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The cross-talk between tumour cells and stromal cells is a hallmark of multiple myeloma
(MM), a blood cancer that still remains incurable despite increased knowledge of its
biology and advances in its treatment. Extracellular vesicles (EVs) derived from both
tumour and stromal cells have been shown to play an important role in mediating this
cross-talk ultimately favouring MM progression and drug resistance. Furthermore, EVs
and their content including RNA (EV-RNA) have been successfully isolated from blood and
are being explored as liquid biomarkers in MM with the potential to improve diagnosis and
monitoring modalities with a minimally-invasive and repeatable analysis, i.e. liquid biopsy.
In this review, we describe both the role of EV-RNA in defining the biological features of
MM and their potential translational relevance as liquid biomarkers, therapeutic targets
and delivery systems. We also discuss the limitations and technical challenges related to
the isolation and characterization of EVs and provide a perspective on the future of MM-
derived EV-RNA in translational research.

Keywords: extracellular vesicles, RNA, myeloma, tumour microenvironment, translational medicine, biomarker,
liquid biopsy
INTRODUCTION

Multiple myeloma (MM) is a blood cancer characterised by the clonal expansion of malignant plasma
cells (PCs) within the bone marrow (BM) (1). While, a better understanding of MM biology and the
introduction of novel drugs and treatment options have provided an improved framework for the
management of MM patients resulting in increased duration of survival (2–5), MM remains incurable
with a median survival of 5 years, and only 2 years for high-risk patients (2). This variation in outcome is
Abbreviations:MM, multiple myeloma; EVs, extracellular vesicles; EV-RNA, extracellular vesicles-derived RNA; PCs, plasma
cells; BM, bone marrow; ctDNA, circulating tumour DNA; exRNA, cell-free or extracellular RNA; TME, tumour
microenvironment; RBPs, RNA binding proteins; mRNA, messenger RNAs; lncRNA, long non-coding RNAs; miRNA,
micro-RNAs; ERCC, Extracellular RNA Communication Consortium; BMME, bone marrow microenvironment; MGUS,
monoclonal gammopathy of undetermined significance; SMM, smouldering multiple myeloma; HMCL, human myeloma cell
lines; MSC, mesenchymal stromal cells; CAF, cancer associated fibroblasts; FAP, fibroblast-activated protein; a-SMA, a-
smooth muscle actin; SDF-1, stromal-derived factor 1; HD, healthy donor; ECs, endothelial cells; FIH-1, factor-inhibiting
hypoxia-inducible factor 1; PI, proteasome inhibitor.
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mirrored by the highly (genetically) heterogeneous nature of the
disease, both spatially and temporally (6) with multiple foci of
disease at diagnosis containing sub-clones that evolve genetically
over time contributing to drug resistance (3). Recently, analyses of
body fluids including blood (i.e. liquid biopsies) have generated
significant interest due to their potential for the characterisation of
tumours with a rapid and non-invasive procedure (7–18). In the
context of MM, accumulating evidence suggest that liquid biopsy
captures the genetic heterogeneity of the disease with important
implications for circulating tumour DNA (ctDNA) and cell-free or
extracellular RNA (exRNA) as valuable markers for tumour genome
characterisation, prognostication and sequential monitoring of
disease (6–13). For these reasons liquid biopsies hold promise as
an alternative or addition to single-site BM biopsies that are invasive
and fail to capture MM tumour heterogeneity (19).

EVs (small EVs or exosomes ~30-150nm in diameter; large EVs
or shedmicrovesicles 200 nm to ~1,300 nm), particles delimited by
a lipid bilayer (20), are released from all cell types into the
extracellular space and play key roles in many physiological and
pathological processes including cancer (20, 21). Several recent
studies have addressed the potential functions of EVs, both in vitro
and in vivo, and have defined characteristic properties, with the aid
of ‘omic’ profiling (16, 17, 22–27).

It is well-established that cells actively incorporate molecules
(proteins, lipids, nucleic acids) into EVs which may be
transferred to target (recipient) cells making EVs an important
means of cell-to-cell communication both at local and distant
sites (28, 29). As such, EVs are able to modulate the function of
target cells by reprogramming signalling pathways, and in a
cancer context, promote the formation of a supportive tumour
microenvironment (TME) and pre-metastatic niches (28, 29).
Furthermore, EVs share common surface markers with their cell
of origin, designating them as a promising target for biomarker
discovery, diagnostics and therapeutics in cancer (14, 28, 30).
Importantly, EVs protect their content (cargo) including RNAs
from degradation in the extracellular environment and can be
successfully collected for downstream analyses from biofluids
including blood, making them ideal candidates for liquid biopsy
(14, 30, 31). In this review, we discuss the current knowledge on
the role of EVs in MM with a particular focus on EV-RNA and
their potential translational application in MM.
EVs AND THEIR CHARACTERIZATION

EVs can be isolated and purified from both biofluids and cell
culture supernatants (20, 31, 32) although a consensus on the
optimal source material (i.e. plasma vs serum) and the
standardization of pre-analytical variables and reporting are still
lacking. Their isolation can be challenging due to their biophysical
properties and the presence of other factors which are often co-
isolated, including highly abundant proteins (e.g. albumin),
impairing both the enrichment of highly purified EVs and
downstream applications (e.g. genomics, proteomics - ’omics’)
(27, 33–36). We have recently demonstrated, for the first time in
MM, that the depletion of albumin in plasma-derived small EVs
for mass-spectrometry based proteomics can improve protein
Frontiers in Oncology | www.frontiersin.org 2
detection (17, 31). Several protocols based on different methods
have been developed for successful EV isolation from different
source materials (31, 37–39). Regular position statements are
published to provide the scientific community with protocols for
EVs isolation, purification, analyses, accurate reporting of pre-
analytical variables (e.g. use of plasma versus serum, processing
times, storage/thawing conditions) andmethodologies (20, 40–42).

Highly sensitive and selective omics technologies with the aid
of advanced bioinformatic tools, have been successfully utilized
for EV-cargo characterization and biomarker discovery in MM
with most studies focusing on RNA-based downstream
applications (7, 8, 31, 43).

EV-RNA
The RNA content of EVs varies depending on the source material
(e.g. type of biofluid, cell of origin and its physiological or
pathological state) and the EV subpopulation but with differences
also within the same EV subtype (32). The loading of RNAs into
EVs appears to be a tightly regulated process involving both active
or passive mechanisms which largely depend on RNA binding
proteins (RBPs) and their partners as well as RNA motifs and
modifications (44, 45).

Messenger RNAs (mRNA), most likely fragmented, have been
widely reported as EV cargo together with non-coding RNAs
including Y-RNA, tRNA-derived small RNA fragments (tDRs),
long non-coding RNAs (lncRNA), micro-RNAs (miRNA) (46).
Publicly available databases provide comprehensive EV-RNA
profiles, e.g. Extracellular RNA Communication Consortium
(ERCC) (42), exoRBase (47), exoCarta (48), Vesiclepedia (49),
exRNa Atlas (50), EVmiRNA (51).

miRNA are the most studied and characterized extracellular
RNA subtype contained within the EV-cargo (46, 52). Hundreds of
miRNA species can be detected in a given biofluid with increasing
evidence that each biofluid has a distinct miRNA composition.
miRNA are small non-coding RNAs of ~20-25 nucleotides in length
that can modulate gene expression by mRNA silencing and
translational activation, and exhibit tissue- and state-specific
expression patterns. EV-miRNA can be transferred to recipient
cells resulting in phenotypic and functional changes and as such are
constituents of tumour-derived EV-cargoes with potentially
important functions in the context of the tumour biology (e.g.
migration, invasion, proliferation) including MM (44, 53–55). EV-
miRNA from tumour cells can also reprogram stromal cells and
immune cells to support their growth, invasion, metastasis and drug
resistance (44, 54). Despite the technical constraints, small RNA
sequencing of circulating small EVs has revealed that miRNA is the
predominant species of RNA present inMM-small EVs, while small
nuclear and nucleolar RNA, ribosomal RNA, lncRNA, and
unclassified RNA represent a smaller percentage (8).
BIOLOGICAL ROLES OF EV-RNA IN MM

It is well-established that the BMmicroenvironment (BMME) plays
an important role in MM pathogenesis, including malignant
transformation of the pre-malignant stages (monoclonal
August 2021 | Volume 11 | Article 718502
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gammopathy of undetermined significance, MGUS; and
smouldering MM, SMM) into active MM, and its resistance to
drugs (56–59). Several pathological alterations within the BMME
(e.g. angiogenesis, osteoclast activation, immunosuppression,
osteoblast inhibition) promote proliferation, migration and drug
resistance of mutated PC as well as decreased apoptosis and DNA
repair function (56, 57). Cross-talk between PCs and the stroma is
mediated by direct cell to-cell contact and soluble factors including
cytokines, growth factors and EVs (16, 17, 60). EV-RNA derived
from both the PC and stromal compartments has been shown (55,
61, 62) to contribute to the complications of MM and treatment
failure via the promotion of angiogenesis, osteolysis and drug
resistance, suggesting that the targeting of the EV-mediated cross
Frontiers in Oncology | www.frontiersin.org 3
talk may represent a novel therapeutic approach in MM. A
schematic representation of EV-RNA mediated cell-to-cell
interactions between MM cells and stromal cells, including
molecular and functional changes in both compartments is shown
in Figure 1A. The proposed RNA cargo of circulating MM-EVs is
also depicted (Figure 1B). Table 1 summarizes the publicly
available data on EV-RNAs as mediators of MM progression and
as potential biomarkers or therapeutic targets.

EV-RNA Secreted by MM Cells
De Veirman et al. (68) have described how the transfer of miR-
146a contained in small EVs isolated from human MM cell lines
(HMCL) to mesenchymal stromal cells (MSC) induced
A

B

FIGURE 1 | (A) EV-RNAs involved in MM pathobiology. The RNA content of MM-derived EVs is involved in mesenchymal stromal cells (MSC) proliferation and
cancer-associated fibroblasts (CAF) transformation (dark-blue lines); neovascularization and angiogenesis, promoting endothelial cell (ECs) proliferation, invasion,
reduced apoptosis and the release of angiogenic factors (light-blue and green lines); bone disease by altering osteoblast differentiation (pink line). Finally, MM-derived
EV-RNAs enhance tumour cell viability and migration by altering NOTCH pathway and miR-146a levels in MSC with increased secretion of factors such as IL-6,
CCl-5, MCP-1 (red lines). The RNA content of MSC-derived EVs is involved in tumour cell proliferation, apoptosis, dissemination, proteasome inhibitors (PI) sensitivity
(orange, black, grey, yellow lines). Both large EVs and small EVs are depicted. **indicate possible targets based on use of specific inhibitors, gain or loss of function
studies, and EV-secretion inhibitors (see text for description). (B) EV-RNAs identified within the cargo of circulating EVs isolated from patients with MM, MGUS,
SMM vs HD.
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TABLE 1 | Summary of findings on the role of EV-RNAs in MM pathobiology and as clinical biomarkers.

ls (MM/MGUS
controls)

Prognostic
significance
(biomarkers)

Potential
therapeutic
targets and
specific
inhibitors,
gain or loss
of function
method

Reference

miR-21 or
miR-146a
(transfection
with MiR-21/
146a
inhibitors)

(63)

D (64)

MM (65)

isolated from
from MM vs.

(66)

Anti–miR-
135b inhibitor

(67)

NOTCH
pathway
inhibitor
(DAPT)

(68)

EV-secretion
inhibitor
GW4869

(69)

(Continued)

R
eale

et
al.

TranslationalP
otentialofM

yelom
a-D

erived
EVs

Frontiers
in

O
ncology

|
w
w
w
.frontiersin.org

A
ugust

2021
|
Volum

e
11

|
A
rticle

718502
4

Expected
EVs types

EVs isolation
method

EVs
source/
donor
cells

(starting
volume if
applicable)

Target
(recepient)

Cells

Identified
RNAs

Molecular effect in
recepient cells

Biological effect in
recepient cells

Expression leve
vs. healthy

Small EVs Ultracentrifugation HMCL Primary HD-
MSC

miR-21;
miR-146a

Overexpression of miR-21,
miR-146a, FAP, a-SMA,
SDF-1. Increased secretion
of IL-6

MSC: Increased cell
proliferation and CAF
transformation

Small EVs Ultracentrifugation Serum miR-155 Low in MM vs. H

Small EVs Ultracentrifugation HMCL;
plasma
from BM
aspirates of
MM/SMM
patients

Human
MSC

miR-129-5p Downregulation of Sp1 and
ALPL

Reduced osteoblast
differentiation

High in MM vs. S

Small EVs Ultracentrifugation
+/- Precipitation
(ExoQuick
solution, System
Biosciences)

BM-MSC
from HD
and MM
patients;
HS5 cells

HMCL miR-15a Reduced cell proliferation in
vitro when treated with small
EVs isolated from HS5 cells
or BM-MSC derived from
HD. Increased tumor growth
and dissemination ex vivo
and in vivo in the presence
of MM BM-MSC–derived
small EVs.

Low in small EVs
BM-MSC derived
HD

Small EVs Precipitation
(ExoQuick
solution, System
Biosciences)

Hypoxic
HMCL

HUVEC miR-135b Downregulation of FIH-1 Endotelial tube formation
(neovascularization) and
angiogenesis

Small EVs Precipitation
(ExoQuick
solution, System
Biosciences)

HMCL Primary HD-
MSC

miR-146a Overexpression of miR-
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overexpression of miR-146a in the MSC and the secretion of
several cytokines and chemokines resulting in enhanced MM cell
viability and migration. The authors hypothesized these effects
were mediated by the Notch signalling pathway, notion
supported by the observation that an inhibitor of the
endogenous Notch pathway, DAPT, was able to abrogate the
miR-146a-induced increase in MSC cytokine elaboration.
Similarly, Cheng et al. (63) observed that small EVs isolated
from the HMCL OPM2 harboured high levels of miR-21 and
miR-146a. These OPM2-small EVs significantly increased MSC
proliferation and induced cancer-associated fibroblasts (CAF)
transformation. Consistent with these observations the inhibition
of miR-21 or miR-146a reduced these effects of OPM2-small EVs
on MSC. These observations confirm that MM cells secrete
functional EVs which are up-taken by stromal cells ultimately
promoting the formation of a supportive TME. The potential
as therapeutic targets is suggested by inhibition or loss of
function experimentation.

EV-RNA Secreted by Stromal Cells
The transfer of small EV-miRNA derived from BM-MSC to MM
cells was first described by Roccaro et al. (66). Importantly, the
authors observed a distinct miRNA composition for BM-MSC–
derived small EVs obtained from healthy donors (HD) when
compared to those derived from MM patients, with miR-15a
levels found to be significantly higher in HD-EVs. Moreover, a
reduction in the proliferation of MM cells when treated with the
HD-derived small EVs was observed, suggesting a tumour-
suppressive role for the EV-derived miR-15a. Similarly, Umezu
et al. (70) demonstrated that BMSC-EVs isolated from MM
patients have a distinct profile compared to BMSC-EVs isolated
from HD with increased expression of miR-10a, miR-346, and
miR-135b. The distinct profile EV-RNA derived from BMSC
may aid in the diagnostics workup for MM patients. The authors
(70) further observed that transfer of EVs-derived miR-10a to
HMCL induced cell proliferation. The latter could be abrogated
by an inhibitor of bTRC, the direct target of miR-10a bTRC and
by FTY720 (fingolimod), a S1P modulator which inhibits S1P
signalling on multivesicular endosomes, thus blocking exosomal
multivesicular endosome maturation. This observation further
supports the evidence for EVs and EV-RNA as mediators of MM
progression and as new therapeutic targets. Deng et al. (73)
described an alternative mechanism for induction of MM cell
proliferation involving the lncRNA LINC00461 acquired via
MSC-derived EVs, indicating a functional role not only for
miRNA but also for lncRNA in MM.

EV-RNA and Bone Disease
The formation of osteolytic lesions is a characteristic feature of
MM due to increased osteolysis and reduced osteoblastogenesis
and underlies many of the clinical signs and symptoms of the
disease such as fractures, pain and hypercalcemia (58). The
treatment of MM bone disease in addition to the utilisation of
anti-MM drugs represents a critical aspect of the management of
patients with MM (2, 76–78). A better understanding of the
biological processes that lead to bone destruction, therefore, may
Frontiers in Oncology | www.frontiersin.org 7
provide important insights to inform improved management of
MM patients.

Several recent reports have described the role of small EV-
RNA in MM bone disease supporting the notion that MM is a
complex disease with active involvement of osteoclasts and
osteoblasts mediated also by EVs. Importantly, these functions
can be targeted aiding in the current management of MM-related
bone disease. Li et al. (69) identified lncRUNX2-AS1 in EVs
derived from HMCL. The lncRNA-RUNX2-AS1 regulates
RUNX2 pre-mRNA by blocking its splicing in MSC and the
subsequent inhibition of differentiation of MSC is observed. In
vivo experiments confirmed increased expression of RUNX2 and
lower expression of lncRUNX2-AS1 in MSC derived from mice
xenografted with HMCL when compared to a control cohort or
mice treated with the EV-secretion inhibitor GW4869. Another
group made a similar observation with inhibition of osteoblast
differentiation in MSC after treatment with MM-derived large
EVs associated with an increase in miR-103a-3p levels and
inhibition of bone formation via RUNX2 targeting (74).

Raimondo et al. (65) demonstrated enrichment of miR-129-
5p in both MM-small EVs and SMM-small EVs, more so in the
former, identifying miR-129-5p as a possible mediator of EV-
induced bone disease. miR-129-5p targets different mRNA
involved in osteoblast differentiation, suggesting selective EV-
packaging correlated with MM disease stage viz MM versus
SMM. The authors demonstrated the transfer of miR-129-5p
derived from MM-EVs into MSC resulting in inhibition Sp1
expression, a positive modulator of osteoblastic differentiation,
and of its target alkaline phosphatase-ALPL.

EV-RNA and Angiogenesis
Angiogenesis plays a crucial role in promoting tumour
progression (57) with cancer-derived EVs having been shown
to enhance the proliferation, migration and tube formation of
endothelial cells (ECs). The MM-BM becomes more hypoxic due
to the outgrowth of MM cells, promoting their production of
greater amounts of small EVs compared to normoxic conditions.
Small EVs produced by hypoxic MM cells have been reported to
carry the oncogenic miR-135b, which promotes endothelial tube
formation by blocking the expression of factor-inhibiting
hypoxia-inducible factor 1 (FIH-1) in ECs (67).

The enrichment of MM-derived large EVs with piRNA-823
and their transfer to ECs has been recently described by Li et al.
(75). An increase in proliferation, tube formation and invasion
along with reduced apoptosis was observed in association with
enhanced expression of VEGF, IL-6, and ICAM-1. ECs
transfected with piRNA-823 mimic or pre-treated with MM-
large EVs were also shown to promote tumour growth in murine
MM-xenografts. In contrast, the transfection with a piRNA-823
inhibitor or treatment with EVs from piRNA-823 inhibitor-
transfected-MM cells had diametrically opposite effects
broadening the scenario for MM combination treatments by
specifically targeting EV-mediated angiogenesis.

EV-RNA and Drug Resistance
Eventually all MM patients develop drug resistance with recent
evidence of EV-RNAmediated proteasome inhibitor (PI)-resistance
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which may be reverted by co-administering specific EV-RNA
therapeutics. A unique role of small EVs enriched in lncRNA
PSMA3-AS1 in transmitting PI-resistance from MSC to MM cells
has recently been described by Xu et al. (62). The authors observed
reduced sensitivity of MM cells to the PI bortezomib when treated
with MSC-derived EVs isolated from bortezomib-resistant patients.
In contrast, MSC-EVs of bortezomib-sensitive patients did not affect
the sensitivity of MM cells to PI. PSMA3 and PSMA3-AS1
transcripts were identified in MSC-derived EVs isolated from
bortezomib-resistant patients. PSMA3-AS1 is a lncRNA that
modulates the levels of PSMA3 which encodes the proteasome
type-3 alpha subunit. PSMA3 and PSMA3-AS1 expression levels
were upregulated in MM cells treated with MSC-EVs derived from
bortezomib-resistant patients. The upregulation of these two
transcripts induced proteasome activity, which could explain the
resistance to PI. The authors further confirmed these observations
in vivo. Importantly, PSMA3-AS1 downregulation via siRNA
increased the sensitivity of HMCL xenografted in mice to PI.
TRANSLATIONAL APPLICATIONS:
EV-RNA AS LIQUID BIOMARKER IN MM

Few MM studies have performed analyses of EV-RNAs utilising
peripheral blood despite evidence suggesting that EVs contain
approximately half of all circulating RNAs found in the blood
(79). A relationship between EV-RNA levels and patient outcomes
has been explored in MM, highlighting the translational potential of
EV-RNA and paving the way for its application in MM clinical
practice. Several studies have specifically looked at the
discriminative potential of EV-RNA between HD and MGUS or
MM patients at diagnosis. Caivano et al. suggested the diagnostic
potential for small EV-derived miR-155, with serum levels that were
found to be significantly lower in MM patients when compared to
HD (64). Similarly, EVs derived from the plasma of MGUS or MM
patients have significant lower levels of lncRNA PRINS compared
to HD (43). Kubiczkova et al. (71) observed that miR-34a and let-7e
derived from circulating small EVs can discriminate MGUS and
MM fromHDwith high sensitivity and specificity. Similarly, Zhang
et al. (72) demonstrated that serum-derived let‐7c‐5p, let‐7d‐5p,
miR‐20a‐5p, miR‐103a‐3p, miR‐185‐5p, miR‐425‐5p levels were
significantly lower in small EVs isolated from MM patients when
compared to HD, while the levels of miR‐4505 and miR‐4741 were
significantly higher. Low levels of circulating small EVs-derived
miR‐20a‐5p, miR‐103a‐3p and high levels of miR‐425‐5p, miR‐
4505 were also able to discriminate SMM from HD. The authors
also showed that low levels of let‐7c‐5p, miR‐20a‐5p, miR‐103a‐3p,
miR‐140‐3p, miR‐185‐5p and high levels of miR‐4505 and miR‐
4741 differentiated MM-EVs when compared to SMM-EVs.

Circulating small EVs isolated from the serum of 156 patients
with MM patients were shown to be enriched in let-7b and
miR18a; these two miRNAs have been previously implicated in
MM progression (8). Lower levels of both let-7b and miR-18a
were significantly associated with poor prognosis (PFS and OS)
in newly diagnosed patients treated with bortezomib-containing
induction therapy (pre-autologous stem cell transplantation),
confirming their predictive value in the context of MM and
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their utility for improved risk stratification at diagnosis (e.g.
patients with poor vs good prognosis or bortezomib resistance vs
sensitivity) (8). The source of these circulating EV-miRNA
remains unknown as no correlation was found between
miRNA from EV or BM MM cells.

Xu et al. (62) have suggested a role for plasma-derived small
EV PSMA3 and lncRNA PSMA3-AS1 as prognostic markers
with lower levels of small-EVs PSMA3 and PSMA3-AS1 both
associated with poorer PFS and OS for newly diagnosed MM
patients treated with bortezomib-containing regimens.
TRANSLATIONAL APPLICATIONS:
RNA-ENGINEERED EVS AS
THERAPEUTIC STRATEGY IN MM

The observation that EVs can transfer molecules (e.g. RNA,
proteins) to recipient cells has prompt translational research
focused on delivering therapeutic (cytotoxic or inhibitory)
payloads with EVs (80). In addition, ligands displayed on the
EV surface can engage cell receptors to activate cytosolic signalling
pathways in both tumor and microenvironment compartments
(81). Despite technical constraints (82), several studies have
reported cargo-specific effects when these two strategies are used
alone or in combination in cancer with several ongoing clinical
trials involving EVs, the vast majority of which applied to solid
tumors (83–85).

RNA-armed EVs or engineered EV-like nanoparticles that
contain RNA have been successfully utilized in lymphoma models
demonstrating for example that siRNA-particles promoted silencing
of c-Myc with subsequent activation of poly (ADP-ribose)
polymerase-dependent apoptotic pathways in treated l820
lymphoma cells (86). This may represent a promising tool being
MM a Myc-driven cancer. Lipid nanoparticle-based formulations
(DCR-MYC) have been used to deliver siRNA into tumor cells,
leading to inhibition of translation and expression of the c-Myc
protein. This approach was later found to not meet therapeutic
expectations (87), however work using antisense oligonucleotides to
target c-Myc mRNA continues (88–90). More recently, a shRNA
strategy has been used to silence TGF-b1 in lymphoma cells, forcing
them to release TGF-b1-depleted EV, thus removing a strong
antitumor–immune surveillance inhibitor and increasing the
response of the immune system against leukemic cells (91).
Loading shRNA into these delivery systems has also the potential
to reduce tumor EV production, release, and uptake (81).
Furthermore, EVs are able to epigenetically reprogram target cells
and to completely change their phenotype in a short time (84) as
suggested also by the studies described in this review (75). A
potential strategy in the re-activation of the immune system or
suppression of osteoclastic activation can be to inhibit the molecules
responsible for these deep changes as well as creating engineered
EVs carrying specific cargo components (e.g., siRNA and shRNA)
that are able to lift the immune cell exhaustion and/or improve bone
disease by rewiring the epigenetic landscape. Small EVs may also be
a promising delivery platform for CRISPR/Cas9 gene editing for
targeted therapies as recently described by McAndrews et al. (92) in
pancreatic cancer models.
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LIMITATIONS AND TECHNICAL
CHALLENGES

Unfortunately, to date, a lack of standardised methodologies and
reporting of results has limited inter-study comparisons and the
progression of the translational potential of EVs. Specifically, in
MM there is no consensus on the type of starting material (serum
versus plasma) and pre-analytical variables are not always reported,
e.g. detailed collection procedures and the type of collection tube or
anticoagulant which are known to significantly affect the yield and
characteristics of EVs. The generation and optimization of
methods to isolate EVs and EV-RNA subpopulations with high
purity from biological samples, and, to analyse their contents, is a
current unmet need in the field. Commercially available kits,
proven by us (31) and other groups to provide adequate material
with immediate translational implications when compared to time-
consumingmethods such as the ‘gold standard’ ultracentrifugation,
employ a variety of isolation modalities including membrane-base
affinity, size exclusion chromatography, precipitation (8, 62, 71).
The latter remains the most adopted method in MM despite its
inadequacy in removing plasma abundant factors which may affect
downstream applications and their interpretation. The sub-optimal
methodologies for EV isolation utilized in several MM studies
renders the purity of EVs and EV-RNA questionable. Unpublished
data from our group demonstrate the importance of samples
collection and preparation for EV-RNA analyses. The type of
collection tube, the amount of starting material, protocols for
RNA isolation and preparation (e.g. DNase treatment), quality
control and library preparation for sequencing representing only
some of the critical aspects to take into consideration when
studying and reporting on EV-RNA. Of critical importance in
the study of circulating factors (e.g. EVs) is the demonstration of
their source but current methods for isolating EVs from complex
biofluids such as blood do not define the cell or tissue of origin. In
this context platelet-derived vesicles represent the most abundant
of the blood-EVs and specific protocols for platelet-free plasma
preparation tailored to minimize the activation and release of
platelet-EVs should be widely adopted and accurately reported.
The level of platelet EV-markers (e.g. CD41, CD62) may indicate
the amount of ‘contamination’ of the EV-sample by platelet-EVs
and should be confirmed, for example by immunoblotting as
recently described by our group (31). Alternatively,
immunocapture has been successfully utilized to exclude this
population from EVs of interest (e.g. CD41¯) (15). A potential
strategy for defining the derivation of blood EVs would be a side-
by-side comparison of EVs with putative source material, for
example, cells or tissues such as primary tumours. Omic
strategies may provide important insights into specific EV-cargo
enrichment and the likely EV-source. In support of this concept a
recent report by Hoshino et al. (14) provided a comprehensive
analysis of circulating small EVs enriched for unique tumour-
related proteomic signatures in solid tumours, confirming that
protein packaging reflects tumour biology and is heterogeneous
across 16 tumour types. Ultracentrifugation was utilized for EV
isolation in the described work and although still considered the
‘gold standard’ for EV studies, it requires high starting volumes,
long processing time, specialized equipment, and it has been shown
Frontiers in Oncology | www.frontiersin.org 9
to co-isolate factors that can potentially affect downstream
applications and their interpretation making it unsuitable in
clinical practice.
CONCLUSIONS AND FUTURE
PERSPECTIVES

Increasing evidence suggests that the interrogation of EVs and EV-
RNA may represent a reliable non-invasive and alternative strategy
to aid in the diagnosis, prognosis and treatment of solid tumours,
highlighted by the recent introduction of EV-based liquid biopsy
into clinical practice guidelines for prostate cancer (30). However,
advancement in this technology is required to address these needs in
other types of cancers, including haematological malignancies and
MM with a consensus statement urgently needed tailored for the
MM scientific community. The reports mentioned in this review
highlight the potential suitability of EVs and EV-RNA as novel
factors that could be translated, in the near future, into clinical
practice to better manage MM. Referring to publicly available data
and analysis tools, conducting studies with a collaborative approach
between laboratories, the use of specific liquid biomarkers
approaches may also accelerate progress toward EV-
standardization and translational application of EVs. Access to
larger sample sets from annotated patient cohorts with matched
clinical information, including response to therapy and survival,
would enable further studies exploring the molecular mechanisms
modulating EV-biogenesis, the heterogeneity in EV subtypes,
EV targeting and cargo release, the exact composition and
characteristics of MM-derived EVs and the physiological relevance
of their EV-RNA cargo. This in turn could lead to the identification
of novel potential therapeutic targets. Besides providing novel
biomarkers and therapeutic targets, the natural nanostructure and
modifiable surface properties of exosomes make them a good
candidate for drug delivery or immunomodulatory therapy.

Growing evidence suggests a critical role for cell-free (non-EV)
nucleic acids, both ctDNA and exRNA, as liquid biomarkers to
improve the outcome for MM patients (19). One could envisage
that combinatorial liquid biopsy strategies incorporating EVs, cell-
free nucleic acids and proteomics/metabolomics may represent a
readily accessible and realistic opportunity for improving our
understanding andmanagement of the incurable blood cancer MM.
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