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Abstract: The p53 tumor-suppressor protein is a cellular phosphoprotein and a negative regu-

lator of cell growth. Most p53 mutations occur in exons 5–8 within the DNA-binding domain. 

Therefore, p53 can potentially be targeted with novel drugs designed to bind to a mutation and 

restore its stability or wild-type conformation. For the current study, Hartree–Fock calculations 

were used to investigate the solvent-induced effects of five different solvent media (acetone, 

ethanol, methanol, dimethyl sulfoxide, and water) on the thermochemical parameters and rela-

tive energies, and on the multinuclear nuclear magnetic resonance shielding tensors of oxygen, 

nitrogen, and phosphorus nuclei, of GAT. To understand how the solvent affects the mutation 

region (the “hot spot”) of p53, the relative energies of GAT in selected solvent media were 

determined. Some biological evidence suggested the structural stabilities of hot spots of GAT 

have the optimum temperature and solvent type for mutation. All the authors’ findings are in 

accordance with common biological phenomena. Another important objective of this study was 

to compare the hydration Gibbs free energies of CUA and GAT in water using two different 

approaches where the solvent was treated as a continuum of the constant at different levels of 

Hartree–Fock theory. The Gibbs hydration energy values obtained in water with the polarized 

continuum model directly applied on the isolated CUA and GAT sequences were compared 

with those determined from the hydrated models with four, six, and eight water molecule 

clusters around the hot spots uracil and adenine. The clustered structures of water molecules 

around the hot spots of GAT (in DNA level) and CUA (in transcriptional level) were found to 

be energetically favored. The results of this study provide a reliable insight into the nature of 

mutation processes, which is of utmost importance for the study of biochemical structures, and 

provide a basis for drug design.

Keywords: polarized continuum model (PCM), nuclear magnetic resonance (NMR), Hartree–

Fock theory

Introduction
The p53 tumor-suppressor protein is a cellular phosphoprotein and a negative regulator 

of cell growth. These functions make p53 a key factor in protection against cancer. 

More than half of all human cancers harbor p53 mutations and have no functioning 

p53 protein. More than half of human tumors contain a mutation or deletion of the 

TP53 gene. These mutations mostly occur in exons 5–8 and they make p53 a poten-

tial candidate for gene therapy. Most of the cancerous mutations are point mutations 

where a base pair is substituted by another with distributions along the DNA sequence. 

It should be noted that p53 is considered a significant contender for use in gene therapy 

targeting tumor cells.1,2
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The tridimensional, dynamic structure of biological mac-

romolecules influences all processes of molecular diagnosis. 

In recent years, significant improvement has been made in the 

development of theoretical methods in studies of structural 

and dynamic nucleic acid. Other recent successes include 

the application of quantum chemistry for solving biological 

problems. One of the applications of nucleic acid modeling 

is the possibility of attaching a drug to DNA.3 A large part of 

the challenge of this is due to determination of DNA structure 

of all the common biological molecules. Direct observation 

of these phenomena is not possible at the atomic level. Some 

methods such as X-ray crystallography and nuclear magnetic 

resonance (NMR) provide useful information at the atomic 

level but are faced with many practical challenges.

According to research reports, p53 plays an important 

role in different types of human tumors, including pancreatic 

tumors, and changes in this gene can increase or decrease 

the sensitivity of tumor cells to anticancer drugs. The authors 

studied GAT codon in exon 5 of p53, which undergoes point 

mutation in pancreatic cancers. It has been found that the fre-

quency and spectra of p53 mutation and its function depend 

on the cell-type development stage and the tissue origin of 

the cancer.4 In other cases, mutations in the gene have been 

observed in 60%–80% of pancreatic cancers.1

A statistical analysis of mutation-induced charge transfer 

modifications was performed.5–8 In contrast to noncancerous 

mutations, hot-spot mutations tend to result in significantly 

weaker changes of transmission properties.9 The theo-

retical chemical shifts of these systems have been reported. 

 Theoretical calculations predicted a significant downfield 

shift for protons involved in intermolecular hydrogen bonding 

between N–H and  dimethyl sulfoxide (DMSO). The solvent-

induced effects on chemical shifts of other nuclei have also 

been reported at the Hartree–Fock theory level.10–14

Until now, most of the investigations in this f ield 

have focused on conformational aspects of biological 

sequences.15–20 Solvation effects could be considered in 

drug metabolism, as the kinetics and thermodynamics of 

enzymatic biotransformations of drugs may be dependent 

on solvation effects. Therefore, extensive data related to 

solvation are probably essential.21

In this current research, the authors have conducted 

theoretical studies of solvent effects on NMR tensors and 

on the thermochemical parameters of GAT codon; they have 

coupled this with consideration as to whether the polarity 

of solvent can have an influence on these physicochemical 

quantities. Structural changes introduced by various solvents 

were monitored by chemical-shielding changes. The selected 

solvents exhibited a wide range of hydrogen-bonding and 

polarity/polarizability properties. Due to the importance 

of hydrogen-bonding interactions governed in biological 

systems, the authors’ main theoretical argument has been 

focused on exploring the NMR parameters of nitrogen, 

oxygen, and phosphorus nuclei involved in the hydrogen-

bonding network structure.

To study the temperature and solvent effects on the 

stabilities of the hot-spot segment of the GAT sequence, 

thermochemical parameters of GAT such as thermal energy, 

entropy, and enthalpy were calculated at 300 K, 310 K, and 

313 K using five different solvent media. The temperature and 

a suitable solvent responsible for structural instability of hot 

spots leading to mutation were suggested. In order to iden-

tify the most probable sequence for mutations among GAU 

and CUA for RNA and GAT for DNA, all energy values 

of these systems were calculated in vacuum at RHF/6-31G 

theoretical level and a logical trend was revealed. To justify 

the solvent-induced effects, the energy values of the GAT 

system were determined in different solvent media with 

ethanol as a reference solvent; their relative energy (∆E
relative

) 

values were analyzed.

The current study covers a theoretical background con-

cerning thermochemical and solvent effects equations defined 

for the analysis of theoretical assumptions.

Theoretical background
An accurate knowledge of the magnitude of NMR tensors has 

been found to be valuable in indentifying biomolecular struc-

ture and dynamics with NMR spectroscopy.18 Therefore, for 

reliable structural investigations, it is necessary to determine 

each nucleus of interest involved in the hydrogen-bonding 

network. Quantum chemical calculations are increasingly 

being used to rationalize the relationship between shielding 

tensors and biological structures.22,23

The following quantities are often used to describe NMR 

shielding tensors – namely, the isotropic, anisotropic shield-

ing, and the asymmetry parameters:

a. The isotropic value (σ
iso

) of the shielding tensor, which 

is defined as

 σ σ σ σiso 11 22 33=
1

3
( + + )  (1)

b.  The anisotropy parameter (∆σ), which is defined as

 ∆σ σ σ σ= − +33 11 22

1

2
( )  (2)

and
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c. The asymmetry parameter (η), which is given by24

 η =
−
−

σ σ
σ σ

.22 11

33 iso

 (3)

For evaluating solvation free energies (∆G
hydration

), the fol-

lowing equation can be defined as the difference between the 

Hartree–Fock free energies of the species in solution and the 

Hartree–Fock free energies of the species in the gas phase; 

in fact, ∆G
S
 involve three nonelectrostatic contributions 

( cavitations, dispersions, and repulsion energies) as25

 

∆G E CUA GAT

E isolated species E H O

H O
PCM

hydration

2

2
,= ( )

− ( ) − ( )
 

(4)

Software and modeling
Computational biology techniques play a key role in expand-

ing our knowledge on the mode of behavior of solvents in nor-

mal biological processes. Physics-based computations such 

as biomolecular simulation simulate biomolecular motion 

according to the laws of physics; they provide quantitative 

information on biomolecular dynamics and energetics, as 

well as help with the interpretation of biophysical data.26

This research is an example of how quantum mechani-

cal techniques can be successfully applied to biologically 

relevant problems in rather large and complex systems. For 

this purpose, the electronic structure and solvent-effects 

calculations are performed on GAT codon using Gaussian 

98 software (Gaussian, Inc, Wallingford, CT).27

First, the authors considered the geometry optimizations 

of GAT existing in DNA and coupled with it, carrying out the 

Hartree–Fock level of theory using the STO-3G, 3-21G, and 

6-31G basis set in the gas phase as well as in the five different 

solvent media (acetone, ethanol, methanol, dimethyl sulfox-

ide, and water) by assuming a polarized continuum model 

(PCM) solvation method. Before starting PCM calculations, 

the cavity radius obtained for incorporation of solvent effects 

was determined. After optimization in different solvents, the 

authors calculated NMR shielding parameters for some nuclei 

involved in the GAT hydrogen-bonding network.

Second, the authors considered just the adenine section of 

GAT sequence, regarded as a hot spot for mutation, for perform-

ing a frequency calculation in order to obtain thermochemical 

parameters at three different temperatures (300 K, 310 K, and 

313 K) to find out important structural stability factors.

Third, due to the key role of the number of water  molecules 

on mutation and other biological phenomena, the authors con-

structed the hydrated complexes of four, six, and eight water 

molecules bonded directly to uracil and adenine as the hot 

spots of CUA and GAT sequences through several  hydrogen 

bonds to be used in calculation of ∆G
hydration

 (as defined in 

equation 4). This parameter has been used to investigate the 

effect of hydration of the CUA and GAT sequences to predict 

its actual structure in aqueous solution at finite temperature.

Table 1 Nuclear magnetic resonance shielding tensors (ppm) 
of nitrogen and oxygen nuclei involved in the hydrogen-bonding 
network of GAT codon in different solvent media at the level of 
RHF/6-31G theory

ε σiso Δσ η

O9

Acetone -23.0882 -271.7389 0.33212
Ethanol -23.0474 -271.7516 0.33224
Methanol -23.0144 -271.7641 0.33234
DMSO -22.9971 -271.766 0.33238
Water -23.9899 -271.76903 0.3324
O49

Acetone -87.3323 -338.7879 0.44154
Ethanol -87.3151 -338.8044 0.44162
Methanol -87.3012 -338.8231 0.441708
DMSO -87.296 -338.832 0.4417
Water -87.2934 -338.8349 0.44175
N1

Acetone 156.1478 -75.6964 2.5745
Ethanol 156.1461 -75.7012 2.5749
Methanol 156.1455 -75.7051 2.5752
DMSO 156.1454 -75.7069 2.5754
Water 156.1448 -75.7078 2.5755
N11

Acetone 128.0659 -45.1563 0.1404
Ethanol 128.0928 -45.10076 0.1395
Methanol 128.1149 -45.0554 0.1387
DMSO 128.1281 -45.0314 0.1383
Water 128.13106 -45.02266 0.1382

N23

Acetone 46.8892 -170.2886 0.383
Ethanol 46.8886 -170.2907 0.38297
Methanol 46.8862 -170.2946 0.38294
DMSO 46.8862 -170.2963 0.38293
Water 46.8865 -170.2971 0.38293
N32

Acetone 221.4173 -47.9012 1.0573
Ethanol 221.4226 -47.904 1.057
Methanol 221.4274 -47.9058 1.0568
DMSO 221.4294 -47.9066 1.0567
Water 221.4303 -47.9074 1.0567
N47

Acetone 148.7029 -67.9113 2.18728
Ethanol 148.7136 -67.8993 2.18693
Methanol 148.7231 -67.8882 2.18658
DMSO 148.7283 -67.8831 2.18641
Water 148.7302 -67.8811 2.18638

Abbreviations: ε, dielectric constant; σiso, isotropic value; ∆σ, anisotropy parameter; 
η, asymmetry parameter; DSMO, dimethyl sulfoxide.
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In the current study, the authors’ emphasis was placed 

on the variations of thermochemical parameters due to the 

temperature effect in different solvents. According to ther-

mochemical functions of GAT reported in Table 2 at three 

different temperatures (300 K, 310 K, and 313 K) and differ-

ent solvent media, the most negative value was obtained at 

300 K and the highest stability in water solvent at 313 K.

In view of the solvent and temperature effects on GAT 

model, the negative Gibbs free energy of GAT in water 

with the highest polarity at 313 K reveals the most stable 

condition and the least probability for mutation to occur. 

However, these results suggest that the polar solvents – 

specifically, a highly polar system solvent such as water – 

provide the most suitable condition for mutation of GAT 

located in DNA.

The graph of the relative Gibbs free energy versus dielec-

tric constant of GAT (Figure 1) shows that with increased 

dielectric constant there is a dramatic decrease in Gibbs 

free energy. The minimum region is observed for ethanol, 

and after passing this point the slope of the curve remains 

constant.

−500000

−510000

−520000

−530000

−540000

−550000

−560000

−570000

0 20 40 60

Dielectric constant

GAT

∆ 
G

(k
ca

l/m
o

l)

80 100

300
310
313

Figure 1 Relative Gibbs free energies (∆Grelative) of GAT sequence in different 
solvent media.

Hence, the interaction energies of studied systems were 

calculated as the difference between the total energy of a whole 

system and the energies of subsystems. Solvent effects in water 

were calculated by employing the PCM method in which the 

solvent is considered a continuum dielectric, recognized by 

its constant permittivity. Indeed, an important objective of 

this study was to compare the solvation energies calculated by 

adopting the PCM method directly from the data obtained by 

equation 6. The energy values of CUA and GAT affected by 

the hydration were studied by comparing the energetic features 

of the isolated sequences and their hydrated model.

Results and discussion
Solvent effects on multinuclear  
NMR parameters
The theoretical values of σ

iso
, ∆σ, and η of oxygen, nitrogen, 

and phosphorus atoms of GAT sequence in different solvent 

media are shown in Tables 1 and 2.

For prorogated nitrogen atoms such as N
1
 the minimum 

fluctuations in asymmetry parameter were observed. It was 

shown that all solvents had no significant effect on the varia-

tion of charge density of proton-donor atoms or among all 

atoms of GAT involved in the hydrogen-bonding network. 

The highest values of asymmetry parameter were observed 

in different solvents. For GAT sequence the maximum and 

minimum values of δ
iso

 for N
11

, N
32

, and N
47

 were observed 

in water and acetone, respectively.

Temperature and solvent effects  
on thermochemical functions
There have been numerous reports on the analysis of ther-

mochemical parameters of the isolated uracil and its hydrated 

model.28–30 However, there are no experimental data on the rel-

ative energies or enthalpies of the above model systems.31

Table 2 Relative thermochemical parameters of GAT obtained in different solvent media at three different temperatures

Sequence Nucleotide Solvent Temperature (K) Hartree–Fock method

ΔE kcal/mol ΔH kcal/mol ΔG kcal/mol ΔS kcal/mol

GAT A Ethanol 300 -554552.107 -554551.5142 -448124694.9 0.107548
310 -507587.133 -507586.5403 -507618.3049 0.10654
313 -554550.084 -554549.4905 -554584.5201 0.117492

GAT A Methanol 300 -554457.069 -554456.4768 -554488.8332 0.108524
310 -554111.044 -554110.4514 -554142.0761 0.106072
313 -554040.454 -554039.8607 -554075.0422 0.118

GAT A DMSO 300 -554521.927 -554521.3346 -554555.1085 0.11328
310 -554512.949 -554512.3563 -554547.1041 0.116548
313 -554387.959 -554387.3671 -554421.1931 0.113455

GAT A Water 300 -554567.905 -554567.3121 -554600.4937 0.111293
310 -554560.701 -554560.1091 -554594.8663 0.116579
313 -554567.69 -554567.0975 -554600.7742 0.112953

Abbreviation: DSMO, dimethyl sulfoxide.
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Hydration models of CUA and GAT 
sequences
Computing the free energy solvation is essential in rational 

drug design for pharmokinetic and pharmodynamic  studies. 

Some recent research has been devoted to modeling the first 

hydration shell of nucleic acid base using electronic struc-

ture methods.32,33 Also, based on the reviewing literature the 

uracil-water interaction has been explored by means of the 

natural bond orbital analysis that provides supplementary 

information of the relative stability ordering.31

In two CUA, nH
2
O and GAT, nH

2
O local minima structures, 

water molecules are bonded to the uracil of CUA as well as to 

the adenine of GAT by several hydrogen bonds. The oxygen 

and hydrogen atoms of water that are involved in forming the 

hydrogen bonds are in the same plane of uracil and adenine, 

while the free water hydrogen atoms are outside the plane.

Two different approaches were compared in this research 

by considering solvent effects on Gibbs solvation energies 

and finding the most proper hydrated model (Table 3). 

According to the hydrated models of CUA, nH
2
O and GAT, 

nH
2
O, the most negative energy values were obtained con-

sidering quantized number of water molecules (n 4, 6, 8) 

rather than the PCM model, which assumes the solvent as 

a continuum medium. A notable result is that these energy 

values (E
CUA, nH2O

 and E
GAT, nH2O

) led to more negative values 

through adding water molecules from n = 4 up to n = 8. In 

the case of CUA, nH
2
O and of GAT, nH

2
O, the most negative 

energy value, referred to as the most probable model, was 

observed with four water molecules.

Therefore, based on reported results, the authors conclude 

that hydration of CUA codon as well as GAT codon tends to 

yield stabilization energies for a more negative nonhydrated 

complex.

Solvent effects on the relative structural 
stabilities of hot spots
Analysis of the total energy values of a biological system is 

the first critically important step for evaluation of a wide range 

of structural electronic properties. It is now well accepted that 

the solvent plays a key role in the stabilization of biomolecular 

systems in general.19

Based on the energy calculations for CUA and GAT, 

the more negative energy value and the higher stability 

were found for CUA rather than GAT. Here we can see the 

lowest stability for GAT in DNA. According to this fact it 

is logical to expect mutation to occur more in GAT than 

in CUA sequence involved in RNA. This observation is in 

accordance with the common biological fact that the majority 

of mutations generally occur in DNA.

According to the relative energy values (∆E
relative

) in the 

solvents with a variety of polarities, it seems that the stabil-

ity of all three systems was influenced by the polarity of the 

solvent. Hence, the lowest ∆E
relative

 value was found in the 

lowest dielectric constant and the highest value was observed 

in water, with the highest dielectric constant and with high 

polarity (Figure 2). Also, there are two extremum regions 

in the graph of energy values of GAT versus dielectric con-

stants of different solvent media (ε = 24.55 and ε = 46.8). In 

other words, the lowest point indicates the most stable GAT 

was found in ethanol, with the maximum region belonging 

Table 3 Hydration Gibbs free energies and energy values of CUA and GAT obtained in different solvent media (kcal/mol)

Water  
molecules (n)

ΔGhydration
EPCM EnH2O EnH2O, Sequence

CUA GAT CUA GAT CUA GAT CUA GAT
N = 4 1168.373927 6644.319191 -4311.189208 -4233.762599 -374.7005476 -374.70054 -5104.862587 -4503.38125
N = 6 943.4086939 944.239841 -4311.189208 -4233.762599 -524.6337667 -524.63376 -4729.964135 -4653.36868
N = 8 1243.306565 1244.139132 -4311.189208 -4233.762599 -674.5670701 -674.56707 -4879.928703 -4803.334661

Abbreviation: PCM, polarized continuum model.

Figure 2 Relative energies (Erelatives) of GAT sequence versus dielectric constant (ε) 
(A) and relative energies (Erelatives) of GAT sequence versus Ln (1/ε) (B) in different 
solvent media.
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to DMSO. This fact is attributed to the solvent-induced effect 

on the stability of GAT systems.

Finally, it is realized that relative energies (∆E) of GAT 

in solution state were smaller and the structures were more 

stable than with the gas phase system, which was due to easier 

interactions in solution relative to the gas phase.

Conclusion
An improved understanding of the nature of the biological inter-

actions causing the shift in NMR or thermochemical parameters 

may hold the key to finding the most suitable condition for the 

occurrence of various biological phenomena – specifically, 

mutation. This issue is inherently intriguing due to the rela-

tively large number of atoms and to the complex nature of the 

interactions involved in the quantum hot spot-DNA system that 

require ab initio electronic structure methods. However, with 

the progress of computational techniques, the domain of appli-

cation of molecular simulations is constantly expanding.

It seems likely that NMR chemical shielding tensors may 

play an even more important role in structural determination. 

It has been found that hydrogen bonding is the most impor-

tant factor for deshielding of the electronic charge density 

around noticed nuclei. A dipole in the molecule will induce 

a dipole in the medium, and the electric field applied by the 

solvent dipole will in turn interact with the molecular dipole, 

leading to net stabilization.

Based on the energy calculation of GAT, it was observed 

that the relative energies (∆E) of GAT in solution were 

smaller than in the gas phase, which is due to interactions in 

solution that were larger than in the gas phase. This observa-

tion is in accordance with the common biological fact that 

the majority of mutations generally occur in DNA.

Furthermore, considering the hot spots of CUA and GAT 

sequences, a structure with four water molecules around 

uracil and adenine segments is slightly favored. It is notable 

that hydration of CUA codon as well as GAT codon tends to 

yield the stabilization energies of more negative nonhydrated 

complex. Therefore, it seems likely that in the future it may 

be possible to directly incorporate quantum chemical results 

into biological structure refinement.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Dong M, Nio Y, Yamasawa K, Toga T, Yue L, Harada T. p53 altera-

tion is not an independent prognostic indicator, but affects the efficacy 
of adjuvant chemotherapy in human pancreatic cancer. J Surg Oncol. 
2003;82:111–120.

 2. Irani S, Monajjemi M, Honarparvar B, Atyabi SM,  Sadeghizadeh M. 
Investigation of solvent effect and NMR shielding tensors of p53 
tumor-suppressor gene in drug design. Int J Nanomedicine. 2011;6: 
213–218.

 3. Riahi S, Ganjali MR, Bagheri M. Theoretical investigation of interac-
tion between Gatifloxacin and DNA: implications for anticancer drug 
design. Mat Sci Engineer C. 2009;29:1808–1813.

 4. Fei P, Bernhard EJ, El-Deiry WS. Tissue-specific induction of p53 
targets in vivo. Cancer Res. 2002;62:7316–7327.

 5. Sherr CJ. Principles of tumor suppression. Cell. 2004;116:235–246.
 6. Messias AC, Sattler M. Structural basis of single-stranded RNA 

 recognition. Acc Chem Res. 2004;37:279–287.
 7. Brameld K, Dasgupta S, Goddard WA. Distance dependent hydro-

gen bond potentials for nucleic acid base pairs from ab initio quan-
tum mechanical calculations (LMP2/cc-pVTZ). J Phys Chem B. 
1997;101:4851–4859.

 8. Kalid O, Ben-Tal N. Study of MDM2 binding to p53-analogues: 
affinity, helicity, and applicability to drug design. J Chem Inf Model. 
2009;49:865–876.

 9. Shih CT, Roche S, Romer RA. Point-mutation effects on charge-
transport properties of the tumor-suppressor gene p53. Phys Rev Lett. 
2008;100:018105.

 10. Kurinovich MA, Lee JK. The acidity of uracil from the gas phase to 
solution: the coalescence of the N1 and N3 sites and implications for 
biological glycosylation. J Am Chem Soc. 2000;122:6258–6262.

 11. Hocquet A, Ghomi M. The peculiar role of cytosine in nucleoside 
conformational behaviour: hydrogen bond donor capacity of nucleic 
bases. Phys Chem Chem Phys. 2000;2:5351.

 12. Podolyan Y, Gorb L, Leszczynski J. Protonation of nucleic acid bases: 
a comprehensive post-Hartree-Fock study of the energetics and proton 
affinities. J Phys Chem A. 2000;104:7346–7352.

 13. Miller TM, Aronold ST, Viggiano AA, Stevens Miller AE. Acidity of 
a nucleobase: uracil. J Phys Chem A. 2004;108:3439–3446.

 14. Chandra AK, Nguyen MT, Huyskens TZ. Theoretical study of the 
interaction between thymine and water: protonation and depro-
tonation enthalpies and comparison with uracil. J Phys Chem A. 
1998;102:6010–6016.

 15. Beveridge DL, McConnell KJ. Nucleic acids: theory and computer 
simulation, Y2K. Curr Opin Struct Biol. 2000;10:182–196.

 16. Yanson IK, Teplitsky AB, Sukhodub LF. Experimental studies of 
molecular interactions between nitrogen bases of nucleic acids. 
 Biopolymers. 1979;18:1149–1170.

 17. Cornell WD, Cieplak P, Bayly CI, et al. A second generation force field 
for the simulation of proteins, nucleic acids, and organic molecules. 
J Am Chem Soc. 1995;117:5179–5197.

 18. Kupka T, Kolaski M, Pasterna G, Ruud K. Towards more reliable 
prediction of formaldehyde multinuclear NMR parameters and 
harmonic vibrations in the gas phase and solution. J Mol Struct. 
1999;467:63–78.

 19. Auffinger P, Hashem Y. Nucleic acid solvation: from outside to insight. 
Curr Opin Struct Biol. 2007;17:325–333.

 20. Xu L, Ding Y, Teng Q. Theoretical research on effects of substituents 
and the solvent on quadruple hydrogen bonded complexes. Bull Chem 
Soc Ethiop. 2007;21:419–426.

 21. Leppert J, Heise B, Ramachandran R. 15N chemical shift tensor mag-
nitude and orientation in the molecular frame of uracil determined via 
MAS NMR. J Magn Reson. 2000;145:307–314.

 22. Dios AC, Oldfield E. Recent progress in understanding chemical shifts. 
Solid State Nucl Magn Reson. 1996;6:101–125.

 23. Monajjemi M, Haddadi A, Honarparvar B, Irani S, Mollaamin F, 
Tahan A. NMR and solvent effect study on the thymine-adenine- thymine 
sequence: a theoretical investigation on the chemical behavior of nucle-
otides in solution. Egypt J Biochem Mol Biol. 2008;26:83–100.

 24. Pecul M, Sadlej J. 15N chemical shift tensor magnitude and orientation 
in the molecular frame of uracil determined via MAS NMR. J Chem 
Phys. 1998;234:111–119.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

2068

Irani et al

www.dovepress.com
www.dovepress.com
www.dovepress.com


International Journal of Nanomedicine

Publish your work in this journal

Submit your manuscript here: http://www.dovepress.com/international-journal-of-nanomedicine-journal

The International Journal of Nanomedicine is an international, peer-
reviewed journal focusing on the application of nanotechnology 
in diagnostics, therapeutics, and drug delivery systems throughout 
the biomedical field. This journal is indexed on PubMed Central, 
MedLine, CAS, SciSearch®, Current Contents®/Clinical Medicine, 

Journal Citation Reports/Science Edition, EMBase, Scopus and the 
Elsevier Bibliographic databases. The manuscript management system 
is completely online and includes a very quick and fair peer-review 
system, which is all easy to use. Visit http://www.dovepress.com/ 
testimonials.php to read real quotes from published authors.

International Journal of Nanomedicine 2011:6

 25. Diez NM, Senent ML, Garcia B. Ab initio study of solvent effects 
on the acetohydroxamic acid deprotonation processes. J Chem Phys. 
2006;324:350–358.

 26. Autschbach J. The calculation of NMR parameters in transition metal 
complexes. In: Kaltsoyannis N, McGrady JE, editors. Principles and 
Applications of Density Functional Theory in Inorganic Chemistry I, 
vol 112, Structure and Bonding. Heidelberg, Germany: Springer Verlag; 
2004:1–48.

 27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA. 
Gaussian 98, Revision A.7, Gaussian, Inc. Pittsburgh, PA; 1998.

 28. Gaigeot MP, Sprik M. Ab initio molecular dynamics computa-
tion of the infrared spectrum of aqueous uracil. J Phys Chem B. 
2003;107:10344.

 29. Nguyen MT, Zhang RB, Nam PC, Ceulemans A. Singlet-triplet energy 
gaps of gas phase RNA and DNA bases: a quantum chemical study. 
J Phys Chem A. 2004;108:6554–6561.

 30. Zhang RB, Ceulemans A, Nguyen MT. A theoretical study of ura-
cil and its tautomers in their lowest-lying triplet state. Mol Phys. 
2005;103:983–994.

 31. Zhang R, Huyskensd TZ, Ceulemeans A, Nguyen MT. Interaction of 
triplet uracil and thymine with water. J Chem Phys. 2005;316:35–44.

 32. Shishkin OV, Gorb L, Leszczynski J. Modeling of the first hydration 
shell of uracil and thymine. Int J Mol Sci. 2000;1:17.

 33. Kim S, Wheeler SE, Schaefer HF. Microsolvation effects on the electron 
capturing ability of thymine: thymine-water complexes. J Chem Phys. 
2006;124:204–310.

submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

Dovepress

2069

Structural and thermochemical properties of p53 tumor-suppressor gene

http://www.dovepress.com/international-journal-of-nanomedicine-journal
http://www.dovepress.com/testimonials.php
http://www.dovepress.com/testimonials.php
www.dovepress.com
www.dovepress.com
www.dovepress.com
www.dovepress.com

	Publication Info 2: 
	Nimber of times reviewed: 


