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Abstract
The approach of dealing with uncertainty is enhancing day-by-day with new rudiments and tools which possess their specific
qualities. Usually, aggregation operators can easilymanage the information in an exact manner. But each operator has different
specifications in each problem. In recent fewyears, aggregation operators on intuitionistic fuzzy soft sets (IFSSs) or generalized
intuitionistic fuzzy soft sets (GIFSSs) have been investigated but a lot of improvement is needed to obtain more accurate
results. In this research, we defined new aggregation operators on GIFSSs which are used to aggregate our multi-criteria
decision-making method. Reasonably, we assigned the weights with both intuitionistic fuzzy values of IFSS and intuitionistic
fuzzy values of extra input in a GIFSS, and then by establishing new aggregation operators we appraised the computation
in a more precise way. We defined the necessary properties of new aggregation operators and preparatory work of decision
making in an algorithm. Then we expressed a real-life application by dint of the proposed methodology. Finally, we presented
the comparisons of our work with already existing methods and techniques comprising aggregation operators.

Keywords Fuzzy sets · IFSSs · GIFSSs · Aggregation operators for GIFSSs · Multi attributes decision making

1 Introduction

1.1 Background

In the middle of the twentieth century, mathematician Lotfi
Aliasker Zadeh finds out a way to represent the uncertainty
of a standard set by fuzzy subset notation (Zadeh 1965). The
ordinary sets are not good enough in depicting routine life
matters, as they are not able to express any vagueness and

B Khizar Hayat
khizar233@gmail.com; khizarhayat@uokajk.edu.pk

Zalishta Tariq
ztariqmscmath@gmail.com

Edwin Lughofer
Edwin.Lughofer@jku.at

M. Fahim Aslam
iamfahimaslam@uokajk.edu.pk

1 Department of Mathematics, University of Kotli, Azad
Jammu and Kashmir, Pakistan

2 Department of Mathematics, Women University of Azad
Jammu and Kashmir, Bagh, Pakistan

3 Department of Knowledge-Based Mathematical Systems,
Johannes Kepler University Linz, Linz, Austria

uncertain knowledge of human beings. Conclusively the the-
ory of fuzzy sets was build up with significant applicability
in a diverse problem of routine life. This theory is derived
on principles from the interval the [0, 1], where an item may
belong to a set with a certainmembership degree. Thus, com-
pared to ordinary sets, it has a better tendency to compel
vague information (Zimmermann 2010). Fuzzy sets made
many advancements and provide dynamic features in diverse
fields such as machine learning, facial pattern recognition,
air conditioners, washing machines, transmission systems,
control of subway systems, knowledge-based systems for
multi-dimensional optimization of power systems, weather
forecasting assessments, depicting methods for new prod-
uct pricing or project risk evaluations, medical diagnosis and
treatment plans.

A parameterized generalization of fuzzy sets known as
soft sets is built upon a set-valued approximation map to
model uncertain concepts by collectively considering various
visible features indicated by parameters (Maji et al. 2001a;
Molodtsov 1999). In the past ten years, multifarious appli-
cations of soft sets have been found out such as in algebraic
systems (Acar et al. 2010; Shabir andNaz 2011), engineering
designs (Hayat et al. 2020; Tiwari et al. 2017), decision mak-
ings (Cagman and Enginoglu 2010), and graph theory (Ali
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et al. 2017). Later in 2003, a fuzzy soft set was promoted by
Maji et al. (2003) by combining the concept of fuzzy sets
(Zadeh 1965) and soft sets (Molodtsov 1999). To explore
the routine life issues, a huge number of different types of
uncertainties have been judged by fuzzy soft sets (Roy and
Maji 2007), and it has numerous applications to hand out
with parameterizations and granularity (Cagman et al. 2010;
Chen et al. 2005; Pei and Miao 2005).

The different portrait of it known as intuitionistic fuzzy
sets (IFSs) was introduced by Bulgarian mathematician
Atanassov (1986). By the property of the vagueness of
IFSs, for considering unsure data, some researchers work
to integrate it with influencing learning methods for bet-
ter results (Garg and Kumar 2018; Liu et al. 2020; Xu and
Yager 2006; Xu 2007). Notedly, aggregation operators (Xu
and Yager 2006; Xu 2007), distance measures (Szmidt and
Kacprzyk 2000; Wang and Xin 2005) and similarity mea-
sures (Dengfeng and Chuntian 2001; Fei et al. 2019; Liang
and Shi 2003) are main operations to deal with vague infor-
mation. The practical setting from IFSs is parameterized, and
it appeared as intuitionistic fuzzy soft sets (or IFSSs) (Maji
et al. 2001b). It found a huge number of applications in recent
years (Akram and Shahzadi 2018; Bashir et al. 2012; Das and
Kar 2014; Garg and Arora 2018a; Yin et al. 2012).

For ambiguous problems where IFSSs are not sufficient
Agarwal investigated an extra input-based structure called
generalized intuitionistic fuzzy soft sets (or GIFSSs) (Agar-
wal et al. 2013), its supplementary multi-criteria decision
making (MCDM) was proposed byGarg and Arora (2018b);
Selvachandran et al. (2017). Another unambiguous shape of
GIFSSs which clarify the different meanings of opinions of
senior persons on underlying IFSS is pictured by Feng et al.
(2019) and also see Hayat et al. (2018). More correctly the
group-based GIFSS was proposed by Hayat et al. (2018b)
and recently various applications of it have been deduced
Khan et al. (2020a, b).

1.2 Motivations

The concept of GIFSS is a perspective model to define
another opinion over IFSS regarding assessments and judg-
ments of moderators (Agarwal et al. 2013). But in Agarwal’s
model of GIFSS, the extra input over IFSS was turned into
another IFSS. The additional information seemed like a
groupof values rather than IFSs.After that,Khalil pointedout
errors in the original concept of GIFSSs, and he gave a note
on it (Khalil 2015). Thereafter, captious insight into GIFSSs
was needed to determine the adequacy of the definition. In
2019, Feng gave a reformation of the definition of GIFSS
(Feng et al. 2019). From this new perspective, a number of
new operations for enhancing both theoretical and practical
aspects of GIFSSs, such as complement, extended/restricted

unions and extended/restricted intersections have been inves-
tigated (Feng et al. 2019; Hayat et al. 2018b).

The precise practical development of GIFSSs is faculty
appointment problem using a scorified method (Feng et al.
2019) andfinest design evaluation in design systems for a new
product using AND-operation (Hayat et al. 2018). Feng’s
GIFSS was not enough to determine more than one assess-
ment of moderators. On this motivation, Hayat enumerated
IFSs of moderators with IFSS (or data obtained by a commit-
tee of experts) which gives GGIFSSs (Hayat et al. 2018b).
To the best of our knowledge, Hayat’s GGIFSS is a primary
form of GIFSS and it is an unquestionably dominance notion
(Hayat et al. 2018b).

In fact, with appropriate notions, an appropriate method
containing a favorable mechanism is a root point in MCDM.
In order to mechanize GGIFSS with MCDM, Hayat et al.
(2018b) made use of the ancient ideas of operators (Xia et al.
2013; Xu and Yager 2006; Xu 2007). Normally, the most
precise assembling process compels the nature of MCDM
systems which assembles reliance data and acts in a com-
pressedmanner. In recent fewyears, aggregation operators on
IFSS or GIFSS have been investigated but a lot of improve-
ment is needed to obtain more and more accurate results.
Hayat’s GGIFSS-based aggregation operators (Hayat et al.
2018b) are one aspect of compelling IF information but a
more approved formwas requiredwhich canmanage all com-
ponents of GGIFSS in a very linear way. Thus an aggregation
systemwas necessary to get precise aggregation on both IFSS
and IF in GGIFSS.

Our study develops some new generalized weighted
averaging (GWA) aggregation operators and generalized
weighted geometric (GWG) aggregation operators acting
on GGIFSS. We will provide several properties of the new
operators. By advantages of new results, we will perform
multi-attribute decision making on GIFSSs and their appli-
cations in real life. Finally, we will show the superiorities of
our method over major existing methods.

2 Preliminaries

This section recalls some terminologies and results related
to fuzzy sets, soft sets and IFSs.

2.1 Fuzzy sets

Zadeh founded fuzzy set theory based on the concept of par-
tialmembership,which allows researchers to constitute a new
framework for incorporating uncertainty and vagueness.

Definition 2.1 (Zadeh 1965) The fuzzy set (or FS) P is usu-
ally identified asP = {(a, μP (a))|a ∈ X}whereμP : X →
[0, 1] is the degree of membership.

123



New aggregation operators on group-based generalized intuitionistic fuzzy soft sets 13355

2.2 Intuitionistic fuzzy sets

The FS was insufficient to represent non-credibility infor-
mation in some real-life situations. Atanassov proposed the
concept of an intuitionistic fuzzy set (IFS) to get over certain
drawbacks of Zadeh’s FSs. Notwithstanding, Atanassov’s
IFSs offer credible degree μ and non-credible degree ν for
each element of a set. This was not the case for traditional
fuzzy sets. Although the property μ + ν ≤ 1 is imposed,
it can hold with strict inequality μ + ν < 1 because the
degree of non-credibility given by ν is not necessarily equal
to μc. Thus any FS can be interpreted as an IFS whenever
ν = 1 − μ. The formal expression of IFSs is given in the
following way:

Definition 2.2 (Atanassov 1986) An IFS P comprising a set
X is expressed as:

P = {(a, μP (a), νP (a)),∀a ∈ X}

where 0 ≤ μP (a) ≤ 1, 0 ≤ νP (a) ≤ 1 and μP (a) +
νP (a) ≤ 1. We denote this pair as P = 〈a, μP , νP 〉 and
called as an IF value(IFV). The set of all IFSs over X is
denoted by IFS(X).

The main factor included in an IFS is its hesitancy, and it is
contemplated as follow:

Definition 2.3 (Atanassov1986, 1999)Agradeover credible
and non-credible degrees is defined by

πP (a) = 1 − (μP (a) + νP (a))∀a ∈ X

and it expressed the degree of hesitancy of a to P . Where
μP (a) is called credible degree and νP (a) is called non-
credible degree.

For any contrary a ∈ X , 〈μP (a), νP (a)〉 is a simplified
form of IFV. For more on IFVs see Feng et al. (2019), Hayat
et al. (2018) and Deschrijver and Kerre (2003) and the set of
all IFVs over X is expressed as V .

Definition 2.4 (Atanassov 1986) Suppose 〈μP , νP 〉 ∈ V be
an IFV. Then expectation account value or score of 〈μP , νP 〉
is a mapping from η : V → [0, 1], indicated as follows:

ηP = μP − νP + 1

2

Where ηP is called the decision value or score value of the
pair 〈μP , νP 〉 in P .

In contrast to the integrated information on IFVs, fundamen-
tal operations are indicated as follows:

Definition 2.5 (Xu and Yager 2006; Xu 2007) Suppose V1 =
〈μP , νP 〉, V2 = 〈μ∗

P , ν∗
P 〉 be two IFVs in a universe. Then

we have,

(1) V1
⊕

V2 = 〈μP + μ∗
P − μPμ∗

P , νPν∗
P 〉

(2) V1
⊗

V2 = 〈μPμ∗
P , νP + ν∗

P − νPν∗
P 〉

(3) εV1 = 〈1− (1− μP )ε, (νP )ε〉 where ε is a positive real
number.

Xu and Yager take an insight on aggregation instruments
which are given below:

Definition 2.6 (Xu and Yager 2006; Xu 2007) Suppose
c1,c2,c3,…,cm be the intuitionistic fuzzy values (IFVs) and
φ=[φ1,φ2,φ3,…,φm] be correlated weighted normalized vec-
tor, then,

IFWA(c1,c2,c3,. . . ,cm) )=φ1
c1

⊕
φ2

c2
⊕

φ3
c3

⊕
, . . . ,

⊕
φm

cm =〈1 − ∏m
i (1 − μci )

φi ,
∏m

i ν
φi
ci 〉

IFWG(c1,c2,c3,. . . ,cm)=c
φ1
1

⊗
cφ2
2

⊗
cφ3
3

⊗
, . . . ,

⊗
cφm
m =〈∏m

i μ
φi
ci , 1 − ∏m

i (1 − ν
φi
ci )〉

where IFWAand IFWGare the IFweighted averaging and
IF weighted geometric operators, respectively.

2.3 Soft sets

Different from fuzzy sets, a theory was built upon the basis
of parameterizations by Molodtsov. It is known as the soft
set theory which is built on set-valued approximate functions
to show judgment into uncertain concepts by integrally con-
sidering many different scenarios expressed by parameters.

Definition 2.7 (Molodtsov 1999) Suppose E be the set of
parameters, B ⊆ E . An order pair (H,B) is known as soft
set on X , while H is a map expressed by H : B → P(X),
where P(X) denote the set of all subsets of X .

Jointly IFSs and soft sets provide IFSSs and its notion is
as follows:

Definition 2.8 (Maji et al. 2001a) Suppose soft universe
(X , E), and B ⊆ E . An order pair F = (S,B) is known
as IFSS on X , while S is a mapping defined by S : B →
I FS(X), where S is indicated as an approximate-function
of the IFSS (S,B).

An adjustment of influential opinion with IFSS gives a
more significant model to handle uncertainty.

Definition 2.9 (Feng et al. 2019) Suppose an order pair
(X , E) as a soft universe, and B ⊆ E . A triple (Ŝ,B, α̂)

is known as generalized intuitionistic fuzzy soft set (GIFSS)
on X . The pair (Ŝ,B) is indicated as an fundamental IFSS
on X and α̂ is indicated as a parametric IFS in B.

This depiction of GIFSS could be more important to deal
with the problems in which unsure and vague information
are frequent, and it increases the precision and accuracy of
outputs with the opinion of an expert in the form of IFS
over a set of parameters. The more general setup of GIFSS is
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GGIFSS, and its main finding relies on more than one crucial
opinions on attributes.

Definition 2.10 (Hayat et al. 2018b) Suppose an order pair
(X , E), as a soft universe and B ⊆ E . A triple (Ŝ,B, ĝ) is
known as group-based generalized intuitionistic fuzzy soft
set (GGIFSS) on X . The pair (Ŝ,B) is a basic IFSS (EIFSS)
on X and ĝ ={ α1,α2,α3,…,αp } where α1,α2,α3,…,αp are
the parameterized IFSs(X) (PIFSs) of B. We can say that “ĝ"
is a group of PIFSs examine by “p" number of experts.

The final assessments αdi ′ (i
′ = 1, 2, . . . , p) of experts

are crucial addition in IFSS such as sometime they can be
sighted as customer’s demands (see the case study (II) by
Hayat et al. (2018b)).

3 New aggregation operators on generalized
intuitionistic fuzzy soft sets

Hayat’s GGIFSS-based aggregation operators (Hayat et al.
2018b) is one aspect of compelling IF information, but a
more approved form was required which can manage all
components of GGIFSS in a very linear way. Certainly, an
aggregation systemwas necessary to get specific aggregation
on both IFSS and IFSs in GGIFSS. The existing operators
on GGIFSS do not entirely deal with IFVs in a GGIFSS by
concerning attributes. As in decision-making, all judgments
oscillate between attributes until we obtain the best alterna-
tive from the final step of a MCDM method. On this fact,
here we define a new class of operators which has a great
influence on many MCDM models by mean of attributes.

3.1 Generalized weighted averaging (GWA)
operators

In contrast of GGIFSS interpreted in Definition 2.10, a tab-
ular formulation of it must needed to investigate underlying
and above cited heading.

Definition 3.1 Let τg = (Ŝ,B, ĝ) be a GGIFSS over X as
shown in Table 1.

Where X = {ξ1, ξ2, . . . , ξs} is the set of alternatives, B =
{v1, v2, . . . , vn} is the set of attributes, and d1, d2, . . . , dp are
the set of moderators who provide their crucial assessments
on IFSS. The brown part of Table 1 shows IFSS and purple
part of Table 1 shows IFSs of each moderator’s assessments.

Assume that dk0 j = akj ( j = 1, 2, . . . , n, k = 1, 2, . . . , s)

and in other words dk0 j are IFVs in brown part of Table 1.

Further, dki ′ j = di ′ j for i ′ = 1, 2, 3, . . . , p and in other words

dki ′ j are IFVs in purple part of Table 1. Let i = 0, 1, 2, . . . , p.

Table 1 GGIFSS τg = (Ŝ,B, ĝ)

X | B v1 v2 v3 · · · vn

ξ1 a11 a12 a13 · · · a1n

ξ2 a21 a22 a23 · a2n
...

...
...

...
...

...

ξs as1 as2 as3 · · · asn

d1 d11 d12 d13 · · · d1n

d2 d21 d22 d23 · · · d2n
...

...
...

...
...

...

dp dp1 dp2 dp3 · · · dpn

Then a characterization of IFVs in Table 1 is given by:

dki j =
{
akj i f i = 0
di ′ j i f i > 0

.

Based on representation of GGIFSS in Table 1, the new
aggregation operators are defined in following definition.

Definition 3.2 Let τg = (Ŝ,B, ĝ) be a GGIFSS over X ,
given in Table 1. Let [ς1, ς2, . . . , ςn]T be the weighted
vector over set of attributes {v1, v2, . . . , vn}, such that
ς j > 0 and �n

j=1ς j = 1. Also consider weighted vector

[w0, w1, w2, . . . , wp]T such that wi > 0 and �
p
i=0wi =

1, where w1, w2, w3, . . . , wp are the weights for assess-
ments of senior persons/moderators and w0 is a weight of
whole data in IFSS given in Table 1 (see brown part). Note
that w0 is a weight for each IFV in IFSS. If we consider
i = 0, 1, 2, 3, . . . , p then the definition of weighted general-
ized averaging operators (GWA) accomplished by GGIFSS
is given as follows:

δk = W AGGI FSS(ak1, ak2, . . . , akn)

= IW A j

⎛

⎜
⎜
⎝

IW Ai (dk01, d
k
11, d

k
21, . . . , d

k
p1),

IW Ai (dk02, d
k
12, d

k
22, . . . , d

k
p2),

. . . ,

IW Ai (dk0n, d
k
1n, d

k
2n, . . . , d

k
pn)

⎞

⎟
⎟
⎠

= IW A j

⎛

⎜
⎜
⎝

IW Ai (ak1, d11, d21, . . . , dp1),
IW Ai (ak2, d12, d22, . . . , dp2),

. . . ,

IW Ai (akn, d1n, d2n, . . . , dpn)

⎞

⎟
⎟
⎠

Where W AGGI FSS is called weighted averaging operators
over GGIFSS, and jointly the set of all GWAs is represented
as 
 = {δ1, δ2, . . . , δs}. Moreover, IW Ai is a IWA operator
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Table 2 Tabular representation
of GGIFSS X | B v1: Near to school v3: Good location v4: well furnished

ξ1 〈0.6, 0.2〉 〈0.9, 0.1〉 〈0.5, 0.4〉
ξ2 〈0.4, 0.5〉 〈0.1, 0.3〉 〈0.3, 0.5〉
ξ3 〈0.2, 0.6〉 〈0.2, 0.9〉 〈0.2, 0.4〉
ξ4 〈0.6, 0.2〉 〈0.3, 0.3〉 〈0.2, 0.2〉
ξ5 〈0.5, 0.1〉 〈0.9, 0〉 〈0, 1〉

αd1 〈0.3, 0.4〉 〈0.2, 0.4〉 〈0.3, 0.5〉
αd2 〈0.1, 0.9〉 〈0.2, 0.8〉 〈0.4, 0.5〉

on IFS plus set of moderators and IW A j is IWA operator on
set of parameters.

The new GWA operators aggregate the information
towards attributes until the decision-IF-values of alternatives
are obtained. Next, to clarify above definition, we consider
an example as in the following:

Example 3.3 Let X = {ξ1, ξ2, . . . , ξ5} be the set contain-
ing five houses and E = {v1, v2, v3, v4} where vi = (i =
1, 2, 3, 4), respectively, stands for ( “near to school," “near to
hospital," “good location" and “well furnished"). Consider a
set of attributes B = {v1, v3, v4} ⊂ E which is desired by
Mr. X and Mrs. X to buy a house. Overall assessment val-
ues (by a committee of experts) for houses concerning each
attribute in B are given in IFSS (provided in brown part of
Table 2). The demands ofMr. X andMrs. X are given as IFSs
αd1 and αd2 , respectively (provided in purple part of Table 2).
Then the GGIFSS is represented in Table 2.

Nowconsider the set IFVs = {a11, a12, a13}= {〈0.6, 0.2〉,
〈0.9, 0.1〉, 〈0.5, 0.4〉} consist IFVs of house ξ1 on attributes,
respectively.

Let w0 = 0.29 be the weight of whole data IFSS
(provided by family of experts) and w0 is associated with
each IFV in IFSS. Also w1 = 0.35 and w2 = 0.36 are
the weights of Mr. X and Mrs. X, respectively. Thus, we
obtain a weighted vector {w0/0.29, w1/0.35, w2/0.36}T .
And let ς = {ς1/0.25, ς2/0.40, ς3/0.35}T be a weighted
vector over given attributes. Then GWA is given by δ1

=WAGGIFSS(a11, a12, a13)=IW A j

(
IWAi (a11, αd11 , αd21 ),

IWAi (a12, αd12 , αd22 ),

IWAi (a13, αd13 , αd23 )

)

First we calculate,

IWAi (a11, αd11 , αd21)

= IWA{〈0.6, 0.2〉, 〈0.3, 0.4〉, 〈0.1, 0.9〉}

= 〈1 − (1 − 0.6)0.29(1 − 0.3)0.35(1 − 0.1)0.36,
(0.2)0.29(0.4)0.35(0.9)0.36〉

= 〈0.348508, 0.438073〉
IWAi (a12, αd12 , αd22)

= IWA{〈0.9, 0.1〉, 〈0.2, 0.4〉, 〈0.2, 0.8〉}
= 〈0.56228, 0.343426〉

IWAi (a13, αd13 , αd23)

= IWA{〈0.5, 0.4〉, 〈0.3, 0.5〉, 〈0.4, 0.5〉}
= 〈0.39935, 0.46866〉.

Then

δ1 = WGGGIFSS(〈0.6, 0.2〉, 〈0.9, 0.1〉, 〈0.5, 0.4〉)

= IWA j

⎛

⎝
〈0.348508, 0.438073〉,
〈0.56228, 0.343426〉,
〈0.39935, 0.46866〉

⎞

⎠

=
〈
1 − (1 − 0.348508)0.25(1 − 0.56228)0.40(1 − 0.39935)0.35,

(0.438073)0.25(0.343426)0.40(0.46866)0.35

〉

= 〈0.4599010, 0.4069328〉

Similarly, we can calculate δ2, δ3 ,δ4 and δ5.

Theorem 1 Let ak j = 〈μk j , νk j 〉 and di ′ j = 〈μi ′ j , νi ′ j 〉 be
the IFVs, where k = 1, 2, 3, . . . , s, j = 1, 2, 3 . . . , n and
i ′ = 1, 2, 3 . . . , p. If we consider i = 0, 1, 2, 3, . . . , p then
GWA operator is given by W AGGI FSS(ak1, ak2, . . . , akn) =
〈1 − ∏n

j=1(1 − (1 − ∏p
i=0(1 − μdki j

)wi ))ς j ,
∏n

j=1(
∏p

i=0

(νdki j
)wi )ς j 〉.

Proof Suppose p = 1 and n = 2. First of all, for k = 1 we
use mathematical induction on n, we have

WAGGIFSS(a11, a12) = IFWA j

(
IWAi (d101, d

1
11),

IWAi (d102, d
1
12)

)
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= IFWA j

(
IWAi (a11, d11),
IWAi (a12, d12)

)

Now, IWAi (a11, d11) = 〈1−(1−μa11)
w0 .(1−μd11)

w1 , ν
w0
a11 .

ν
w1
d11

〉 IWAi (a12, d12) = 〈1−(1−μa12)
w0 .(1−μd12)

w1 , ν
w0
a12 .

ν
w1
d12

〉 Thus,

WAGGIFSS(a11, a12)

= IFWA j

⎛

⎜
⎜
⎝

〈1 − (1 − μa11)
w0 .(1 − μd11)

w1 ,

ν
w0
a11 .ν

w1
d11

〉,
〈1 − (1 − μa12)

w0 .(1 − μd12)
w1 ,

ν
w0
a12 .ν

w1
d12

〉

⎞

⎟
⎟
⎠

=
⎛

⎝
1 − ((1 − (1 − (1 − μa11)

w0 .(1 − μd11)
w1))ς1 .

(1 − (1 − (1 − μa12)
w0 .(1 − μd12)

w1))ς2),

(ν
w0
a11 .ν

w1
d11

)ς1 .(ν
w0
a12 .ν

w1
d12

)ς2

⎞

⎠

=
⎛

⎜
⎝

1 − ((1 − (1 − (1 − μd101
)w0 .(1 − μd111

)w1))ς1 .

(1 − (1 − (1 − μd102
)w0 .(1 − μd112

)w1))ς2),

(ν
w0

d101
.ν

w1

d111
)ς1 .(ν

w0

d102
.ν

w1

d112
)ς2

⎞

⎟
⎠

=
⎛

⎜
⎝

1 − (1 − (1 − (
∏1

i=0(1 − μd1i1
)wi ))ς1).

(1 − (1 − (
∏1

i=0(1 − μd1i2
)wi ))ς2),

((
∏1

i=0(νd1i1
)wi )ς1 .(

∏1
i=0(νd1i2

)wi )ς2)

⎞

⎟
⎠

=
(
1 − ∏2

j=1(1 − (1 − (
∏1

i=0(1 − μd1i j
)wi )))ς j ,

∏2
j=1(

∏1
i=0(νd1i j

)wi )ς j

)

Hence the theorem is valid for n = 2. Considering that this
result is fine for n = n′ that is WAGGIFSS(ak1, ak2, . . . , akn′)
= 〈1 − ∏n′

j=1(1 − (1 − ∏p
i=0(1 − μdki j

)wi ))ς j ,
∏n′

j=1

(
∏p

i=0(νdki j
)wi )ς j 〉. Then for n = n′ + 1, W AGGI FSS

(ak1, ak2, . . . , ak(n′+1)) = 〈1− ∏(n′+1)
j=1 (1− (1− ∏p

i=0(1−
μdki j

)wi ))ς j ,
∏(n′+1)

j=1 (
∏p

i=0(νdki j
)wi )ς j 〉. So by mathematical

induction Theorem 1 satisfies for all positive integer n. �

Theorem 2 Idempotency: If ak j = a j = a and di ′ j = di ′ =
a for all j = 1, 2, . . . , n thenW AGGI FSS(ak1, ak2, . . . , akn)
= a.

Proof Given akj = a j = a and di ′ j = di ′ = a for all
j = 1, 2, . . . , n, i ′ = 1, 2, . . . , p. Then,

WAGGIFSS (ak1, ak2, . . . , akn)

=
〈
1 − ∏n

j=1

(
1 − (1 − ∏p

i=0(1 − μdki j
)wi )

)ς j
,

∏n
j=1(

∏p
i=0(νdki j

)wi )ς j

〉

=
〈
1 − ∏n

j=1

(
1 − (1 − (1 − μa)

∑p
i=0 wi )

)ς j
,

∏n
j=1

(
(νa)

∑p
i=0 wi

)ς j

〉

= 〈1 −
n∏

j=1

(1 − (1 − (1 − μa)))
ς j ,

n∏

j=1

((νa))
ς j 〉

=
〈

1 −
n∏

j=1

(1 − μa)
ς j ,

n∏

j=1

(νa)
ς j

〉

=
〈
1 − (1 − μa)

∑n
j=1 ς j , (νa)

∑n
j=1 ς j

〉

= 〈1 − (1 − μa), νa〉
= 〈μa, νa〉
= a

Hence WAGGIFSS(ak1, ak2, . . . , akn) = a.

Theorem 3 Boundedness: If d+
j = 〈(μ(dki j )

)max, (ν(dki j )
)min〉

and d−
j = 〈(μ(dki j )

)min, (ν(dki j )
)max〉 ∀ k = 1, 2, . . . , s and

i = 0, 1, 2, . . . , p thend−
j ≤ W AGGI FSS(ak1, ak2, . . . , akn)

≤ d+
j .

Proof Let dki j = (μk
i j , ν

k
i j ) ∀ i, j, k be IFVs in GGIFSS.

Since (μ(dki j )
)min ≤ μ(dki j )

≤ (μ(dki j )
)max �⇒ 1 −

(μ(dki j )
)min ≥ 1 − μ(dki j )

≥ 1 − (μ(dki j )
)max �⇒

∏p
i=0(1− (μ(dki j )

)min)wi ≥ ∏p
i=0(1−μ(dki j )

)wi ≥ ∏p
i=0(1−

(μ(dki j )
)max)wi �⇒ (1− (μ(dki j )

)min)
∑p

i=0 wi=1 ≥ ∏p
i=0(1−

μ(dki j )
)wi ≥ (1 − (μ(dki j )

)max)
∑p

i=0 wi=1 �⇒ (1 −
(μ(dki j )

)min) ≥ ∏p
i=0(1−μ(dki j )

)wi ≥ (1− (μ(dki j )
)max) �⇒

1− (1− (μ(dki j )
)min) ≤ 1− ∏p

i=0(1− μ(dki j )
)wi ≤ 1− (1−

(μ(dki j )
)max) �⇒ (μ(dki j )

)min ≤ 1 − ∏p
i=0(1 − μ(dki j )

)wi ≤
(μ(dki j )

)max �⇒ ∏n
j=0(1−(μ(dki j )

)min)ς j ≥ ∏n
j=0(1−(1−

∏p
i=0(1 − μ(dki j )

)wi ))ς j ≥ ∏n
j=0(1 − (μ(dki j )

)max)ς j �⇒
(1 − (μ(dki j )

)min)
∑n

j=0 ς j=1 ≥ ∏n
j=0(1 − (1 − ∏p

i=0(1 −
μ(dki j )

)wi ))ς j ≥ (1 − (μ(dki j )
)max)

∑n
j=0 ς j=1 �⇒

(1−(μ(dki j )
)min) ≥ ∏n

j=0(1−(1−∏p
i=0(1−μ(dki j )

)wi ))ς j ≥
(1−(μ(dki j )

)max) �⇒ 1−(1−(μ(dki j )
)min) ≤ 1−∏n

j=0(1−
(1 − ∏p

i=0(1 − μ(dki j )
)wi ))ς j ≤ 1 − (1 − (μ(dki j )

)max) �⇒
(μ(dki j )

)min ≤ 1−∏n
j=0(1−(1−∏p

i=0(1−μ(dki j )
)wi ))ς j ≤

(μ(dki j )
)max.

In similar way we can prove (ν(dki j )
)min ≤

∏n
j=0(

∏p
i=0(ν(dki j )

)wi )ς j ≤ (ν(dki j )
)max.

This concludes the proof of the theorem, that is,

d−
j ≤ WAGGIFSS(ak1, ak2, . . . , akn) ≤ d+

j .

�

Theorem 4 Monotonicity: If d ′k

i j and dki j are two IFVs such

that d ′k
i j ≤ dki j then, W AGGI FSS(a′

k1, a
′
k2, . . . , a

′
kn) ≤

W AGGI FSS(ak1, ak2, . . . , akn).
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Proof It can be concluded from Theorem 3.

Proposition 3.4 Let τg = (Ŝ, A, ĝ) be a GGIFSS, given in
Table 1. Then,

(1) If di ′ j = 〈1, 0〉 for all i ′ and j , then 
 = {〈1, 0〉, 〈1, 0〉,
. . . , 〈1, 0〉}.

(2) If dk0 j = akj = 〈1, 0〉 for all j and k, then 
 =
{〈1, 0〉, 〈1, 0〉, . . . , 〈1, 0〉}.

(3) If di ′ j = 〈1, 0〉 for all i ′, j and dk0 j = akj = 〈1, 0〉 for all
j ,k, then 
 = {〈1, 0〉, 〈1, 0〉, . . . , 〈1, 0〉}.

(4) If di ′ j = 〈0, 1〉 for all i ′, j and dk0 j = akj = 〈0, 1〉 for all
j , k, then 
 = {〈0, 1〉, 〈0, 1〉, . . . , 〈0, 1〉}.

Proof Straightforward. �


3.2 Generalized weighted geometric (GWG)
operators

In this section, GWG operators are computed and related
axioms are investigated.

Definition 3.5 Let τg = (Ŝ,B, ĝ) be a GGIFSS over X ,
given in Table 1. Let [ς1, ς2, . . . , ςn]T be the weighted
vector over set of attributes {v1, v2, v3, . . . , vn}, such that
ς j > 0 and �n

j=1ς j = 1. Also consider weighted vector

[w0, w1, w2, . . . , wp]T such that wi > 0 and �
p
i=0wi = 1,

where w1, w2, w3, . . . , wp are the weights for assessments
of senior persons and w0 is a weight of whole data in
IFSS given in Table 1 (see brown part). If we consider
i = 0, 1, 2, 3, . . . , p then the definition of weighted aver-
aging operators (GWG) accomplished by GGIFSS is given
as follows:

WGGGIFSS(ak1, ak2, . . . , akn)

= IWG j

⎛

⎜
⎜
⎝

IWGi (dko1, d
k
11, d

k
21, . . . , d

k
p1),

IWGi (dko2, d
k
12, d

k
22, . . . , d

k
p2),

. . . ,

IWGi (dkon, d
k
1n, d

k
2n, . . . , d

k
pn)

⎞

⎟
⎟
⎠

= IWG j

⎛

⎜
⎜
⎝

IWGi (ak1, d11, d21, . . . , dp1),
IWGi (ak2, d12, d22, . . . , dp2),

. . . ,

IWGi (akn, d1n, d2n, . . . , dpn)

⎞

⎟
⎟
⎠

where WGGGIFSS is called weighted geometric operators
over GGIFSS, and jointly the set of all GWGs is represented
as
′ = {δ′

1, δ
′
2, . . . , δ

′
s}. Moreover, IWGi is a IWG operator

on IFS plus set of moderators and IWG j is IWG operator on
set of parameters.

Next an example is considered to clarify above notion.

Example 3.6 Consider Example 3.3, where I FV (ξ4) =
{a41, a42, a43} = {〈0.6, 0.2〉, 〈0.3, 0.3〉, 〈0.2, 0.2〉}.

Consider same weighted vectors as given in Example 3.3.
Then GWG is given by δ′

4 =WGGGIFSS(a41, a42, a43)=IWG j⎛

⎝
IWGi (a41, αd11 , αd21),

IWGi (a42, αd12 , αd22),

IWGi (a43, αd13 , αd23)

⎞

⎠

First we calculate,

IWGi (a41, αd11 , αd21)

= IWG{〈0.6, 0.2〉, 〈0.3, 0.4〉, 〈0.1, 0.9〉}
=

〈
(0.6)0.29(0.3)0.35(0.6)0.36,

1 − (1 − 0.2)0.29(1 − 0.4)0.35(1 − 0.9)0.36

〉

= 〈0.4707, 0.5134〉

IWGi (a42, αd12, αd22) = IWG{〈0.3, 0.3〉, 〈0.2, 0.4〉, 〈0.2,
0.8〉} = 〈0.2249, 0.5775〉 IWGi (a43, αd13, αd23) = IWG
{〈0.2, 0.2〉, 〈0.3, 0.5〉, 〈0.4, 0.5〉} = 〈0.2958, 0.4269〉 .

Then

δ′
4 = WGGGIFSS(〈0.6, 0.2〉, 〈0.3, 0.3〉, 〈0.2, 0.2〉)

= IWG j

⎛

⎝
〈0.4707, 0.5134〉,
〈0.2249, 0.5775〉,
〈0.2958, 0.4269〉

⎞

⎠

=
〈

(0.4707)0.25(0.2249)0.40(0.2958)0.35,
1 − (1 − 0.5134)0.25(1 − 0.5775)0.40(1 − 0.4269)0.35

〉

= 〈0.2977, 0.5130〉

Similarly, we can calculate δ1, δ2 ,δ3 and δ5.

Theorem 5 If ak j = 〈μk j , νk j 〉 and di ′ j = 〈μi ′ j , νi ′ j 〉 where
k = 1, 2, 3, . . . , s, j = 1, 2, 3 . . . , n and i ′ = 1, 2, 3 . . . , p
be the IFVs. If we consider i = 0, 1, 2, 3, . . . , p then GWG
operator is given by
WGGGI FSS(ak1, ak2, . . . , akn) = 〈∏n

j=1(
∏p

i=0(μdki j
)wi )ς j ,

1 − ∏n
j=1(1 − (1 − ∏p

i=0(1 − νdki j
)wi ))ς j 〉.

Proof It is analogous to the proof of Theorem 1.

Theorem 6 Idempotency: If ak j = a j = a and di ′ j = di ′ =
a for all j = 1, 2, . . . , n thenWGGGI FSS(ak1, ak2, . . . , akn)
= a.

Proof It is analogous to the proof of Theorem 2.

Theorem 7 Boundedness: If d+
j = 〈(μ(dki j )

)max, (ν(dki j )
)min〉

and d−
j = 〈(μ(dki j )

)min, (ν(dki j )
)max〉 ∀ k = 1, 2, . . . , s and

i = 0, 1, 2, . . . , p thend−
j ≤ WGGGI FSS(ak1, ak2, . . . , akn)

≤ d+
j .

Proof It is analogous to the proof of Theorem 3.

Theorem 8 Monotonicity: If d ′k
i j and dki j are two IFVs such

that d ′k
i j ≤ dki j then, WGGGI FSS(a′

k1, a
′
k2, . . . , a

′
kn) ≤

WGGGI FSS(ak1, ak2, . . . , akn).
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Proof It can be concluded from Theorem 4.

Proposition 3.7 Let τg = (Ŝ, A, ĝ) be a GGIFSS, given in
Table 1. Then,

(1) If di ′ j = 〈0, 1〉 for all i ′, j then 
′ = {〈0, 1〉, 〈0, 1〉, . . . ,
〈0, 1〉}.

(2) If dk0 j = akj = 〈0, 1〉 for all j ,k then 
′ =
{〈0, 1〉, 〈0, 1〉, . . . , 〈0, 1〉}.

(3) If di ′ j = 〈0, 1〉 for all i ′, j and dk0 j = akj = 〈0, 1〉 for all
j ,k then 
′ = {〈0, 1〉, 〈0, 1〉, . . . , 〈0, 1〉}.

(4) If di ′ j = 〈1, 0〉 for all i ′, j and dk0 j = akj = 〈1, 0〉 for all
j ,k then 
′ = {〈1, 0〉, 〈1, 0〉, . . . , 〈1, 0〉}.

Proof It is straightforward. �


4 Applications of new aggregation operators
in MCDM

We express application byMCDMmethodology, comprising
real-life situation, to highlight the usefulness of investigated
aggregation operators. Initially, we show our viewpoint con-
taining an algorithm by dint of GGIFSS and GWA or GWG
operators.

4.1 Methodology

Consider GGIFSS in Definition 3.1, where X = {ξ1, ξ2, . . . ,
ξs} and M = {v1, v2, . . . , vn} be the set of alternatives and
attributes, respectively. GGIFSS indicates IFVs-based data,
where IFSS shows the initial judgments of a committee/panel
of experts on alternative ξk(k = 1, 2, . . . , s) and ĝ shows
group of IFSs for each moderator‘s (d1, d2, . . . , dp) assess-
ments on IFSS.

Any IFV r = 〈μ(v), ν(v)〉 can be characterized in nor-
malized form by:

r =
( 〈μ(v), ν(v)〉, if v is benefit criteria

〈ν(v), μ(v)〉, if v is cost type criteria

)

(1)

Consequently, the normalized GGIFSS can be formulated as
it is given in Table 1.

Let τ ′
g = (Ŝ′, A, ĝ) be the GGIFSS. Let [ς1, ς2, . . . , ςn]T

be theweightedvector over set of attributes {v1, v2, v3, . . . , vn},
such that ς j > 0 and �n

j=1ς j = 1. Also consider weighted

vector [w0, w1, w2, w3, . . . , wp]T such that wi > 0 and
�

p
i=0wi = 1, where w1, w2, w3, . . . , wp are the weights

for assessments of senior persons (or senior experts or mod-
erators) and w0 is a weight of whole data in IFSS given in
Table 1 (see brown part).

Next we calculate GWA or GWG operators over GGIFSS
τ ′
g = (Ŝ′, A, ĝ). There will be s number of values as δ1,

Fig. 1 A flowchart of our algorithm

δ2,…,δs . On each δk(k = 1, 2, . . . , s) calculate the scores by
using score function given in Definition 2.4. Finally we will
rank the alternatives according to scores.

Consequently, we present my methodology by a system-
atics algorithm (see Algorithm 1) and it is depicted in Fig. 1.

Algorithm 1 Input :A set of alternatives, and Output: The
optimal alternative
1: Consider a set of alternatives say A = {ξ1, ξ2, ξ3, . . . , ξs} their

attributes as a set M = {v1, v2, . . . , vn}.
2: Obtain IFSS on the recommendations of a committee of experts.
3: Obtain extra opinions of moderators or senior persons on IFSS. This

formulates a GGIFSS τg = (Ŝ, A, ĝ).
4: Normalize τg = (Ŝ, A, ĝ) and obtain GGIFSS τg′ = (Ŝ′, A, ĝ′) in

normalized form.
5: Obtain the weighted vectors over set of attributes. And obtain

weights for IFSS and extra inputs.
6: Compute GWA (or GWG) operators δk(k = 1, 2, 3, . . . , s) on

GGIFSS.
7: Compute score function on each operator using Definition 2.4.
8: Classify alternatives on the basis of score function then foremost

alternative is get on a highest score.

4.2 Real-life application

4.2.1 Case study 1

Hand sanitizer(HS) is considered as a simple and econom-
ical means of infection control in the recent years. It is
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Table 3 IFSS (S̃, E) in tabular form

X | E v1 v2 v3 v4

ξ1 〈0.4, 0.5〉 〈0.5, 0.2〉 〈0.7, 0.2〉 〈0.4, 0.3〉
ξ2 〈0.6, 0.2〉 〈0.3, 0.6〉 〈0.8, 0.2〉 〈0.4, 0.4〉
ξ3 〈0.5, 0.4〉 〈0.4, 0.4〉 〈0.2, 0.6〉 〈0.4, 0.6〉
ξ4 〈0.6, 0.1〉 〈0.7, 0.1〉 〈0.5, 0.1〉 〈0.6, 0.4〉

used in a wide variety of circumstances, from schools and
day-care centers to hospitals and offices and from supermar-
kets to transportation, etc. Different firms such as the World
Health Organization (WHO) and Centers for Disease Con-
trol and Prevention (CDCP) U.S. encourage the adoption of
alcoholic HS. In a recent study Jing et al. (2020) recom-
mends attributes of alcohol-basedHSs as “Alcohol 60–95%,"
“Hydrogen peroxide 3%," “Glycerol and others essential
oils" and “Fragrance and colorant." In markets several types
of alcohol-based HSs are available but concentration and
amount of above essential attributes are varied.

The fundamental aim of this application is to choose
an effective alcohol-based HSs to diminish transferral of
coronavirus by using the proposed operators in GGIFSS
environments. Let X = {ξ1, ξ2, ξ3, ξ4} be the set consist-
ing of four different varieties of alcohol-based HSs. The set
of attributes E = {v1, v2, v3, v4}, where

v1 : Concentration of Alcohol
v2 : Concentration of Hydrogen peroxide
v3 : Quantity and quality of Glycerol and others essential

oils
v4 : Quantity of fragrance and colorant

A family of experts from a health organization gives the
assessments and views for alcohol-based HSs on given
attributes in the form of IFSS (S̃, E)(Table 3)

Now the two senior experts d1 and d2 from the health
organization provide opinions on IFSS (given in Table 3) as
IFSs,

αd1 = {v1/〈0.4, 0.6〉, v2/〈0.5, 0.3〉, v3/〈0.5, 0.4〉, v4/〈0.6, 0.4〉},
αd2 = {v1/〈0.5, 0.4〉, v2/〈0.4, 0.5〉, v3/〈0.5, 0.3〉, v4/〈0.4, 0.5〉},

,respectively. Then, the information can be expanded in the
form of GGIFSS τg = (Ŝ, E, ĝ) given in Table 4.

Let w0 = 0.37 be the weight of whole data in IFSS
(given in Table 4), w1 = 0.21 and w2 = 0.42 be the
weights of senior experts or moderators. Thus we have
general weighted vector [w0/0.37, w1/0.21, w2/0.42]T . Let
[v1/0.38, v2/0.19, v3/0.21, v4/0.22]T be the weighted vec-
tors over given parameters. The GWA operator is utilized to
compel data present in Table 4, and it is

Table 4 GGIFSS (Ŝ, E, ĝ) in tabular form

X | E v1 v2 v3 v4

ξ1 〈0.4, 0.5〉 〈0.5, 0.2〉 〈0.7, 0.2〉 〈0.4, 0.3〉
ξ2 〈0.6, 0.2〉 〈0.3, 0.6〉 〈0.8, 0.2〉 〈0.4, 0.4〉
ξ3 〈0.5, 0.4〉 〈0.4, 0.4〉 〈0.2, 0.6〉 〈0.4, 0.6〉
ξ4 〈0.6, 0.1〉 〈0.7, 0.1〉 〈0.5, 0.1〉 〈0.6, 0.4〉
αd1 〈0.4, 0.6〉 〈0.5, 0.3〉 〈0.5, 0.4〉 〈0.6, 0.4〉
αd2 〈0.5, 0.4〉 〈0.4, 0.5〉 〈0.5, 0.3〉 〈0.4, 0.5〉

investigated as under: δ1 = WAGGIFSS(a11, a12, a13, a14)=

IWA j

⎛

⎜
⎜
⎝

IWAi (a11, αd11 , αd21),

IWAi (a12, αd12 , αd22),

IWAi (a13, αd13 , αd23),

IWAi (a14, αd14 , αd24)

⎞

⎟
⎟
⎠

First we compute,

IWAi (a11, αd11, αd21)

= IWA{〈0.4, 0.5〉, 〈0.4, 0.6〉, 〈0.5, 0.4〉}
= 〈0.444229, 0.473037〉

IWAi (a12, αd12, αd22)

= IWA{〈0.5, 0.2〉, 〈0.5, 0.3〉, 〈0.4, 0.5〉}
= 〈0.4602083, 0.319995〉,

IWAi (a13, αd13, αd23)

= IWA{〈0.7, 0.2〉, 〈0.5, 0.4〉, 〈0.5, 0.3〉}
= 〈0.586109, 0.274286〉

IWAi (a14, αd14, αd24)

= IWA{〈0.4, 0.3〉, 〈0.6, 0.4〉, 〈0.4, 0.5〉}
= 〈0.448974, 0.39494〉.

Then

δ1 = WGGGIFSS(〈0.4, 0.5〉, 〈0.5, 0.2〉,
〈0.7, 0.2〉〈0.4, 0.3〉)

= IWA

⎛

⎜
⎜
⎝

(〈0.444229, 0.473037〉,
〈0.4602083, 0.319995〉,
〈0.586109, 0.28744〉,
〈0.448974, 0.39494〉)

⎞

⎟
⎟
⎠

= 〈0.5185460, 0.3764410〉

Similarly, we can compute δ2, δ3 and δ4 and IFV are
〈0.514018, 0.365981〉 ,〈0.4475176, 0.441378〉, 〈0.524296,
0.277357〉, respectively.

Now, by using score functions from Definition 2.4, δ1,
δ2 δ3 and δ4 are transmitted into real values η(δ1) =
0.571052, η(δ2) = 0.574018775, η(δ3) = 0.5036698 and
η(δ4) = 0.62346925, respectively. Thus ξ4 is the most suit-
able alcohol-based HS on the assessments of both senior
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Table 5 GGIFSS (Ŝ,B, ĝ) in
tabular form

X | B v1 v2

ξ1 〈0.7, 0.1〉 〈0.6, 0.2〉
ξ2 〈0.6, 0.3〉 〈0.5, 0.2〉
ξ3 〈0.5, 0.4〉 〈0.4, 0.4〉
αd1 〈0.5, 0.2〉 〈0.3, 0.2〉

experts as η(δ4) = 0.62346925 is the maximum score. Thus
choices of alcohol-basedHSs are arrange in descending order
ξ4 > ξ2 > ξ1 > ξ3.

In case study 1, extra inputs on IFSS are crucial assess-
ments of senior person to finalize evaluation intake. Further-
more, the purpose of these essential additional inputs can
run as customers demands in several scenarios. Therefore,
we investigated a different case study in the next section.

4.2.2 Case study 2

Consider Example 3.3, where crucial extra inputs are the
requirements for Mr. X and Mrs. X on attributes to buy a
house. Accordingly, step 3 in the introduced algorithm can
be viewed as the customers’ demands in place of assess-
ments on IFSS.We can follow other steps from the presented
algorithm. So that GWA are calculated as follows: δ1 =
〈0.4599010, 0.4069328〉, δ2 = 〈0.257387, 0.505308〉,δ3 =
〈0.241818, 0.568510〉,δ4 = 〈0.290061, 0.430839〉, δ5 =
〈0.411085, 0.000000〉. Scores on GWA δk(k = 1, 2, . . . , s)
using Definition 2.4 are η(δ1) = 0.526484, η(δ2) =
0.376039, η(δ3) = 0.336654, η(δ4) = 0.429611, η(δ5) =
0.705542, respectively. One can identify that ξ5 is the accept-
able house for both Mr. and Mrs. X. on their demands.

5 Comparisons and discussion

In this section, we analyze our method and outputs with
already present methodologies.

5.1 Comparisons

In order to compare concepts of the proposed method, we
compare our methodologies with recent major approaches
by Feng et al. (2019) andHayat et al. (2018b). For intended
purpose, consider an example as follows:

Example 5.1 Consider GGIFSS as depicted in Table 5.
Let B = {v1, v2} be the set of attributes, X = {ξ1, ξ2, ξ3}

is the set of alternatives, αd1 is IFS for a moderator‘s
assessments on IFSS in Table 5. Consider weighted vec-
tor W = {w0, w1} = {0.5, 0.5}, where w0 is weight over
IFSS and w1 is a weight over extra input. Intently, both
weights in W are equal, reason is that we have to analogous

Table 6 GGIFSS (Ŝ,B, ĝ) in
tabular form

X | B v1 v2

ξ1 〈0.4, 0.3〉 〈0.5, 0.4〉
ξ2 〈0.6, 0.3〉 〈0.5, 0.5〉
ξ3 〈0.5, 0.4〉 〈0.4, 0.3〉
αd1 〈0.3, 0.4〉 〈0.3, 0.4〉

the weights with other methods for purpose of comparisons.
Also, let {0.4/v1, 0.6/v2} be a weighted vector over set of
attributes. By using proposed aggregation operators, we have
δ1 = 0.6794, δ2 = 0.6270, δ3 = 0.5665 and ξ1 > ξ2 > ξ3.
Thus ξ1 is the best and optimal choice.

(1) Firstly, we examine our method with the framework
presented byHayat et al. (2018b). Let weighted vec-
tor {0.4/v1, 0.6/v2} for attributes. By GGIFSS oper-
ators defined inHayat et al. (2018b), we have �1 =
0.4639, �2 = 0.4112, �3 = 0.3258 and ξ1 > ξ2 > ξ3.
Thus ξ1 is the best and optimal choice. This ranking is
analogous to ranking of alternatives onproposedmethod.

(2) Feng et al. (2019) presented an aggregation operator-
based MCDMmethod. By using their method we obtain
Z J (ξ1) = 0.7601, Z J (ξ2) = 0.6539, Z J (ξ3) = 0.5282
and thus ξ1 > ξ2 > ξ3. This ranking is analogous to
ranking of alternatives on proposed method.

5.2 Advantages of proposedmethod

One of the prime advantages of new aggregation operators is
assigning a weighted vector {w0, w1, . . . , wp} on GGIFSS,
wherew1, w2, . . . , wp are theweights on IFSs of extra inputs
of p number of moderators, respectively, and w0 is a weight
for IFSS-based data from a family of experts in GGIFSS.
Certainly, this is a reality that preference or weights on IFSS
and on extra input are reliable in several circumstances. As
extra inputs are important opinions of senior experts or mod-
erators for the final examination of evaluation (IFSS), thus in
certain real-life situations their weights should be higher than
w0. On the other hand, in some real life situations weight w0

on IFSS is also important, the fact that it shows a preference
on data (or IFSS) provided by a family of experts on cru-
cial assessments on alternatives. Manifestly, we consider an
example to show the superiority of the proposed method:

Example 5.2 Consider GGIFSS as depicted in Table 6.
Where B = {v1, v2} is set of attributes with weighted

vector W = {0.4/v1, 0.6/v2}, X = {ξ1, ξ2, ξ3} is the set
of alternatives, αd1 is IFS for moderator‘s assessments on
IFSS in Table 6. By GGIFSS operators defined inHayat
et al. (2018b), we have �1 = 0.2644, �2 = 0.2591, �3 =
0.2654 and ξ3 > ξ1 > ξ2. It can be seen that αd1 =
{〈0.3, 0.4〉, 〈0.3, 0.4〉} and IFWA{〈0.3, 0.4〉, 〈0.3, 0.4〉} =
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Table 7 GGIFSS (Ŝ,B, ĝ) in
tabular form

X | B v1 v2

ξ1 〈0.4, 0.2〉 〈0.4, 0.2〉
ξ2 〈0.6, 0.4〉 〈0.6, 0.4〉
αd1 〈0.4, 0.2〉 〈0.6, 0.4〉

〈0.3, 0.4〉. Here IFWA by Hayat et al. (2018b) examined
again a same IFV 〈0.3, 0.4〉.

Consider weighted vector W = {w0, w1} = {0.3, 0.7},
where w0 is weight over IFSS and w1 is weight over
extra input. Notably, w0 < w1 demonstrate that extra
input/opinion has more weightage then IFSS from assess-
ments of family of experts. Also, let {0.4/v1, 0.6/v2} be
a weighted vector over set of attributes. By using pro-
posed aggregation operators, we have δ1 = 0.4834, δ2 =
0.4908, δ3 = 0.4831 and ξ2 > ξ1 > ξ3.

It concluded that if in an IFSs αd ′
i
(in GGIFSS) has same

IFVs with respect each attributes then method of Hayat et al.
(2018b), do not give precise aggregation with respect to
attributes. Therefore, the purpose of moderator’s input is
diminished in such a scenario. On the other hand, this new
method has advantage that it aggregates IFVs linearly with
respect to attributes.

Feng et al. (2019), converted the extra opinion of modera-
tor into score value or weightage in initial stages of decision
making process.

Example 5.3 Consider GGIFSS as depicted in Table 7.
By the method of Feng et al. (2019), αd1 is converted

into scores vector as {0.6, 0.6} and further it converted to
weighted vector {0.5, 0.5}. It can be seen that alteration of
αd1 into weights finished the importance ofmemberships and
non-memberships in IFVs. By using their method we obtain
Z J (ξ1) = 0.6, Z J (ξ2) = 0.6, and thus it is difficult to choose
the best alternative on the same value.

Now by proposed method we get δ1 = 0.6132, δ2 =
0.6125 and ξ1 > ξ2. Thus alternatives can easily be ranked
on proposed method as compared to method of Feng et al.
(2019). Main advantage of our procedures is that it demon-
strate perceptions or weights in a reasonable way for both
IFSS and IFSs in GGIFSS.

From the above two examples, it is concluded that our
method works better as compared to recent approaches Feng
et al. (2019) and Hayat et al. (2018b). The method of Hayat
et al. (2018) has disadvantages to tackling membership and
non-membership, which are shown in Hayat et al. (2018b).
On the other hand, inaccuracy of the models of the GIFSS
(Agarwal et al. 2013) and GGIFSS (Garg and Arora 2018b)
are shown in references (Feng et al. 2019; Khalil 2015;
Hayat et al. 2018b), respectively. Hence we gave advantages

and comparisons with recent prominent approaches. Conse-
quently, the introduced results are better than recent methods
of Feng et al. (2019) and Hayat et al. (2018b), and hence it
is also better than others methods (Agarwal et al. 2013; Garg
and Arora 2018b; Hayat et al. 2018).

The GGIFSS is a dimensionally very useful model for
MCDM as it consists of components of initial judgment (as
IFSS) and final judgments (as IFSs). Therefore, the proposed
operators are well-defined to deal with each component of
GGIFSS.

6 Conclusions

In this research, we have defined new aggregation operators
(GWA) on GIFSS which are used to aggregate our work.
Mainly, we have managed the weights with IFVs and their
computation in a precise way. We have defined the prepara-
tory work of decision making in an algorithm and studied
its real-life application by dint of proposed methodology.
Then we have presented the comparisons of our work with
already existing methods and techniques comprising aggre-
gation operators. The proposed foundation of aggregation
instruments is principally possessing numerous advantages.

The way of computation of data from preferred results can
sight wide applications in machine learning, applied intel-
ligence, electrical engineering, supply chain managements,
industrial designs, neural networks, and constructional engi-
neering. This is especially because in such applications typ-
ically more experts/operators or data from different sources
are available with different opinions/views. A proper aggre-
gation of such views is thus beneficial and often necessary.
Explicitly, we will define complexity analysis of algorithms
to see the results in machine learning. The recognitions of
a risk factor in management systems can be investigated on
these key results.
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