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Abstract: Previous findings suggest that metastatic colorectal carcinoma (mCRC) patients with
KRAS/NRAS/BRAF/PIK3CA wild-type (quadruple-wt) tumors are highly sensitive to anti-epidermal
growth factor receptor (EGFR) monoclonal antibodies (MoAbs). However, additional molecular
alterations might be involved in the de novo resistance to these drugs. We performed a comprehensive
molecular profiling of 21 quadruple-wt tumors from mCRC patients enrolled in the “Cetuximab After
Progression in KRAS wild-type colorectal cancer patients” (CAPRI-GOIM) trial of first line FOLFIRI
plus cetuximab. Tumor samples were analyzed with a targeted sequencing panel covering single
nucleotide variants (SNVs), insertions/deletions (Indels), copy number variations (CNVs), and gene
fusions in 143 cancer-related genes. The analysis revealed in all 21 patients the presence of at least
one SNV/Indel and in 10/21 cases (48%) the presence of at least one CNV. Furthermore, 17/21 (81%)
patients had co-existing SNVs/Indels in different genes. Quadruple-wt mCRC from patients with
the shorter progression free survival (PFS) were enriched with peculiar genetic alterations in KRAS,
FBXW7, MAP2K1, and NF1 genes as compared with patients with longer PFS. These data suggest
that a wide genetic profiling of quadruple-wt mCRC patients might help to identify novel markers of
de novo resistance to anti-EGFR MoAbs.
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1. Introduction

The median overall survival (mOS) of patients affected by metastatic colorectal carcinoma (mCRC)
has notably increased in the past 20 years, from 12 months using 5-fluorouracil-based chemotherapy
to around 20–30 months with combination therapies including target-based agents [1]. In particular,

Cancers 2019, 11, 859; doi:10.3390/cancers11060859 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-4144-7066
https://orcid.org/0000-0003-0523-1919
https://orcid.org/0000-0002-7500-5506
http://www.mdpi.com/2072-6694/11/6/859?type=check_update&version=1
http://dx.doi.org/10.3390/cancers11060859
http://www.mdpi.com/journal/cancers


Cancers 2019, 11, 859 2 of 12

agents that block the epidermal growth factor receptor (EGFR), such as the anti-EGFR monoclonal
antibodies (MoAbs) cetuximab or panitumumab, are an effective therapeutic option in combination
with chemotherapy in mCRC patients [2,3].

Treatment with anti-EGFR agents is currently recommended only for mCRC patients with
KRAS/NRAS/BRAF wild type (wt) tumors, because mutations in these genes have been shown to
determine resistance to anti-EGFR therapies [4,5]. Results from different clinical trials also suggest that
anti-EGFR MoAbs significantly improve survival only in patients with tumors in the left colon [6].
However, the difference in outcome between left- and right-sided CRC is likely to reflect the different
molecular landscapes of these tumors. Indeed, a number of genetic alterations might play a role in the
de novo resistance to anti-EGFR agents in mCRC. In particular, single nucleotide variants (SNVs), copy
number variations (CNVs) and/or rearrangements in PIK3CA, PTEN, ERBB2, MAP2K1, NTRK1-3, RET,
AKT1, ALK, and ROS1, have been claimed to be associated with resistance to anti-EGFR MoAbs [7–11].
However, most of these observations derive from retrospective analyses of patients treated with
anti-EGFR agents in advanced lines of treatment.

The “Cetuximab After Progression in KRAS wild-type colorectal cancer patients” (CAPRI) study
enrolled KRAS exon 2 wt mCRC patients who received first-line FOLFIRI plus cetuximab, and at
progression were randomized to FOLFOX alone or FOLFOX plus cetuximab. In first-line, the subgroup
of patients with KRAS/NRAS/BRAF/PIK3CA wt (quadruple-wt) tumors had a better overall response
rate (ORR; 64.4%) and median progression free survival (mPFS; 11.3 months), compared with patients
harboring a mutation in any of these genes (ORR 47.4% and mPFS 7.7 months) [12,13].

The CAPRI-GOIM cohort represents a unique collection of tumor samples from mCRC patients
treated with first-line anti-EGFR agents within an academic clinical trial. The availability of these tumor
samples with annotated clinical data offers the possibility to identify novel genetic alterations that
might be associated with de novo resistance to anti-EGFR MoAbs. Starting from the hypothesis that the
quadruple-wt cohort might be enriched with rare genetic alterations involved in the sensitivity/resistance
to anti-EGFR MoAbs, we performed a comprehensive genomic profiling of a subgroup of quadruple-wt
tumors from patients enrolled in the CAPRI trial. By using this approach, we could identify potential
candidate genes involved in the resistance to anti-EGFR agents, thus suggesting that selection of mCRC
patients for treatment with anti-EGFR monoclonal antibodies can be further optimized.

2. Results

2.1. Targeted Sequencing of KRAS/NRAS/BRAF/PIK3CA Wt mCRC Samples

In order to identify possible mechanisms of resistance to anti-EGFR MoAbs in CRC, we analyzed
tumor samples from 21 KRAS/NRAS/BRAF/PIK3CA wt mCRC patients enrolled in the CAPRI-GOIM
clinical trial by targeted sequencing (Table S1). In particular, we tested the tumor specimens with the
Oncomine Comprehensive Panel that provides information on hotspot mutations of 73 oncogenes,
CNVs of 49 genes, full-length sequence of 26 tumor suppressor genes, and sequence of 22 driver gene
fusions (see Materials and Methods).

The analysis revealed in all 21 patients the presence of at least 1 mutation and in 10/21 (47.6%)
the presence of at least one CNV. Furthermore, 17/21 patients had co-existing genetic alterations in
different genes (Table S1).

Of the 54 SNVs and insertions/deletions (Indels) identified, 35% and 41% were APC and
TP53 variants, respectively (Figure 1). Nineteen patients (90.47%) had at least one TP53 SNV or
Indel, whereas 15/21 (71.43%) patients carried APC mutations. All cases with APC mutations
had also TP53 variants. Four tumors carried two APC variants, one tumor had two TP53
mutations and one tumor showed three co-existing TP53 mutations. Two different variants
in TP53 (c.275_276insGGCC and c.837_838InsG) and three in APC (c.4467_4468insCATTTTG,
c.4098_4099delTCinsAT, and c.589_590insGAGTT) have not been reported in any other sample
in public databases to date (www.cbioportal.org; http://cancer.sanger.ac.uk/ cosmic, last accessed
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03/14/2019). Mutations were also detected in FBXW7 (n. 3), NF1 (n. 2), MAP2K1 (n. 1), KRAS (n. 1),
PTPN11 (n. 1), ATM (n. 1), CTNNB1 (n. 1), PIK3R1 (n. 1), PTEN (n. 1), and CDKN2A (n. 1). All genetic
variants were confirmed by Sanger sequencing or droplet digital PCR (ddPCR). The relative frequency
of the SNVs/Indels is shown in Figure 1.

Figure 1. Percentage distribution of the 54 single nucleotide variants (SNVs) and Indels identified in
the quadruple-wt mCRC patients.

The presence of at least one CNV in APC, TP53, PIK3R1, BCL2L1, GAS6, MYC, ZNF217, FLT3,
ERBB2, and APEX1 was observed in 10/21 (47.6%) cases. In particular, one case showed deletions of
both APC and PIK3R1 (P6), two had deletions of either APC (P15) or TP53 (P14). The other genes
showed copy number gains ranging between 4.67 and 78.99. Three tumors (30%) had several amplified
or deleted genes (Table S1 and Figure 2).

No gene fusions were detected in 19 tumors. The analysis failed in two cases (P9 and P18).
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Figure 2. Molecular profile of quadruple-wt mCRC tumors. single nucleotide variants (SNVs), Indels
and copy number variations (CNVs) of mutated genes for each patient are represented. Patients’ IDs
are shown at the top. Green rectangles represent SNVs. Light blue rectangles represent Indels.
Red rectangles represent amplifications. Purple rectangles represent deletions. In the lower panels,
progression free survival (PFS) and tumor localization of our cohort of patients are displayed.

2.2. Correlation of Genetic Landascape with Patients’ Outcome

The median PFS of the 21 patients included in this analysis was 10.7 months (95% CI 6.25–14.87)
and the median OS was 32.6 months (95% CI 24.97–41.28), comparable to those observed in the whole
cohort of quadruple-wt patients of the CAPRI-GOIM trial [12].

Interestingly, we observed that patients with the shorter PFS (<median PFS) had peculiar genetic
alterations in genes involved in the RAS/MEK and mTOR pathways that might be associated with
resistance to anti-EGFR drugs. In contrast, only one FBXW7 variant was observed among patients
with a PFS ≥median PFS (Figure 2).

All variants were at an allelic frequency >5% with the exception of a KRAS variant (c.183A>T;
p.Gln61His) that was identified in the tumor tissue from patient P7 (PFS 3.93 months) at an allelic
frequency of 0.4%. This variant was at an allelic frequency below the 2% sensitivity of the targeted
sequencing panel used for tumor molecular profiling in the CAPRI-GOIM trial [12]. The KRAS mutation
was confirmed by ddPCR analysis of tumor tissue. In addition, the same variant was detected with
BEAMing in the cell-free DNA (cfDNA) from the same patient, thus confirming the specificity of the
NGS analysis (data not shown).

Patient P3 (PFS 6.63 months) carried the variant c.169A>G in the MAP2K1 gene coding for the
MEK1 protein. This variant has been already reported in the cBioPortal database. It results in the
substitution of an amino acid residue (p.Lys57Glu) in the MEK1 negative regulatory domain and it has
been associated with a gain of function of the protein [14,15].

Two patients (P20 and P21) had variants in NF1, a negative regulator of RAS, inactivated by
mutation in various cancers. Specifically, we found an insertion (c.638_639insA; p.Asn214Lys fs*2)
in the tumor from patient P20 (PFS 2.83 months) and a SNV (c.5101A>T; p.Lys1701Ter) in the tumor
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from patient P21 (PFS 3.73 months). These mutations have not been reported in both COSMIC and
cBioPortal databases. Both NF1 mutations lead to the formation of a premature stop codon with
consequent loss of function and increased activation of the RAS signaling pathway. Patient P21 carried
also a GAS6 amplification (copy number gain 6.04).

Of the three missense mutations detected in FBXW7, two were found in patients with a PFS shorter
than median PFS. Patient P14 (PFS 8.07 months) carried the c.1798G>A variant (p.Asp600Asn) and
patient P18 (PFS 1.73 months) the c.1513C>T SNV (p.Arg505Cys). The biological effect of the variant
p.Asp600Asn is still unknown. In contrast, the FBXW7 p.Arg505Cys mutation has been reported in
several cancer types and leads to loss of function of the protein [16].

In 4/10 cases with a PFS <median PFS no genetic alterations in addition to TP53 and/or APC
mutations were found. Two of these cases were right-sided colon tumors.

The CNVs were much more frequent among patients with longer PFS. Within this cohort, patient
P16 had a significant copy number gain of ERBB2 (78.99) that was confirmed by FISH analysis (data not
shown). Patient P16 had a partial response to cetuximab-based first-line therapy with a PFS of
12.8 months. Patient P4 (PFS 17.93 months), carrying both GAS6 copy gain (5.59) and a FBXW7 variant
(c.1268G>T; p.Gly423Val), had a complete response to first-line therapy.

The tumor from patient P17 carried several genetic alterations, including an Indel in PTEN.
Loss of PTEN expression has been previously associated with resistance to anti-EGFR MoAbs [17–19].
However, this patient had a first-line PFS of 15.1 months.

2.3. Frequency of Identified Genetic Alterations in CRC

Although we identified MAP2K1, FBXW7, and NF1 variants in patients with relatively short PFS,
this finding could be due to a prognostic rather than a predictive value. Therefore, we interrogated
public databases and data available at our biobank to assess the frequency in CRC of variants in
MAP2K1, FBXW7, and NF1 and the correlation with clinical-pathological features. In particular,
we investigated whether these variants are found in left-sided tumors, in which the use of anti-EGFR
monoclonal antibodies is highly recommended, as well as their prognostic significance.

In the cBioPortal database, variants of the MAP2K1 gene are reported at frequencies of 1.7% in
CRC patients (Table 1) and correlated with worse disease/progression-free survival (Logrank Test
P-Value: 1.815e-3), but not with overall survival. Although MAP2K1 mutations were more frequent
in right-sided tumors, they were also detected in left colon tumors (Table 1). MAP2K1 variants
were also more frequent among KRAS/NRAS/BRAF wt patients as compared with unselected CRC
(Table 1). The MAP2K1 mutations previously reported to be associated with de novo and acquired
resistance to anti-EGFR MoAbs reside in the negative regulatory domain of the MEK1 protein and
are associated with a gain of function of the protein [11,14]. We interrogated our database for these
specific mutations. Among 939 CRC cases tested at our laboratory for MAP2K1 mutations within
clinical practice and clinical research, only 2 (0.2%) showed MEK1 gain of function variants (c.199G>A,
p.Asp67Asn; c.169A>G, p.Lys57Glu), thus confirming the rarity of these specific genetic alterations in
CRC. Importantly, both variants were found in patients with left-sided CRC.

Alterations in NF-1 are described in 4.9% of CRC (Table 1) and do not correlate with survival,
based on cBioPortal data. The frequency of these mutations is higher in right-sided tumors, without
any significant difference between unselected CRC and KRAS/NRAS/BRAF wt carcinomas (Table 1).

Finally, we interrogated the cBioPortal database for the frequency of FBXW7 variants in CRC.
Mutations in this gene are described in 12.5% of CRC patients and do not show correlation with survival.
The frequency of FBXW7 variants is slightly higher in right-sided tumors (Table 1). These mutations
also showed a slightly lower frequency in tumors that did not carry mutations in KRAS, NRAS, and
BRAF genes (Table 1).
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Table 1. Frequency of MAP2K1, FBXW7, and NF1 mutations in CRC and correlation with sidedness
based on cBioPortal database.

Unselected CRC KRAS/NRAS/BRAF Wild-Type CRC

Genes All Left-Sided Right-Sided All Left-Sided Right-Sided

MAP2K1 1.7% (61/3473) 1.1% (10/878) 3.1% (13/416) 2.7% (27/1011) 1.6% (8/497) 6% (7/117)

NF1 4.9% (169/3473) 3.9% (34/878) 7.2% (30/416) 5% (51/1011) 4.2% (21/497) 7.7% (9/117)

FBXW7 12.5% (433/3473) 13.3% (117/878) 15.6% (65/416) 8.5% (86/1011) 10.3% (51/497) 10.3% (12/117)

3. Discussion

Despite treatment with anti-EGFR MoAbs significantly improves the outcome of KRAS/NRAS/BRAF
wt mCRC patients, additional mechanisms of resistance might limit their activity. In this respect,
several previous reports hypothesized that different genetic alterations might play a role in the de
novo resistance to anti-EGFR agents [7,9,10]. However, this study is the first to address this question in
patients treated with first-line anti-EGFR MoAbs within a prospective clinical study. Although we
could analyze a limited number of patients for which tumor samples were available, we identified
variants in several genes that might be potentially involved in the resistance to anti-EGFR agents.

Among patients with the shorter PFS, we detected variants in genes that have been already
associated with resistance to anti-EGFR MoAbs in CRC, such as KRAS, MAP2K1, and FBXW7, as well as
in the new candidate gene NF1. We must acknowledge that the lack of a control arm prevents from the
possibility to define whether these variants are predictive or prognostic. However, the mutations that
we identified are mechanistically linked to EGFR-signaling, suggesting that they are good candidates
as possible drivers of resistance to anti-EGFR agents. In addition, data from public database suggest
that FBXW7 and NF1 mutations are not associated with worse prognosis in CRC.

We found that a patient with KRAS p.Gln61 mutation at a very low allelic frequency in the tumor
tissue and a liquid biopsy positive for the same KRAS variant had a quite short PFS. Sub-clonal KRAS
mutations have been reported to occur in CRC [20,21]. KRAS variants at low allelic frequency are
unlikely to determine resistance to anti-EGFR MoAbs in mCRC patients [22]. However, we and other
groups described that some RAS wt mCRC patients with clinical resistance to anti-EGFR agents had a
liquid biopsy positive for KRAS mutations and carried the same variant at very low allelic frequency
in the primary tumor [13,23]. Liquid biopsy is not expected to be positive for mutations present at very
low allelic frequency in the tumor tissue due to the limit of sensitivity of this technique [24]. Therefore,
we hypothesize that minor tumor clones carrying KRAS variants might be enriched during tumor
progression in the metastatic sites, thus determining resistance to anti-EGFR MoAbs and positivity
of liquid biopsy. These findings suggest that analysis of tumor tissue and liquid biopsy can provide
complementary information on sensitivity to anti-EGFR agents in patients with metastatic disease.

Mutations in p.Lys57 of MEK1 have been previously found to be associated with de novo and
acquired resistance to anti-EGFR agents [11,14]. Mechanistically, these variants lead to constitutive
activation of MEK1 and increased downstream signaling. Although mutations in this site are quite
rare in CRC, their identification might lead to a better identification of patients with primary resistance
to anti-EGFR MoAbs. In addition, combinations of anti-EGFR MoAbs, BRAF, and MEK inhibitors,
that are highly active in patients with BRAF mutations, might be effective also in patients carrying
MAP2K1 activating variants [25].

The role of FBXW7 in the resistance to anti-EGFR MoAbs is more controversial. FBXW7 is a tumor
suppressor gene that encodes the substrate recognition component of SKP1–Cullin1–F-box protein
ubiquitin E3 ligase complexes, which in turn negatively regulate the intracellular abundance of several
key oncogenic proteins [26]. In particular, its loss of function leads to increased levels of total and
activated mTOR. Variants in FBXW7 have been described in 6% to 10% of CRC [27,28]. In patients with
mCRC, FBXW7 missense mutations are associated with PIK3CA mutations and with a shorter overall
survival (OS) [28]. By using gene expression data, loss of FBXW7 was also correlated with a gene
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expression profile of RAS activation and resistance to anti-EGFR MoAbs in CRC [29]. In agreement
with these data, FBXW7 variants were identified in cases with resistance to anti-EGFR MoAbs in a
retrospective study of 67 mCRC patients treated with different anti-EGFR MoAbs and chemotherapy
regimens [30]. Interestingly, in this study the majority of the FBXW7 mutations correlating with
patients’ outcome were in the WD40 domain, which is involved in FBXW7 binding to its substrates [16].
All the FBXW7 mutations identified in our study occurred in the WD40 domain. A FBXW7 variant
was found in our study in a patient with a good response to cetuximab-based therapy. The tumor of
this patient carried also an amplification of GAS6, whose elevated expression has been previously
associated with a favorable prognosis in CRC [31]. These findings suggest that the complexity of the
genetic landscape of CRC rather than the single alteration might affect the outcome of CRC patients
and their sensitivity to anti-EGFR agents.

Our data also point out to NF1 variants as a possible new biomarker of resistance to EGFR MoAbs.
NF1 mutations are reported in 4.9% of KRAS/NRAS/BRAF wt CRC in the cBioPortal database (Table 1).
Interestingly, both variants identified in our study have not been previously described, underlying the
need to use technologies that cover the full-length gene for the analysis of NF1 mutations. In a recent
study of cetuximab-based therapy in a small cohort of Chinese mCRC patients (n. 33), the presence
of NF1 mutations was associated with the shortest PFS [32]. Importantly, reduced NF1 expression
has been also demonstrated to confer resistance to EGFR inhibition in lung cancer [33]. Collectively,
these preliminary observations suggest the possible role of NF1 in the resistance to anti-EGFR MoAbs
in mCRC.

We observed that a patient with ERBB2 copy number gain had a very good response to first
line cetuximab-based therapy. This observation contrasts with findings suggesting a role of ERBB2
gene amplification in the resistance to anti-EGFR MoAbs in patients with mCRC [34,35]. However,
these studies assessed the correlation between ERBB2 amplification and sensitivity to anti-EGFR
MoAbs in patients receiving these drugs exclusively as second- or third-line treatment. Previous
studies have shown activity of anti-EGFR agents in CRC patients with partial ERBB2 amplification [36].
In addition, a recent editorial highlighted a good PFS in selected patients with ERBB2 amplified tumors
in the HERACLES trial [37]. Although our data deriving from a single patient cannot be generalized,
our observation highlights the relevance to assess biomarkers in the first-line setting before making
conclusions on their predictive role.

In 4 out of 10 tumors from patients with shorter PFS we were not able to detect genetic
alterations that might be associated with resistance to anti-EGFR agents. A whole exome sequencing
approach might be able to discover genetic alterations that are not covered by targeting sequencing
panels. However, more complex mechanisms involving the interaction of CRC cells with tumor
microenvironment might also play a relevant role in determining the sensitivity/resistance of CRC to
anti-EGFR MoAbs [38].

Recent findings suggest that anti-EGFR MoAbs are highly active in patients with left-sided tumors,
whereas they have little activity in right-sided tumors [6]. In agreement with this hypothesis, two
out of three patients with right-sided tumors included in this analysis had a short PFS. Importantly,
the possible mechanisms of resistance that we identified in this study were found in patients with
left-sided tumors, who are usually treated with anti-EGFR agents in the clinical practice. Therefore,
these biomarkers might help to define better the population of patients with high sensitivity to
EGFR blockade.

Finally, patients with longer PFS in our series carried more CNVs as compared with patients with
shorter PFS. This might be due to the different genetic background of these tumors. In fact, CNVs are
more frequent in tumors related to the chromosomal instability pathway that have been suggested to
be more sensitive to anti-EGFR agents [39].
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4. Materials and Methods

4.1. Patients

The CAPRI-GOIM clinical trial is a nonprofit academic, open-label, multicenter study carried
out by the GOIM cooperative group (EudraCT number: 2009-014041-81). Patients with KRAS exon
2 wild-type mCRC, as assessed by local pathology laboratories, received first-line treatment with
FOLFIRI plus cetuximab until progression or unacceptable toxicity or patient refusal. After progression,
patients were randomized (1:1) to receive FOLFOX or FOLFOX plus cetuximab as second line
therapy [12,21]. The primary end point was PFS. Secondary end points included overall response rate
(ORR), defined as the proportion of patients with confirmed complete responses (CR) plus partial
responses (PR), and overall survival (OS). Responses were evaluated by local radiologist in each
participating center according to RECIST criteria. Inclusion criteria were: age of 18 years or older,
histologically confirmed adenocarcinoma of the colon or rectum, first occurrence of metastatic disease,
Eastern Cooperative Oncology Group (ECOG) performance status score of 0 or 1, and adequate
hematologic, hepatic, and renal function. Exclusion criteria were: previous exposure to an anti-EGFR
therapy or to irinotecan-based chemotherapy, previous chemotherapy for metastatic colorectal cancer,
or any investigational drug in the 30-day period before the start of treatment in the study. In the
first-line treatment, about 600 patients were screened for KRAS mutations to identify 340 eligible
patients. Patients were evaluated every 8 weeks to assess the response to treatment. The protocol
was approved by the Ethical Committee of the Istituto Tumori Giovanni Paolo II Bari on July 23, 2009
(N. 303) and it was next approved in each center by local independent Ethics Committee.

The CAPRI-GOIM clinical trial is a nonprofit academic, open-label, multicenter study carried
out by the GOIM cooperative group (EudraCT number: 2009-014041-81). Patients with KRAS exon
2 wild-type mCRC, as assessed by local pathology laboratories, received first-line treatment with
FOLFIRI plus cetuximab until progression or unacceptable toxicity or patient refusal. After progression,
patients were randomized (1:1) to receive FOLFOX or FOLFOX plus cetuximab as second line
therapy [12,21]. The primary end point was PFS. Secondary end points included overall response rate
(ORR), defined as the proportion of patients with confirmed complete responses (CR) plus partial
responses (PR), and overall survival (OS). Responses were evaluated by local radiologist in each
participating center according to RECIST criteria. Inclusion criteria were: age of 18 years or older,
histologically confirmed adenocarcinoma of the colon or rectum, first occurrence of metastatic disease,
Eastern Cooperative Oncology Group (ECOG) performance status score of 0 or 1, and adequate
hematologic, hepatic, and renal function. Exclusion criteria were: previous exposure to an anti-EGFR
therapy or to irinotecan-based chemotherapy, previous chemotherapy for metastatic colorectal cancer,
or any investigational drug in the 30-day period before the start of treatment in the study. In the
first-line treatment, about 600 patients were screened for KRAS mutations to identify 340 eligible
patients. Patients were evaluated every 8 weeks to assess the response to treatment. The protocol
was approved by the Ethical Committee of the Istituto Tumori Giovanni Paolo II Bari on July 23, 2009
(N. 303) and it was next approved in each center by local independent Ethics Committee.

Baseline CRC tumor samples (182/340, 53.5%) were retrospectively analyzed with a targeted
sequencing panel covering hotspot mutations in 22 genes [12]. Tumor tissue for further genetic analysis
was available for 21 KRAS/NRAS/BRAF/PIK3CA wt mCRC patients.

4.2. Targeted Sequencing

Formalin-fixed, paraffin-embedded (FFPE) tumor samples were obtained before first-line treatment
with cetuximab-based therapy. Tumor tissues were analyzed with the Oncomine Comprehensive
Assay v1 (Thermo Fisher Scientific, Milan, Italy) using the Ion Torrent semiconductor sequencing.
Libraries were prepared starting from 10 ng of genomic DNA or RNA according to the manufacturer’s
instructions. For each sample the DNA and RNA libraries were combined and clonally amplified on
Ion sphere particles (ISPs) by emulsion PCR performed on the Ion One Touch 2 instrument with the
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Ion PGM template OT2 200 Kit (Thermo Fisher Scientific) according to the manufacturer’s instructions.
Then, ISPs were enriched, loaded on an Ion 318 chip and sequenced on a PGM sequencer with the
Ion PGM sequencing 200 kit v2 according to the manufacturer’s instructions. The raw data were
analyzed using the Torrent Suite Software v5.0 (Thermo Fisher Scientific). Mutations were detected
using the Ion Reporter Software v5.0 with low stringency settings. Each mutation was verified in
the Integrative genome viewer (IGV) from the Broad Institute (http://www.broadinstitute.org/igv/).
All genetic variants were confirmed by Sanger sequencing or Droplet Digital PCR. The QX200 Droplet
Digital PCR (ddPCR) System (Bio-Rad, Milan, Italy) was used to perform digital PCR and data were
analyzed using the QuantaSoft analytical software v1.7.4 (Bio-Rad, Milan, Italy).

5. Conclusions

Our data suggest that a wide genetic profiling of KRAS/NRAS/BRAF/PIK3CA wt mCRC patients
might improve the ability to select patients who are highly sensitive to anti-EGFR MoAbs and provide
the rationale for the development of therapeutic approaches with agents targeting different signaling
pathways, alone or in combination with anti-EGFR drugs. Further studies are required to confirm the
role of the identified genetic alterations as biomarkers predictive of response to anti-EGFR MoAbs.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/6/859/s1,
Table S1: Clinical data, histopathological characteristics and variants identified in the cohort of 21 quadruple-wt
mCRC patients.
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