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Background: Aberrant endoplasmic reticulum stress (ERS) plays an important role in
multiple cardiovascular diseases. However, their implication in intracranial aneurysms
(IAs) remains unclear. We designed this study to explore the general expression pattern
and potential functions of ERS in IAs.

Methods: Five Gene Expression Omnibus (GEO) microarray datasets were used as
the training cohorts, and 3 GEO RNA sequencing (RNA-seq) datasets were used as
the validating cohorts. Differentially expressed genes (DEGs), functional enrichment,
Lasso regression, logistic regression, ROC analysis, immune cell profiling, vascular
smooth muscle cell (VSMC) phenotyping, weighted gene coexpression network analysis
(WGCNA), and protein-protein interaction (PPI) analysis were applied to investigate the
role of ERS in IA. Finally, we predicted the upstream transcription factor (TF)/miRNA and
potential drugs targeting ERS.

Results: Significant DEGs were majorly associated with ERS, autophagy, and
metabolism. Eight-gene ERS signature and IRE1 pathway were identified during
the IA formation. WGCNA showed that ERS was highly associated with a
VSMC synthesis phenotype. Next, ERS-VSMC-metabolism-autophagy PPI and ERS-
TF-miRNA networks were constructed. Finally, we predicted 9 potential drugs
targeting ERS in IAs.

Conclusion: ERS is involved in IA formation. Upstream and downstream regulatory
networks for ERS were identified in IAs. Novel potential drugs targeting ERS were also
proposed, which may delay IA formation and progress.

Keywords: intracranial aneurysm, endoplasmic reticulum stress, bioinformatics, drug prediction, unfolded protein
response

Abbreviations: ADD1, adducin 1; AUC, areas under the curve; CALR, calreticulin; CMAP, connectivity map; DEG,
differential expression gene; ERS, endoplasmic reticulum stress; GEO, Gene Expression Omnibus; GO, Gene Ontology;
GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis; IA, intracranial aneurysm; KEGG, Kyoto
Encyclopedia of Genes and Genomes; PCA, principal components analysis; PPI, protein–protein Interaction; RNA-seq, RNA
sequencing; SNP, single nucleotide polymorphism; TF, transcription factor; UPR, unfolded protein response; VSMC, vascular
smooth muscle cell; WGCNA, weighted gene coexpression network analysis.
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INTRODUCTION

Intracranial aneurysm (IA) is a life-threatening, complicated,
and multifactorial disease that forms owing to the interaction
among hemodynamics, genetics, and environmental factors.
Immune/inflammation infiltration, cell death, lipid metabolism,
oxidative stress, proteolytic activity, and iron accumulation are
major histopathological features of IAs (Frösen et al., 2012).
The recruitment and infiltration of immune cells have been
confirmed to be a key phase in IA formation and development
(Hosaka and Hoh, 2014; Signorelli et al., 2018). Recent studies
suggest that vascular smooth muscle cell (VSMC) phenotype
transformation is crucial to vascular wall remodeling of IA
(Starke et al., 2014). Dysregulated autophagy can alter the
VSMC phenotype, impair arterial wall function, and contribute
to IA formation. Metabolism is also closely associated with the
degeneration of IA arterial wall (Frösen et al., 2013). Therefore,
it is urgent to investigate the complete mechanisms behind
IA formation.

Endoplasmic reticulum stress (ERS) is various physiological
or molecular disturbances that unbalance the unfolded-protein-
response-regulated endoplasmic reticulum homeostasis (Ren
et al., 2021). As a fundamental organelle, the dysfunction
of the endoplasmic reticulum can affect multiple biological
processes. Relevant studies show that ERS participates in the
formation and development of cardiovascular diseases (Ren
et al., 2021). Increased ERS markers have been reported in
aortic aneurysm walls (Clément et al., 2019). Furthermore,
stress-induced ERS can promote VSMC apoptosis, endothelial
dysfunction, inflammation infiltration, and ultimately induce
aortic aneurysm formation (Jia et al., 2015, 2017). Identifying
the associations between ERS and IA may provide a better
understanding of IA etiology.

In our study, 5 Gene Expression Omnibus (GEO) microarray
datasets were selected as training cohorts, while 3 GEO RNA
sequencing (RNA-seq) datasets were selected as validating
cohorts. The association between ERS and IA formation
was first confirmed by functional enrichment of differential
expression genes (DEGs). Afterward, we constructed an ERS
signature gene set, identified classical ERS pathways, generated an
ERS-VSMC-metabolism-autophagy regulated network, predicted
upstream transcription factor (TF) and microRNA targets of
ERS genes, and explored the relationship between ERS and
single nucleotide polymorphisms (SNPs) in IA diseases. Finally,
potential drugs targeting ERS were predicted to inhibit IA
formation and development.

MATERIALS AND METHODS

Intracranial Aneurysm Datasets and
Preprocessing
Eight public IA datasets were downloaded from the GEO1,
including 5 microarray datasets (GSE75436, GSE54083,
GSE26969, GSE13353, GSE15629) and 3 RNA-sequencing

1https://www.ncbi.nlm.nih.gov/geo/

datasets (GSE158558, GSE122897 and GSE66240). The patients
involved in the database have obtained ethical approval. The
raw data were merged and normalized using the “limma” R
package (Ritchie et al., 2015). Batch effects were eliminated using
the Combat algorithm (Leek et al., 2012). Of the 181 samples
enrolled in our study, microarray data (55IAs and 42 controls)
were used as the training set, and RNA-seq data (53 IAs and 31
controls) were used as the validating sets.

Differentially Expressed Gene Screening
and Functional Analysis
Principal components analysis (PCA) was employed to visualize
the disparity between IA and control groups using the
“factoextra” R package. DEG screening was conducted using the
“limma” package (P < 0.05 and log2-fold change > 1 or < −1).
Furthermore, we analyzed DEG functions by Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Gene Set Enrichment Analysis (GSEA) analysis (P < 0.05).

Constructing Endoplasmic Reticulum
Stress Signature
Two ERS-related gene sets (GO RESPONSE TO
ENDOPLASMIC RETICULUM STRESS and GO REGULATION
OF RESPONSE TO ENDOPLASMIC RETICULUM STRESS)
were downloaded from Molecular Signature Database (MSigDB)
v7.0. The Lasso regression was performed to identify the
ERS-related DEGs with the highest IA predictive values. The
predictive ability was further evaluated by univariate logistic
analysis. Next, using these genes, we quantified ERS expression
levels of all samples by Gene Set Variation Analysis (GSVA)
scores (Hänzelmann et al., 2013).

Identifying Endoplasmic Reticulum
Stress Pathways
Three ERS-related signaling pathways (GOBP ATF6 MEDIATED
UNFOLDED PROTEIN RESPONSE, GOBP IRE1 MEDIATED
UNFOLDED PROTEIN RESPONSE, GOBP PERK MEDIATED
UNFOLDED PROTEIN RESPONSE) were downloaded from
MsigDB v7.0. The GSVA scores were performed to quantify
the expression level of these pathways in all samples. Pearson
correlation analysis was performed between ERS pathways and
signature genes.

Immunocyte Infiltration and Vascular
Smooth Muscle Cell Phenotype Analysis
Immunocyte infiltration of arterial walls was estimated using
the “xCell” R package, which uses gene expression profiles to
predict enrichment of 64 immune and stromal cell types (Aran
et al., 2017). The VSMC phenotype was identified by 7 feature
genes [SDC1, RBP1, MMP14, CDH2, MGP, PDGFA, MYH9
(Nakahara et al., 1992; Shanahan et al., 1993; Orlandi et al., 2002;
Lyon et al., 2010; Chaterji et al., 2014; Shao et al., 2020)] and
quantified by GSVA scores.
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Coexpression Analysis of Endoplasmic
Reticulum Stress, Intracranial Aneurysm,
Immune, and Vascular Smooth Muscle
Cell Phenotype
Weighted gene coexpression network analysis (WGCNA) was
performed using the “WGCNA” R package (Langfelder and
Horvath, 2008). An optimal soft threshold β was set to attain a
scale-free topology network. Next, we evaluated the correlation
between “ERS” and other pathophysiological traits. “ERS,”
“VSMC synthesis,” and “IA” traits had the same high-associated
modules (P < 0.001 and r > 0.45), which were assumed to
be the key modules involved in IA formation and progression.
The gene function of key modules was analyzed using GO and
KEGG enrichment.

Constructing Endoplasmic Reticulum
Stress-Vascular Smooth Muscle
Cell-Metabolism-Autophagy
Protein-Protein Interaction and
Endoplasmic Reticulum
Stress-Transcription Factor-miRNA
Networks
Apart from ERS, the DEG functions also included metabolism
and autophagy. To evaluate the association between
ERS, metabolism, and autophagy, we downloaded 948
metabolism-related genes from the KEGG database2, and
232 autophagy-related genes from the HADb database3.
GSVA scoring and Pearson correlation analysis were then
performed. After identifying the correlation, the aforementioned
genes, together with high ERS-VSMC-IA-associated module
genes were then imported into the STRING database4.
Protein-protein interaction (PPI) networks were further
visualized by Cytoscape software (version 3.9.0). Furthermore,
NetworkAnalyst5 (Zhou et al., 2019), a comprehensive network
visual analytics platform for gene expression analysis, was
applied to predict upstream TFs and miRNAs of ERS.
Finally, based on ERS signature genes, we constructed
ERS-TF-miRNA networks.

Exploring the Relationship Between
Endoplasmic Reticulum Stress and
Non-coding Single Nucleotide
Polymorphisms
The 80 TFs and 142 nearby genes of regulatory regions which
overlapped with IA-associated SNPs, were downloaded from
Laarman’s study (Laarman et al., 2018). The integration analysis
was used between TFs of the ERS signature and TFs of regulatory
regions. The correlation analysis was performed between the ERS
signature and genes in proximity to regulatory regions.

2https://www.kegg.jp/
3http://www.autophagy.lu/
4https://www.string-db.org/
5https://www.networkanalyst.ca/

Small Molecular Drug Analysis for
Endoplasmic Reticulum Stress Signature
Genes
The Connectivity Map (CMAP) website6 was applied to explore
small molecule drugs with the potential to inhibit IA formation
and development. The drugs with negative Raw_cs and high
fdr_q_nlog10 values were considered as potential therapeutic
agents because they could suppress the expression of ERS
signature genes.

Statistical Analysis
All statistical analyses were conducted using the R software
(version 4.0.2). The Wilcox test was applied to compare the
difference of continuous variables between the two groups.
P < 0.05 was considered statistically significant. Data were
visualized using the R package “ggplot2.” Heatmaps were drawn
using the “pheatmap” R package. Volcano plots were generated
using the “ggrepel” R package.

RESULTS

Data Preprocessing and Differentially
Expressed Gene Screening
The study was designed as indicated in the flow chart
(Figure 1). We sought to explore the role of ERS in IA
formation by comprehensive analysis based on microarray
and RNA-sequencing datasets. In total, we collected 55
cases of IA and 42 cases of normal arteries as controls in
microarray training cohorts, and 53 cases of IA and 31
cases of normal arteries as controls in RNA-seq validation
cohorts (Figure 2A). For both training and validation cohorts,
similar distributions of different samples were observed
in normalized data after preprocessing (Figure 2B). PCA
analysis showed that the IA group could be discriminated
from the controls at the transcript level (Figure 2C). On
filtering with the limma package, 1,628 up-regulated genes
and 2,013 down-regulated genes were found in the training
cohort. 590 up-regulated genes and 685 down-regulated
genes were found in the validation cohort (Figure 2D).
Heatmaps were used to visualize the expression of DEGs in all
cases (Figure 2E).

Differentially Expressed Gene Functional
Enrichment
To explore disease progression in IA, we performed functional
enrichment analysis for intersected DEGs between the training
and validation cohorts. Among GO enrichment terms, the
most overrepresented were ERS, response to unfolded protein,
autophagosome, and similar pathways (Figure 3A). In the
KEGG pathway analysis, DEGs were notably enriched in
protein processing in ER, metabolism process, phagosome,
antigen processing and presentation, and others (Figure 3B).
In GSEA biological process results, endomembrane system

6https://clue.io/
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FIGURE 1 | The flow chart of data analysis. DEG, differential expression gene; RNA-seq, RNA sequencing; ERS, endoplasmic reticulum stress; ROC, receiver
operating characteristic; VSMC, vascular smooth muscle cell; PPI, protein–protein Interaction; TF, transcription factor.

and response to stimulus terms showed higher expression in
the IA group (Figure 3C), whereas cellular macromolecule
metabolic process was more frequent in the normal artery control
group (Figure 3D). Overall, DEGs were functionally enriched

in ERS, autophagy, and metabolism-related processes. Further
correlation analysis showed that the expression of autophagy
and metabolism was positively associated with ERS, separately
(Supplementary Figures 1A,B).
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FIGURE 2 | Data preprocessing and DEG screening in both training and validating cohorts. (A) Basic information of included dataset. (B) Boxplots of normalized
data showed similar distributions of different samples. (C) PCA plots showed the IA group could be discriminated from the controls. (D) Volcano plots visualized the
fold change and P-value of all genes between the two groups. Red plots were upregulated genes and blue plots were downregulated genes. (E) Heatmaps
visualized the expression level of DEGs.

Constructing the Endoplasmic Reticulum
Stress Related Signature in Intracranial
Aneurysm
Considering the prominent role of ERS in DEG functional
enrichment, we sought to determine diagnostic values of ERS
in IA by constructing an ERS signature. Firstly, we selected
18 IA-related ERS genes by intersecting ERS gene sets and
DEGs of training and validation cohorts. Next, these 18 genes
were used for LASSO regression to select the most valuable
predictive genes, and an 8-gene ERS signature was constructed
(Figures 4A,B). FKBP14, TOR1A, EDEM1, BAX, CALR,
SEC61B were upregulated, whereas STUB1 and ADD1 were
downregulated in IAs (Supplementary Figure 3A). Univariate
Logistic regression showed FKBP14, TOR1A, EDEM1, BAX,
CALR, and SEC61B may promote IA formation, while STUB1
and ADD1 can prevent it (Figure 4C). ROC curve analysis

showed that GSVA scores of the ERS signature could predict IA
formation, with areas under the curve (AUC) of 0.799 and 0.845
in the training and validation cohorts, respectively (Figure 4D).
Heatmaps were used to visualize ERS signature expression in all
cases (Figure 4E).

Identifying Signaling Pathways in
Intracranial Aneurysm
There were 3 ERS-related classical signaling pathways, including
the ATF6 pathway, IRE1 pathway, and Perk pathway. The
expression of the IRE1 pathway was significantly higher in IAs
than controls, whereas the ATF6 pathway and perk pathway
did not show significant differences between the two groups
(Figure 5A). IRE1 pathway showed high correlations to FKBP14,
BAX, and SEC61B expression (Correlation coefficient > 0.3,
Figure 5B).
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FIGURE 3 | Function enrichment of intersected DEGs between the training and control group. (A) Gene Ontology (GO) enrichment analysis. (B) Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analysis. (C,D) Gene Set Enrichment Analysis (GSEA). Enrichment showed that DEG function mainly focused on ERS,
unfolded protein response (UPR), autophagy, immune/inflammation, and metabolism.

Annotation of the Arterial Wall
Microenvironment of
Immune/Inflammation Infiltrating and
Vascular Smooth Muscle Cell Phenotype
Since immune infiltration/inflammation and VSMC phenotype
are tightly associated with IA formation and progression, we
further investigated the arterial wall microenvironment. For
both training and validation cohorts, Xcell immune profiling
results showed more immune/inflammation-related cell types
and higher immune scores in IA (Figures 6A,B). VSMC
phenotype analysis revealed that IA cohorts expressed more
VSMC-synthesis-phenotype-feature genes and higher synthesis-
phenotype GSVA scores (Figures 6C,D).

Coexpression Analysis Identifying
Endoplasmic Reticulum Stress-Related
Vascular Smooth Muscle Cell Phenotype
Genes
Considering ERS, immune/inflammation, and VSMC phenotype
are all involved in IA formation, we sought to conduct
WGCNA coexpression analysis to identify the relationship
among those. Powers β = 5 or 4 were selected as the software
threshold for scale-free network construction in training and
validation cohorts, respectively (Figure 7A and Supplementary
Figure 2A). In the training cohort, 20 modules were identified,

and in the validation cohort, 13 modules were identified
by clustering dendrogram (Figure 7B and Supplementary
Figure 2B). IA, VSMC synthesis, and ERS had the same highest-
correlated modules (MEgray60 and MEtan), indicating strong
associations among these traits (Figures 7C,D). A similar result
was also observed in the validation cohort (Supplementary
Figures 2C,D). By intersecting the two most relevant modules
in the training and validation group, we identified 85 ERS-
related VSMC phenotype genes involved in IA formation. GO
enrichment analysis showed these genes mainly focused on
collagen fibril organization, smooth endoplasmic reticulum, and
others (Figure 7E). KEGG pathway analysis showed metabolism,
phagosome, and protein processing in the endoplasmic reticulum
were more enriched among these genes (Figure 7F).

Constructing Endoplasmic Reticulum
Stress-Vascular Smooth Muscle
Cell-Metabolism-Autophagy
Protein-Protein Interaction and
Endoplasmic Reticulum
Stress-Transcription Factor-miRNA
Networks
After identifying the correlation among ERS, VSMC phenotype,
metabolism, and autophagy in IA formation, we constructed PPI
networks among those pathophysiological traits. Within DEGs
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FIGURE 4 | Identification of the ERS-related signature in both training and validating cohorts. (A) The coefficient profiles of the LASSO regression model.
(B) Cross-validation for tuning parameter screening in the LASSO regression model. (C) Univariate Logistic regression identified 8 ERS genes’ odds ratios (ORs) and
95% confidence intervals (Cls) after LASSO regression filtration. (D) ROC curve analysis for Gene Set Variation Analysis (GSVA) scores of 8 ERS genes. (E) The
heatmap visualized the expression level of 8 ERS genes.

targeting the ERS signature, a total of 11 were involved in the
VSMC synthesis phenotype, 9 were correlated to metabolism,
and 15 were associated with autophagy in the training cohort
(Figure 8A). The validating cohort also showed similar ERS-
VSMC-metabolism-autophagy PPI networks (Figure 8B).

The NetworkAnalyst online tool was used to predict ERS
upstream TF and miRNA. Eight ERS signature genes had
identified TFs. NFYA, TFAP2A, SP1, EGR1, MYC, GABPA,
and USF1 were common TFs among at least 3 genes. ERS
signature genes of EDEM1 and BAX had the most predicted
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FIGURE 5 | Identification of ERS-related signaling pathways in both training and validating cohorts. (A) GSVA scores of 3 pathway expression. IRE1 pathway had a
higher expression level in IAs than the level in controls. The expression of the ATF6 pathway and PERK pathway did not show significant differences between the two
groups. (B) Pearson correlation between IRE1 pathway and signature genes. The expression of FKBP14, BAX, and SEC61B had high correlations to IRE1 pathway
expression (Correlation coefficient > 0.3 in both training and validating cohorts).

miRNAs including hsa-miR-25, hsa-miR-32, hsa-miR-520d-
5p, hsa-miR-524-5p, hsa-miR-637, hsa-miR-133b and hsa-miR-
133a (Figure 8C).

Exploring the Relationship Between
Endoplasmic Reticulum Stress and
Non-coding Single Nucleotide
Polymorphisms
We then investigated TFs and nearby genes of ERS-associated
non-coding SNPs in IAs. Seventeen TFs were identified
to co-regulate ERS and non-coding SNPs. Among these,
MYC had the most ERS target genes and TF binding sites
(Supplementary Table 1). Moreover, 6 nearby genes were found

to differentially express (Supplementary Figure 3B). Correlation
analysis showed the tight connectivity between 8 ERS signature
genes and 6 nearby genes, in which KCTD15 had the most
significant correlations with ERS (Supplementary Figure 3C).

Drug Prediction for Endoplasmic
Reticulum Stress Signature
To predict small molecule drugs with the potential to inhibit
IA ERS, we uploaded the ERS signature into the CMAP
online tool. We identified 9 drugs (thioperamide, tracazolate,
cephaeline, GW-843682X, aminopurvalanol-a, geranylgeraniol,
hydroflumethiazide, BRD-K76674262, everolimus) with the
negative Raw_cs and the top fdr_q_nlog10 values, suggesting
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FIGURE 6 | Annotation of the arterial wall microenvironment of immune/inflammation infiltrating and VSMC phenotype in both training and validating cohorts. (A) The
expression level of X cell-defined immunocytes and neurons. (B) The total enrichment scores of the immune microenvironment. IA lesions had higher immune
expression than control arteries. (C) The expression of feature genes of VSMC synthesis phenotype. (D) The GSVA scores of VSMC synthesis phenotype. IA lesions
had more VSMC synthesis phenotype than control arteries. *P < 0.05; **P < 0.01; ***P < 0.001.

they could inhibit the expression of the ERS signature (Figure 9
and Supplementary Table 2).

DISCUSSION

Endoplasmic reticulum stress is an imbalance of the endoplasmic
reticulum homeostasis caused by an accumulation of unfolded

or misfolded proteins. Multiple pathologies can induce
ERS, including pressure overload, metabolic disorders,
atherosclerosis, ischemia-reperfusion injury, endothelial
dysfunction, and others. Long-term ERS promotes abnormal
inflammation and apoptosis in the vascular wall, leading to
disturbances in cardiovascular function (Ren et al., 2021).
Previous studies have shown that excessive ERS is closely
associated with various cardiovascular diseases, including heart
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FIGURE 7 | Co-expression analysis identifying ERS-related VSMC phenotype genes in the training cohort. (A) A scale-free network construction (power threshold
β = 5). (B) Gene dendrogram generating gene modules. (C) and (D) Correlation analysis between modules and pathophysiological traits. IA occurrence, VSMC
synthesis, and ERS had the same two highest correlation modules (MEgray60 and MEtan). (E) GO enrichment analysis of the intersection between the training
cohort (MEgray60 and MEtan) and the validating cohort (MEbrown and MEpink). (F) KEGG enrichment analysis of the intersection between the training cohort
(MEgray60 and MEtan) and (MEbrown and MEpink). Function enrichment showed that these modules mainly focused on smooth endoplasmic reticulum, collagen
fibril organization, metabolism, and phagosome.
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FIGURE 8 | Constructing ERS-VSMC-metabolism-autophagy PPI and ERS-TF-miRNA networks. (A) PPI network among ERS, metabolism, VSMC phenotype, and
autophagy-related genes in the training cohorts. (B) PPI network among ERS, metabolism, VSMC phenotype, and autophagy-related genes in the validating
cohorts. (C) Prediction of upstream TFs and microRNAs for ERS-related genes.

failure, cardiomyopathy, hypertension, stroke, and the like
(Ren et al., 2021).

In the present study, the role of ERS in IA formation
was explored using bioinformatics analysis for the first time.
We firstly identified ERS by functional enrichment of DEGs,
constructed an ERS signature gene set. Afterward, we generated
ERS-VSMC-metabolism-autophagy PPI networks and predicted
ERS-related upstream TF and microRNAs. The relationship

between ERS and non-coding SNPs was then explored. Finally,
potential drugs targeting ERS were predicted to inhibit IA
formation and development.

Recently, accumulating evidence demonstrates that ERS plays
an important role in aneurysm formation and development.
In our research, multiple types of DEG functional enrichment
analyses showed ERS was related to IA pathogenesis. Similarly,
Clément et al. (2019) found increased expression of ERS markers
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FIGURE 9 | Identifying the molecular structure of 9 small component drugs targeting ERS-related gens in IAs by CMAP.

in VSMCs of dissected aortic aneurysms. Jia et al. (2015)
proved that stress-induced ERS contributed to thoracic aortic
aneurysm and dissection formation. They also reported that
ERS-dependent microparticles promote endothelial dysfunction
during the formation process of thoracic aortic aneurysm
and dissection (Jia et al., 2017). In addition, several studies
showed that ERS inhibition could attenuate the formation and
development of abdominal aortic aneurysms (Li et al., 2017;
Ni et al., 2018).

The ERS signature gene set was then constructed in IA,
including FKBP14, TOR1A, EDEM1, BAX, CALR, STUB1,
SEC61B, and ADD1. These genes have been confirmed to be
related to multiple cardiovascular diseases. Among those, BAX,
whose protein belongs to the BCL2 family, is an apoptosis
activator. One study showed that overexpressed Bax regulated
intimal hyperplasia of VSMCs in arteriosclerosis (Hayakawa
et al., 1999). Another study showed that upregulated Bax was
associated with the presence of cystic medial degeneration of
the aorta (Ihling et al., 1999). Calreticulin (CALR) encoded
by the CALR gene, is a highly conserved chaperone protein
primarily expressed in the endoplasmic reticulum. Previous
studies indicate that CALR can coordinate vascular function
and heterocellular calcium signaling (Biwer et al., 2018). STUB1,
encoding the protein of STIP1 Homology And U-Box Containing
Protein 1, was down-regulated during the IA process in our
studies. A prior study showed that the decreased STUB1 in
VSMCs inhibited thrombosis in flow loops (Shashar et al., 2017).

Adducin 1 (ADD1), belonging to the cytoskeletal protein
family, was also expressed at lower levels in vascular walls
of IA patients. A sequencing study suggested that ADD1
polymorphism significantly increased the susceptibility to
ischemic and hemorrhagic strokes (Kalita et al., 2011).

To update, there are three classic signaling pathways in ERS,
including ATF6 pathway, IRE1 pathway, and Perk pathway. They
act as proximal sensors of unfolded protein response (UPR) (Wu
and Kaufman, 2006). Our results showed that the IRE1 pathway
was highly expressed in IA lesions and had strong correlations
to the gene expression of BAX, FKBP14, and SEC61B. Previous
research has demonstrated that proapoptotic BAX moduled
UPR by direct interaction with IRE (Hetz et al., 2006). The
overexpression of BAX inhibitor-1 could inhibit IRE and reversed
hyperglycemia in diet-induced obesity mice (Bailly-Maitre et al.,
2010). Whether these ERS genes could promote IA formation by
the IRE1 pathway deserves further basic experimental study.

VSMC phenotype transformation, from contractility to
synthesis, is involved in IA formation and development. Our
results suggest a strong association between ERS and VSMC
synthesis in IA pathogenesis. This relationship has already been
confirmed in a previous study. Zhang et al. (2020) showed that
the microgravity regulated ERS to induce VSMC phenotype
transform. Zhao et al. (2020) identified that Matrine inhibited
VSMC phenotype transformation via ERS-dependent Notch
signaling. Chattopadhyay et al. (2021) found that UPR could
drive cholesterol-induced VSMC phenotype transformation.
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Considering metabolism and autophagy were also enriched
in IAs, we constructed ERS-VSMC-metabolism-autophagy PPI
networks. Body metabolism disorders have been discovered
to involve the pathological processes of IA. Frösen et al.
(2013) found that lipid accumulation and its oxidation in
the IA wall, together with low plasma levels of acquired
antibodies against oxidized lipids, were associated with IA wall
degeneration and rupture. Semmler et al. (2008) demonstrated
that polymorphisms of homocysteine metabolism were possible
risk factors for IA formation. Besides, growing evidence showed
that autophagy was also involved in IA formation, development,
and rupture. Sun et al. (2017) proved that ruptured IA tissues
had more expression of autophagy-related genes, including
LC3, Atg5, and Atg14, followed by unruptured IA and control
artery tissues. In vitro experiments showed that activated
VSMC autophagy could enhance the VSMC proliferation and
migration, and induce IA formation (Zhang et al., 2019).
Furthermore, the relationships among ERS, metabolism, and
autophagy have been demonstrated in other diseases. There
are mutual regulations between ERS and metabolism. Fu et al.
(2011) showed that aberrant lipid metabolism would cause ERS
in obesity. Henkel et al. (2017) proved that ERS regulated
hepatic bile acid metabolism in mice. As for autophagy, it is
generally considered the last means to restore the homeostasis
of the endoplasmic reticulum (Henkel et al., 2017). Together,
we speculated ERS can influence metabolism/autophagy/VSMC
phenotype and thus contribute to IA formation, which needs
further basic research.

The dysregulation of upstream TF and microRNA for ERS
also has a crucial impact on the formation and development of
cardiovascular diseases. Our TF prediction showed that NFYA,
TFAP2A, SP1, EGR1, MYC, GABPA, and USF1 were common
TFs with at least 3 ERS genes in IAs. Among these, SP1,
whose encoding protein is involved in cell differentiation and
growth, has been confirmed to be associated with ERS and
VSMC phenotype switching. Dauer et al. (2017) proved that
inhibition of SP1 prevented endoplasmic reticulum homeostasis.
Hu et al. (2021) found that SP1 regulated migration and
phenotype switching of VSMCs through the MAPK pathway in
aortic dissections. Tang et al. (2017) identified that microRNA-
124 controlled VSMC phenotypic switching via SP1. EGR,
belonging to the early growth response family, was found to
be related to ERS and aneurysm formation. Previous studies
showed that ERS can activate EGR1 transcription via the
MAPK pathway (Shan et al., 2019). Other studies prove that
EGR1 upregulation leads to aortic aneurysm formation and
EGR1 downregulation can reverse this process (Lin et al.,
2020; Shin et al., 2020). In addition, we predicted 91 upstream
microRNAs for ERS. Seven microRNAs had 2 target ERS
genes. Among these, hsa-miR-25, hsa-miR-133b, and hsa-miR-
133a have been confirmed to independently predict aneurysm
occurrence or prevent aneurysm development (Li et al.,
2014; Plana et al., 2020; Akerman et al., 2021). Furthermore,
upregulated hsa-miR-637 can aggravate ERS-induced apoptosis
(Kong et al., 2020).

IA-associated SNPs were reported to be enriched in Cow
regulatory regions (Laarman et al., 2018). The relationship

between non-coding SNPs and ERS was investigated.
Integration analysis showed that 17 TFs co-regulated ERS
and regulatory regions in IAs. Among these, MYC, whose
encoded a nuclear phosphoprotein, with a role in cycle
progression, apoptosis, and cellular transformation, had
the most ERS target genes and TF binding sites. Previous
research had confirmed that MYC was involved in ERS.
Dong et al. (2019) found that the IRE1 ERS sensor could
activate natural killer cell immunity by MYC regulation.
Jayasooriya et al. (2018) found that camptothecin enhanced
MYC-mediated ERS and led to autophagy. In addition,
Li et al. (2020) proved that the downregulating MYC-
mediated ENC1 could prevent IA formation. Correlation
analysis showed the tight connectivity between ERS signature
genes and nearby genes of regulatory regions. KCTD15, a
potassium channel encoding gene, had the most significant
associations with ERS. Previous research found that potassium
channels have the modification of gating properties under
the ERS and were involved in the cerebral vasospasm after
subarachnoid hemorrhage (Sobey and Faraci, 1998; Khodaee
et al., 2014). The role of KCTD15 in IA formation deserves
further research.

Previous studies reported that ERS was the potential
therapeutic target for aneurysms. In this research, we
predicted 9 small molecule drugs for IAs. These drugs have
shown the potential to inhibit ERS progress. Cephaeline and
BRD-K76674262, belonging to protein synthesis inhibitors,
could inhibit tumor viability, migration, and proliferation
(Silva et al., 2021). Han et al. (2013) proved ERS increased
protein synthesis leading to cell death, and presented,
limiting protein synthesis would be therapeutic for ERS-
caused diseases. Everolimus, an mTOR inhibitor, is used in
immunosuppressive treatment after organ transplantation and
anticancer treatment for advanced renal cell cancers (Patel
and Kobashigawa, 2006; Mariniello et al., 2012). Previous
studies have found bidirectional crosstalk between ERS and
mTOR (Appenzeller-Herzog and Hall, 2012). Persistent mTOR
activation could induce ERS occurrence (Wang et al., 2016).
Of note, everolimus has been shown capable of limiting
aortic aneurysm dilatation in apolipoprotein E-deficient
mouse (Moran et al., 2013). IA progress may be delayed by
these compounds.

Our study had some limitations. One major limitation was
the lack of basic experimental data to confirm and support our
findings. Another limitation was the lack of IA-associated clinical
data, like size, location, number, and others, to further explore the
association between ERS and IA. Additionally, the predicted TF,
miRNA, and drugs remain to be further explored to understand
their real-world roles in IA formation and development.

CONCLUSION

Our results strongly suggest that ERS is involved in IA formation.
Upstream and downstream regulatory networks for ERS were
identified in IAs. Novel potential drugs targeting ERS were also
proposed, which may delay IA formation and progress.
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