a single method applicable to detection of both high and low mortality outliers, we recom-

mend, on the balance, LR-Firth 10% or 25% trimmed.
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