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Transition metal ions are essential micronutrients for all living organisms. In mammals,
these ions are often protein-bound and sequestered within cells, limiting their availability
to microbes. Moreover, in response to infection, mammalian hosts further reduce the
availability of metal nutrients by activating epithelial cells and recruiting neutrophils, both
of which release metal-binding proteins with antimicrobial function. Microorganisms, in
turn, have evolved sophisticated systems to overcome these limitations and acquire the
metal ions essential for their growth. Here we review some of the mechanisms employed
by the host and by pathogenic microorganisms to compete for transition metal ions, with
a discussion of how evading “nutritional immunity” benefits pathogens. Furthermore, we
provide new insights on the mechanisms of host-microbe competition for metal ions in
the mucosa, particularly in the inflamed gut.
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INTRODUCTION
Transition metal ions are involved in many biological processes
crucial for sustaining life. These metals can serve as cofactors in
proteins, enabling their biological function, regulating their activ-
ity, and/or stabilizing their structure (Aisen et al., 2001; Andreini
et al., 2008; Waldron et al., 2009). This mini-review focuses on
three metal ions targeted by host sequestration strategies and the
means by which microbes acquire them; namely, iron, zinc, and
manganese.

Among transition metal ions, iron is the most abundant
in the human body. Of the 3–5 g of iron in adults, 65–75%
is located within erythrocytes bound to heme, the tetrapyr-
role cofactor of hemoglobin, and utilized for oxygen transport
(Andrews, 2000). Iron is also critical for other cellular pro-
cesses in mammals, such as nucleic acid and protein synthe-
sis, electron transport, and cellular respiration (Griffiths, 1999;
Lieu et al., 2001). Most of the iron in the body is intracellu-
lar, and extracellular iron is associated with high-affinity iron
binding proteins, namely transferrin and lactoferrin, so iron that
microorganisms need for survival is severely restricted. Much
like eukaryotic cells, microorganisms also utilize iron in DNA
synthesis, electron transport, oxygen binding, and superoxide
metabolism (Griffiths, 1999). Outside the body, the bioavail-
ability of iron is generally limited due to the low solubility of
ferric iron (Fe3+) at physiological pH (7.4), likely facilitating
microbial adaptation to low iron conditions (Raymond et al.,
2005). In light of this, microbes that possess multiple iron uptake
mechanisms, or those that can utilize alternative metal ions
like zinc and manganese, are able to thrive when usable iron
is scarce.

Zinc is an essential metal nutrient with an estimated dietary
requirement in humans of 15 mg per day (Tapiero and Tew,
2003; King, 2011). Approximately 95% of zinc in humans is
intracellular, where it serves structural and functional roles for
a large number of macromolecules and enzymes (Tapiero and
Tew, 2003; King, 2011). For prokaryotes, it is estimated that
5–6% of their proteome may consist of zinc binding proteins,
which emphasizes the need for mechanisms of zinc acquisi-
tion in these cells (Andreini et al., 2006). In contrast to iron
and zinc, only trace concentrations of manganese are found
in human serum (<10 nM) and tissue (<4 μM) (Keen et al.,
2000), which is likely to pose significant challenges for microor-
ganisms that have adapted to thrive on earth’s biosphere where
manganese is widely available (Morgan, 2000). Only a hand-
ful of strictly manganese-dependent enzymes are known in both
eukaryotes and prokaryotes because manganese in metalloen-
zymes appears to be readily interchangeable with other divalent
cations (Andreini et al., 2008). Manganese in microbes is largely
known for its role as a cofactor for some free radical detoxifying
enzymes, but it also plays a key role in central carbon metabolism
(Kehres and Maguire, 2003).

Transition metal ions are important biological catalysts
because they can undergo changes in oxidation states involving
one electron. To limit the unspecific reactive potential of transi-
tion metals, their availability in vertebrate hosts needs to be tightly
regulated at all times and especially limited during infection, a
process termed nutritional immunity (the sequestration of nutri-
ents from pathogens). Host mechanisms of nutritional immunity
are varied and include: the induction of hepcidin, a master
hormone regulator that controls the levels of iron in the body
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(Drakesmith and Prentice, 2012); the expression of the Natural
Resistance-Associated Macrophage Protein 1 (NRAMP1), an ion
transporter that pumps iron and manganese out of pathogen-
containing phagosomes (Jabado et al., 2000; Forbes, 2003; Cellier
et al., 2007); and the expression of antimicrobial proteins that
sequester metal ions at sites of infection (Aujla et al., 2008; Corbin
et al., 2008; Raffatellu et al., 2009; Hood et al., 2012; Liu et al.,
2012). Whereas all of these strategies aid the host in limiting
the replication of infecting microbes, some microorganisms have
evolved or acquired mechanisms of metal uptake that circumvent
the nutritional immune response. Here we review some of the
mechanisms that the mammalian host utilizes to sequester metal
ions in response to infection, we describe how microbes can evade
this nutritional immunity (with a focus on mucosal sites), and we
discuss how circumventing this host defense benefits pathogens.
Although transition metal toxicity and active intoxication are also
established strategies in antimicrobial host responses, we will set
our focus on the starvation of essential metal nutrients.

MICROBIAL MECHANISMS OF ACQUIRING IRON
Iron is required by numerous microbial species because it serves
as a cofactor for important cellular processes including DNA
replication, central metabolism and respiration. Microbes have
thus evolved or acquired a variety of specialized iron uptake sys-
tems to overcome iron limitation. These systems are generally
categorized as unbound iron, siderophore, or heme acquisition
systems. Bacteria can uptake unbound iron using ferrous iron
(Fe2+) transport systems like Feo proteins, mechanisms that
appear to be important mainly during low oxygen conditions,
when ferrous iron remains more stable and predominate over
ferric iron (Andrews et al., 2003). Such systems likely play a
negligible role in bacterial iron acquisition under inflammatory
conditions, where unbound iron is rarely found.

Under iron-limiting conditions, many pathogenic bacteria and
some fungi synthesize and secrete siderophores; small, high-
affinity iron-chelating compounds (Neilands, 1995). Siderophore
effectiveness resides in their ability to bind ferric iron (Fe3+) with
an affinity that can exceed that of host Fe3+-binding proteins like
transferrin or lactoferrin (Griffiths, 1999), enabling siderophores
to “steal” iron from these host proteins. Microbial uptake of Fe3+
from siderophore-Fe3+ complexes is achieved by either the reduc-
tion of iron from the siderophore at the extracellular surface or
by the internalization of the complex (Miethke and Marahiel,
2007). Filamentous fungi are capable of iron uptake by both
routes (Philpott, 2006). Though the mechanisms of extracellular
reduction by bacteria are not well-understood, the internaliza-
tion of siderophore-Fe3+ complexes is well-studied (Crosa and
Walsh, 2002; Krewulak and Vogel, 2008; Braun and Hantke,
2011). In Gram-negative bacteria, several outer-membrane recep-
tors that transport siderophore-Fe3+ complexes have been iden-
tified; examples include the FepA receptor for enterobactin, and
the FhuA receptor for ferrichrome (Chakraborty et al., 2007;
Braun, 2009). The energy required by these receptors for the
transport of the substrate originates from the proton motive
force of the inner membrane and is transduced through the
TonB protein complex (Braun and Braun, 2002; Moeck and
Coulton, 2002; Postle and Kadner, 2003). Once in the periplasm,

substrate-binding proteins (SBPs) shuttle the siderophore-Fe3+
complex to the corresponding ATP-binding cassette (ABC) trans-
porter, which then translocates the complex into the cytoplasm
(Biemans-Oldehinkel et al., 2006). ABC transporters in the cyto-
plasmic membrane of Gram-positive bacteria are also involved in
the uptake of siderophore-Fe3+ complexes. Unlike Gram-negative
bacteria, their cognate SBPs are responsible for initial binding
of the complex and are tethered to the cytoplasmic membrane
(Sutcliffe and Russell, 1995; Biemans-Oldehinkel et al., 2006).
Once in the cytoplasm, iron can be liberated from siderophores
through reduction of Fe3+ to Fe2+ or by enzymatic degradation of
the siderophore (Miethke and Marahiel, 2007). Among bacteria,
siderophore-based iron acquisition systems are widespread.

One of the most studied siderophores is enterobactin,
also called enterochelin, which is synthesized by commensal
and pathogenic Enterobacteriaceae including Escherichia coli,
Klebsiella pneumoniae, and Salmonella spp (O’Brien and Gibson,
1970; Pollack and Neilands, 1970; Rogers et al., 1977; Perry and
San Clemente, 1979; Lawlor and Payne, 1984). Enterobactin has
high affinity for iron (Ka = 1051 M−1), which is higher than
the affinity of host proteins like transferrin (Ka = 1020 M−1)
(Aisen et al., 1978; Carrano and Raymond, 1979). Therefore,
bacteria that synthesize enterobactin can efficiently scavenge
iron from the host; however, the host innate immune response
has evolved a mechanism to counteract enterobactin-mediated
iron acquisition (discussed in detail below) (Fischbach et al.,
2006). Although siderophores are generally secreted into the
host extracellular environment, some siderophores aid iron
acquisition by pathogens with a predominantly intracellu-
lar lifestyle. Mycobacterium tuberculosis (Mtb), for example,
expresses siderophores known as mycobactins that diffuse out
of Mtb-containing phagosomes, chelate iron from cytoplasmic
stores, and re-enter the phagosome via lipid droplets (Luo et al.,
2005).

In addition to siderophores, microbial pathogens can utilize
different uptake systems to obtain iron from a variety of sources,
which allow them to inhabit diverse niches and to respond to
host mechanisms of iron sequestration. In the case of Candida
albicans, uptake of unbound iron via the high-affinity iron per-
mease FTR1 is critical for establishing systemic infection in mice
(Ramanan and Wang, 2000). In contrast, uptake of iron-bound
siderophores is necessary for C. albicans colonization of epithe-
lial layers but not for the development of a bloodborne infection
(Heymann et al., 2002). Because C. albicans lacks the genes for
the biosynthesis of siderophores (Haas, 2003), it depends on other
microorganisms for the production of siderophores. Therefore, C.
albicans uptake of iron via siderophores is likely restricted to sites
where siderophore-producing microorganisms are found (e.g.,
mucosal surfaces in the gut). Another source of iron for microbes
is the biggest pool of iron in the human body: iron from heme
and heme-binding proteins.

Similar to the uptake of siderophore-bound iron, the first
step in bacterial heme transport involves the binding of heme
or hemoglobin to a surface receptor. In Gram-negative bac-
teria, TonB-dependent receptors are involved in the transport
of heme into the periplasm, where heme-specific SBPs bind
the molecule (Braun and Hantke, 2011). For hemoglobin, both
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Gram-negative and Gram-positive bacteria extract the heme
group prior to transfer to an SBP. Heme-specific ABC trans-
porters then translocate heme into the cytoplasm, where iron
is released by heme-degrading enzymes (Braun and Hantke,
2011; Nobles and Maresso, 2011). Heme oxygenases catalyze the
oxidative cleavage of heme with an electron donor to liberate
iron (Nobles and Maresso, 2011). Subsequent catabolism of the
heme is required to reduce the toxicity associated with the heme
porphyrin (Nobles and Maresso, 2011).

HOST MECHANISMS OF SEQUESTERING IRON
Iron is essential for the replication of many pathogenic organ-
isms, so it is not surprising that the host has evolved sophisticated
strategies to limit the availability of iron to pathogens. Conversely,
both iron supplementation and diseases characterized by iron
overload, such as hemochromatosis, increase the host’s suscep-
tibility to infection (reviewed in Griffiths, 1999). In humans, the
levels of unbound iron are low; most iron is bound by heme in the
context of hemoglobin. Moreover, free heme can be captured by
hemopexin and free hemoglobin by haptoglobin. Other proteins,
like transferrin in serum, or lactoferrin in neutrophils and human
secretions, bind strongly to ferric iron. In most cells, ferritin is
responsible for storing iron for normal cellular use, but in spe-
cialized cells, i.e., hepatocytes and macrophages, ferritin is used
for long-term iron storage and sequestration during iron over-
load, respectively (Andrews, 2000). Additionally, macrophages
increase iron uptake and ferritin synthesis when converting to
their inflammatory phenotype, suggesting that ferritin-based
sequestration may be a key mechanism for intracellular iron
withholding during infection (Birgegård and Caro, 2009).

An additional mechanism of regulating iron metabolism
is mediated by the hormone hepcidin, which controls host-
protective responses by integrating signals from iron status
and threat of infection. Initially identified as an antimicro-
bial peptide (Krause et al., 2000), hepcidin is considered to
be the master hormonal regulator of iron metabolism, control-
ling both the overall level of iron and its localization (Nicolas
et al., 2001; Park et al., 2001; Nicolas, 2002; Nemeth et al.,
2003). Upon microbial infection, the upregulation of hepcidin,
concomitant with a reduction of serum transferrin saturation,
causes an overall decrease in iron levels (Nemeth et al., 2003;
Armitage et al., 2011). Hepcidin upregulation is partially medi-
ated through expression of pro-inflammatory cytokines like inter-
leukin (IL-) 6, which stimulates the production of hepcidin in
the liver (Nemeth et al., 2003, 2004a; Rodriguez et al., 2013).
Hepcidin then inhibits both cellular iron efflux and duodenal
iron absorption by binding to and inducing the degradation
of the cellular iron transporter ferroportin 1, which exports
iron into the plasma from cells that store or transport iron,
including hepatocytes, macrophages, and absorptive enterocytes
(Nemeth et al., 2004b; Ross et al., 2012). Subcutaneous infec-
tion with either Gram-negative or Gram-positive bacteria has
been shown to induce hepcidin synthesis by neutrophils and
macrophages, suggesting that local production of hepcidin may
limit iron availability at sites of infection (Peyssonnaux et al.,
2006). Overall, the induction of hepcidin upon infection results
in hypoferremia and anemia of inflammation, which represent

important host defense strategies to limit the availability of iron
to pathogens.

One of the most studied host transporters in the context of
bacterial pathogenesis is NRAMP1,—a proton-dependent trans-
porter of divalent metal ions expressed by professional phago-
cytes, such as macrophages and neutrophils (Cellier et al., 2007).
This transporter is localized in the phagosomal membrane and
exports Fe2+ and Mn2+ out of the phagosomal compartment,
presumably to reduce access to these metals of pathogens resid-
ing within the phagosome (Cellier et al., 2007). While this export
function occurs during infection, NRAMP1 is also known to
contribute to hemoglobin iron recycling by reticuloendothelial
macrophages that phagocytose senescent erythrocytes (Cellier
et al., 2007; Soe-Lin et al., 2009). In addition to its phagosome
metal-withholding function, expression of a functional NRAMP1
also restricts microbial growth by enhancing macrophage pro-
duction of the antimicrobial effector molecule nitric oxide (NO)
through sustained transcription of inducible nitric oxide syn-
thase (iNOS) (Fritsche et al., 2003). Although the mechanism for
iNOS induction is not fully understood, both STAT-1-mediated
expression of the transcription factor IRF-1, as well as sup-
pressed production of the inhibitory cytokine IL-10, contribute
to NRAMP1-dependent prolonged activation of iNOS transcrip-
tion (Fritsche et al., 2003, 2008). Similarly, another recent study
using macrophage cell lines suggests that NRAMP1-mediated
stimulation of the expression of lipocalin-2, an antimicrobial
peptide that binds iron-loaded bacterial siderophores includ-
ing enterobactin, is a novel mechanism by which NRAMP1
confers resistance to infection with the intracellular pathogen
Salmonella enterica serovar Typhimurium (S. Typhimurium)
(Fritsche et al., 2012). The importance of NRAMP1 in the host
response to infection is further underlined by many studies
showing that mice with a functional Nramp1 (Slc11a1) allele
are more resistant to infection with a variety of intracellular
pathogens including Mycobacterium bovis BCG, Leishmania dono-
vanii, and S. Typhimurium (Forbes and Gros, 2001; Cellier et al.,
2007).

Host mechanisms discussed thus far effectively reduce avail-
able iron, but they are not sufficient to completely prohibit
bacterial iron acquisition during an infection. As discussed above,
pathogenic bacteria can deploy an efficient weapon in the bat-
tle for iron: siderophores. However, as mammals have evolved
for millions of years together with siderophore-producing bac-
teria, it is not surprising that we have evolved an anti-siderophore
mechanism: secretion of lipocalin-2 (also known as siderocalin,
neutrophil gelatinase-associated lipocalin, uterocalin, or 24p3)
(Goetz et al., 2002; Flo et al., 2004; Correnti and Strong, 2012).
Lipocalin-2 is one of the most abundant antimicrobial proteins
released by epithelial cells and neutrophils during infections in the
gut and respiratory mucosa with pathogens like S. Typhimurium
and K. pneumoniae, respectively (Aujla et al., 2008; Bachman
et al., 2009; Raffatellu et al., 2009). Lipocalin-2 sequesters a sub-
set of catecholate siderophores, including enterobactin, thereby
limiting bacterial access to iron (Goetz et al., 2002; Flo et al.,
2004; Berger et al., 2006). In a sepsis model, lipocalin-2 induction
is dependent on Toll-like receptor 4 signaling (Flo et al., 2004;
Srinivasan et al., 2012). It is also known that lung and intestinal
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epithelial cells express and secrete lipocalin-2 in response to sig-
naling by pro-inflammatory cytokines released by T helper 17
(Th17) cells, like interleukin IL-17 and IL-22 (Aujla et al., 2008;
Raffatellu et al., 2009).

In addition to lipocalin-2, IL-17 and IL-22 also stimulate
epithelial secretion of neutrophil chemoattractants, known as
CXC chemokines, which mediate the recruitment of neutrophils
to the mucosa (Awane et al., 1999; Andoh et al., 2005; Kao
et al., 2005; McAllister et al., 2005; Aujla et al., 2008; Raffatellu
et al., 2009). Neutrophils play a key role in nutritional immunity
because they constitute the largest proportion of circulating white
blood cells in humans, quickly mobilize to sites of infection, and
express high levels of antimicrobial proteins that sequester metal
ions, including lipocalin-2, lactoferrin, and, as detailed below, cal-
protectin (Masson et al., 1969; Steinbakk et al., 1990; Goetz et al.,
2002). Thus, the coordinated expression and release of metal-
binding antimicrobial proteins by epithelial cells and neutrophils
during infection promotes host sequestration of essential metal
nutrients.

In this tug of war for iron, pathogens have evolved mecha-
nisms to counteract the sequestration of siderophores. To cir-
cumvent this arm of nutritional immunity, pathogens including
Salmonella species, Klebsiella species and uropathogenic E. coli
(UPEC) species synthesize salmochelin, a C-glucosylated deriva-
tive of enterobactin (Hantke et al., 2003; Bachman et al., 2011),
which lipocalin-2 cannot bind, thus enabling iron uptake in
these species and enhancing their colonization of host tissues
(Fischbach et al., 2006; Crouch et al., 2008; Raffatellu et al.,
2009; Bachman et al., 2011). Evasion of lipocalin-2-mediated
iron sequestration is thus regarded as a virulence mechanism.
However, work in our laboratory has recently shown that a probi-
otic strain of the Enterobacteriaceae family (E. coli Nissle 1917)
also evades iron sequestration by lipocalin-2 in the inflamed
gut via secretion of siderophores including salmochelin (Deriu
et al., 2013). In this case, iron acquisition and evasion of
lipocalin-2 is beneficial to the host, because E. coli Nissle 1917
reduces S. Typhimurium intestinal colonization by outcompeting
it for iron acquisition (Deriu et al., 2013). Therefore, evasion of
lipocalin-2 by the secretion of modified siderophores can confer
a fitness advantage to probiotic strains like E. coli Nissle 1917 and
enhance the host response against bacterial pathogens by further
sequestering iron.

MICROBIAL MECHANISMS OF ACQUIRING ZINC AND
MANGANESE
While the role of iron in cellular processes is well-characterized,
increasing evidence suggests that other transition metal ions such
as zinc and manganese also play a crucial role in microbial physi-
ology (Keen et al., 2000; Hantke, 2005). For example, in order to
circumvent host-mediated iron sequestration, Borrelia burgdor-
feri lacks most genes that code for iron-binding proteins, and, for
the few metalloproteins it does express, B. burgdorferi uses man-
ganese instead of iron (Posey and Gherardini, 2000). In many
bacterial species, manganese also serves as a metal cofactor for
proteins involved in central carbon metabolism and for the detox-
ification of reactive oxygen species (ROS) (Kehres and Maguire,
2003). Zinc-dependent enzymes that can detoxify ROS have also

been identified (Battistoni, 2003). Furthermore, zinc was found
to be associated with up to 5% of all bacterial proteins, of which
more than 80% are enzymes (Andreini et al., 2006). In line with
their essential role in many bacterial functions, acquisition of zinc
and manganese has subsequently been shown to contribute to
bacterial pathogenesis (reviewed in Kehl-Fie and Skaar, 2010).

Similar to siderophore and heme transport across the cytoplas-
mic membrane, ABC-type transporters are involved in bacterial
uptake of zinc (Zn2+) and manganese (Mn2+) ions (Claverys,
2001). These transporter systems are composed of a cation bind-
ing protein that shuttles its substrate to its cognate transporter, a
cytoplasmic ATP-binding protein that facilitates active transport,
and the transmembrane protein that mediates transport through
the cytoplasmic membrane. In Gram-negative bacteria, the cation
binding protein is soluble and localized to the periplasm, while
in Gram-positive bacteria it is a lipoprotein anchored to the
extracellular membrane (Gilson et al., 1988; Tam and Saier,
1993; Sutcliffe and Russell, 1995). High-affinity ABC-type zinc
transporters include ZnuABC of Gram-negative bacteria (Patzer
and Hantke, 1998; Hantke, 2005), and AdcBCA of the Gram-
positive streptococci (Dintilhac et al., 1997; Panina et al., 2003).
ABC-type manganese transporters have also been identified in
several Gram-positive and Gram-negative bacteria (Claverys,
2001; Papp-Wallace and Maguire, 2006). In S. Typhimurium, for
example, the ABC-type transporter SitABCD is found within
a pathogenicity island and is not present in the closely related
organism E. coli, indicating this transporter could have been
acquired by horizontal gene transfer (Zhou et al., 1999). Of note,
studies have shown some manganese transporters to facilitate the
uptake of other divalent cations such as Zn2+, Cd2+, and Fe2+ at
lower affinities, with a Kd in the μM range (Kolenbrander et al.,
1998; Kehres et al., 2002).

In addition to ABC-type transporters, bacteria also express
homologs of the eukaryotic NRAMP transporter family (Kehres
et al., 2000; Makui et al., 2000; Que and Helmann, 2000;
Horsburgh et al., 2002). One example is the MntH protein of
Salmonella and Escherichia, a membrane-bound, proton-coupled
symporter with high specificity for manganese (Kehres et al.,
2000); similar to the ABC-type manganese transporters, MntH
can also transport other divalent cations at higher concentrations
(Papp-Wallace and Maguire, 2006). Another discrete transporter
of zinc and manganese uptake is ZupT, a permease with broad
cation specificity belonging to the ZIP protein family (Grass et al.,
2005; Karlinsey et al., 2010). Though metal uptake via ZupT is less
specific than via the high-affinity ABC-type or NRAMP trans-
porters, studies in E. coli have demonstrated this transporter to
prefer zinc over manganese, copper, and iron (Grass et al., 2002,
2005; Taudte and Grass, 2010).

In addition to the role of these metals in essential cellular
functions, evidence is mounting that specialized mechanisms of
zinc and manganese acquisition contribute to bacterial pathogen-
esis; for instance, zinc and manganese are important cofactors in
neutralizing reactive oxygen and nitrogen species, suggesting an
important role for these metals in resisting these types of host
antimicrobial responses (Lynch and Kuramitsu, 2000; Bowman
et al., 2011). Supporting this, mutant strains of the pathogens
Brucella abortus, Pasteurella multocida, and S. Typhimurium that
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lack the ZnuABC transporter are attenuated in systemic mod-
els of disease in mice (Campoy et al., 2002; Garrido et al., 2003;
Kim et al., 2004; Ammendola et al., 2007). Furthermore, the
expression of zinc transporters promotes Campylobacter jejuni,
S. Typhimurium, and Acinetobacter baumannii colonization of
mucosal tissues (Davis et al., 2009; Hood et al., 2012; Liu
et al., 2012). For manganese acquisition, both the ABC-type
transporters and the bacterial NRAMP homologs are known to
contribute to systemic S. aureus and S. Typhimurium infection
(Karlinsey et al., 2010; Kehl-Fie et al., 2013). Taken together,
these studies indicate an important role for zinc and manganese
sequestration by the host in controlling microbial infections with
different pathogens.

HOST MECHANISMS OF SEQUESTERING ZINC AND
MANGANESE
Compared to iron, less is known about the mechanisms the host
employs to limit microbial access to metal micronutrients like
zinc and manganese. Nevertheless, multiple strategies to limit the
availability of these nutrients to pathogens have been identified in
the mammalian host.

As described in the section on host iron sequestra-
tion, NRAMP1 is a proton-dependent exporter of Fe2+ and
Mn2+across the phagosomal membrane of vertebrates that con-
fers resistance to various intracellular pathogens (Cellier et al.,
2007). Another host protein known to sequester metal ions is the
antimicrobial protein calprotectin (Corbin et al., 2008), a het-
erodimer of the two EF-hand calcium-binding proteins S100A8
and S100A9 (Teigelkamp et al., 1991), which exerts antimicrobial
activity against several bacterial and fungal organisms by seques-
tering zinc and manganese (Corbin et al., 2008; Urban et al., 2009;
Hood et al., 2012; Liu et al., 2012). Upon dimerizing, S100A8
and S100A9 form two metal binding sites, both of which can
bind strongly to Zn2+, though one is also capable of binding
manganese (Kehl-Fie et al., 2011; Damo et al., 2013). Like lacto-
ferrin and lipocalin-2, calprotectin is expressed by neutrophils,
where it constitutes approximately 50% of their cytosolic con-
tent (Hessian et al., 1993). Calprotectin is thought to be secreted
by apoptotic neutrophils, where it is associated with their extra-
cellular traps, also called NETs (Urban et al., 2009). Similar to
lipocalin-2, the two subunits of calprotectin, S100A8 and S100A9,
are also induced by IL-17 and IL-22 in mucosal epithelial cells
(Zheng et al., 2008; Liu et al., 2012; Zindl et al., 2013).

To successfully colonize the host, pathogens have evolved
mechanisms to resist the effects of calprotectin-dependent zinc
and manganese sequestration. Manganese is most notably impor-
tant as a cofactor for enzymes that detoxify ROS (Aguirre and
Culotta, 2012). Consistent with this role, manganese binding by
neutrophil-derived calprotectin inhibits the growth of S. aureus in
tissue abscesses and increases the susceptibility of this pathogen to
oxidative stress (Kehl-Fie et al., 2011). To counteract this, the spe-
cialized manganese transporters MntABC and MntH contribute
to systemic S. aureus infection by competing with calprotectin for
manganese (Kehl-Fie et al., 2013). In S. Typhimurium, expression
of the high-affinity zinc transporter ZnuABC aids the pathogen
in overcoming calprotectin-mediated zinc sequestration and pro-
motes the growth of S. Typhimurium in the inflamed gut as well

as Salmonella competition with the microbiota (Liu et al., 2012).
Genes encoding a similar ABC-type zinc transporter are present
in A. baumannii, where they also mediate resistance to zinc
sequestration by calprotectin and serve to increase pathogenesis
(Hood et al., 2012).

S100A12 (calgranulin C) is another calgranulin protein like
S100A8 (calgranulin A) and S100A9 (calgranulin B) which binds
to zinc and other divalent cations. Similar to S100A8 and S100A9,
S100A12 is also predominantly expressed by neutrophils, mono-
cytes and activated macrophages (Robinson and Hogg, 2000).
However, unlike S100A8 and S100A9, S100A12 is not found in
rodents and its role in metal sequestration is not well-defined.
S100A12 seems to be mainly pro-inflammatory through the acti-
vation of mast cells but may also play a role in chemotaxis (Hsu
et al., 2009; Perera et al., 2010). S100A12 has antiparasitic activ-
ity against filarial nematodes (Gottsch et al., 1999), although this
activity does not appear to be dependent on metal sequestra-
tion. Calcitermin, a 15-residue C-terminal cleavage fragment of
S100A12, can be found in the human airways and exhibit antimi-
crobial activity against E. coli, Pseudomonas aeruginosa, and C.
albicans, both at low pH and in media with zinc (Cole et al., 2001).

Another S100 protein with antimicrobial and immunomodu-
latory activity is S100A7, which is largely expressed in the skin and
other epithelia. This protein, also known as psoriasin, was origi-
nally discovered as an abundant protein in psoriatic keratinocytes
(Gläser et al., 2005). Psoriasin is secreted by keratinocytes and has
antimicrobial activity against E. coli, possibly by sequestering zinc
(Gläser et al., 2005). The molecule is considered an important
effector molecule of the cutaneous barrier and, like S100A8 and
S100A9, is also induced by IL-17 and IL-22 (Liang et al., 2006).

HOST vs. PATHOGENS: THE BATTLE FOR METALS AT THE
INTERSECTION OF HEALTH AND DISEASE IN THE MUCOSA
Sequestration of metal ions is one of the most important host
strategies to limit the growth of bacterial and fungal pathogens.
Metal limitation in the host is further enhanced during infection
by the secretion of antimicrobial proteins that sequester metal
ions, such as lipocalin-2 and calprotectin. Lipocalin-2 appears to
be most effective in limiting the growth of commensal bacteria,
as a number of pathogens have evolved or acquired additional
siderophores to evade this response. In contrast, calprotectin
restricts the growth of a variety of bacterial and fungal pathogens,
including S. aureus, C. albicans, B. burgdorferi, A. baumannii,
and Aspergillus nidulans (Lusitani et al., 2003; Urban et al., 2009;
Moore et al., 2013). While both antimicrobial proteins are consti-
tutively expressed by neutrophils, their expression—as well as the
expression of other S100 proteins—may be induced in epithelial
cells by pro-inflammatory stimuli like the Th17 cytokines IL-22
and IL-17 (Boniface et al., 2005; Zheng et al., 2008; Kerkhoff et al.,
2012; Lee et al., 2012; Liu et al., 2012; Bando et al., 2013; Zindl
et al., 2013).

Altogether, the secretion of antimicrobial proteins and the
production of reactive oxygen and nitrogen species at the site
of infection can reduce the growth of many microorganisms.
Susceptibility of commensal bacteria to ROS may be exacer-
bated as a result of lipocalin-2 and calprotectin expression
because these proteins sequester metals that serve as cofactors
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in bacterial enzymes responsible for neutralizing free radical
species. However, in the harsh environment these responses cre-
ate, microbes with metal scavenging ability can often survive and
replicate, sometimes even dominating when commensal compe-
tition is reduced. This is the case for S. Typhimurium, which
overcomes both lipocalin-2- and calprotectin-mediated metal
sequestration to colonize the inflamed gut and compete with
the microbiota (Raffatellu et al., 2009; Liu et al., 2012), a theme
that likely applies to other pathogens (Figure 1). Therefore, the
secretion of antimicrobial proteins like lipocalin-2 and calpro-
tectin may have a detrimental effect on the host by killing com-
mensal bacteria that are more susceptible to oxidative damage,
neutrophil enzymatic activity, and metal nutrient deprivation.

Elevated lipocalin-2 and calprotectin levels observed in patients
with inflammatory bowel disease (Cayatte et al., 2012; Østvik
et al., 2013; Wang et al., 2013) may also be detrimental to the host
because antimicrobial activity toward commensal bacteria likely
contributes to the microbial imbalance observed in the digestive
tract of these patients, known as dysbiosis (Salzman and Bevins,
2008; Manichanh et al., 2012). Sustained intestinal dysbiosis can
lead to the overgrowth of potentially harmful bacteria termed
pathobionts (Stecher et al., 2013).

The fact that transition metals are essential for proper devel-
opment and function of the host further complicates the host
metal economy during infection. For example, zinc is needed
for immune development and function, but it also has to be

FIGURE 1 | A battle for metals in the intestinal mucosa: mechanisms of

host metal sequestration and microbial metal acquisition. To limit
microbial growth, the mammalian host sequesters free iron, zinc, and
manganese ions by expressing proteins in the mucosa that directly bind
metals or metal-binding agents in a process termed nutritional immunity.
Lactoferrin binds to iron (Fe) and calprotectin binds to zinc (Zn) and
manganese (Mn). Hemopexin can limit the amount of circulating iron-bound
heme (He) and lipocalin-2 sequesters the bacterial iron-scavenging
siderophore enterobactin. Upon infection, inflammatory mediators increase
the expression of metal-sequestering proteins, which is detrimental to
microbes lacking mechanisms to survive metal deprivation. Inflammatory
cytokines, IL-17 and IL-22, produced by T cells induce epithelial cells to
express antimicrobial proteins including lipocalin-2 and calprotectin.
Furthermore, activated epithelial cells secrete CXC chemokines that recruit
neutrophils to the site of infection; neutrophils also express high levels of

lactoferrin, lipocalin-2, and calprotectin. Microbial infection and inflammation
can stimulate the production of hepcidin in the liver and in macrophages,
which further reduces iron availability by inducing the degradation of the
cellular iron exporter ferroportin 1. In addition, the divalent metal ion
transporter NRAMP1 can export manganese and iron out of the macrophage
phagosome to further restrict metal availability to intracellular pathogens. To
overcome metal starvation, pathogens (red ovals) employ several strategies
to acquire iron, zinc and manganese. Highly specialized ABC-type
transporters facilitate the uptake of zinc and manganese as well as iron
bound to heme and siderophores. Siderophores, such as enterobactin, are
iron-scavenging agents. Although lipocalin-2 can sequester enterobactin to
limit microbial access to iron, some pathogens use salmochelin, a
C-glucosylated derivative of enterobactin that cannot be bound by lipocalin-2.
Some pathogens also express NRAMP family transporters and ZIP family
transporters for the uptake of manganese and zinc.

Frontiers in Cellular and Infection Microbiology www.frontiersin.org January 2014 | Volume 4 | Article 2 | 6

http://www.frontiersin.org/cellular_and_infection_microbiology
http://www.frontiersin.org
http://www.frontiersin.org/cellular_and_infection_microbiology/archive


Diaz-Ochoa et al. Metal ions and mucosal immunity

sequestered from staphylococcal abscesses in order to zinc-starve
S. aureus during infection (Kehl-Fie et al., 2013). Furthermore,
the amounts of metals vary in different organs (Kehl-Fie et al.,
2013), which may be a basis for site-specific differences in the
host’s metal sequestration strategies. A contributing factor in
these differences may include microbial colonization. In the
healthy gut, and possibly at other mucosal sites colonized by
commensal bacteria, host interactions with the microbiota likely
regulate the low-level expression of metal binding proteins as
well as the concentration of transition metals. At these mucosal
sites and in other tissues and organs, it is plausible that other
antimicrobial proteins besides lipocalin-2 and calprotectin may
sequester metal ions but have yet to be identified.

In concert with other host defense strategies, nutritional
immune responses at the mucosa can lead to beneficial outcomes
for the host by reducing the colonization of invading pathogens.
However, they can also alter the normal microbial flora, which
may enhance the colonization of pathogens like S.Typhimurium
or result in dysbiosis. Thus, it is important to take into account
that metal sequestration strategies can be beneficial to the host,
but may also potentially benefit pathogens or pathobionts that
evade these responses. Moreover, investigating the mechanisms
of host-microbe competition for metal ions may pave the way
for developing novel therapeutics that are in critical need given
the mounting global threat of antibiotic-resistant pathogens and
pathobionts.
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