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ABSTRACT: The non-oxidative catalytic dehydrogenation
of light alkanes via C−H activation is a highly endothermic
process that generally requires high temperatures and/or a
sacrificial hydrogen acceptor to overcome unfavorable
thermodynamics. This is complicated by alkanes being such
poor ligands, meaning that binding at metal centers prior to
C−H activation is disfavored. We demonstrate that by biasing the pre-equilibrium of alkane binding, by using solid-state
molecular organometallic chemistry (SMOM-chem), well-defined isobutane and cyclohexane σ-complexes, [Rh-
(Cy2PCH2CH2PCy2)(η:η-(H3C)CH(CH3)2][BAr

F
4] and [Rh(Cy2PCH2CH2PCy2)(η:η-C6H12)][BAr

F
4] can be prepared by

simple hydrogenation in a solid/gas single-crystal to single-crystal transformation of precursor alkene complexes. Solid-gas H/D
exchange with D2 occurs at all C−H bonds in both alkane complexes, pointing to a variety of low energy fluxional processes that
occur for the bound alkane ligands in the solid-state. These are probed by variable temperature solid-state nuclear magnetic
resonance experiments and periodic density functional theory (DFT) calculations. These alkane σ-complexes undergo
spontaneous acceptorless dehydrogenation at 298 K to reform the corresponding isobutene and cyclohexadiene complexes, by
simple application of vacuum or Ar-flow to remove H2. These processes can be followed temporally, and modeled using classical
chemical, or Johnson−Mehl−Avrami−Kologoromov, kinetics. When per-deuteration is coupled with dehydrogenation of
cyclohexane to cyclohexadiene, this allows for two successive KIEs to be determined [kH/kD = 3.6(5) and 10.8(6)], showing
that the rate-determining steps involve C−H activation. Periodic DFT calculations predict overall barriers of 20.6 and 24.4 kcal/
mol for the two dehydrogenation steps, in good agreement with the values determined experimentally. The calculations also
identify significant C−H bond elongation in both rate-limiting transition states and suggest that the large kH/kD for the second
dehydrogenation results from a pre-equilibrium involving C−H oxidative cleavage and a subsequent rate-limiting β-H transfer
step.

■ INTRODUCTION

The “on-purpose” non-oxidative catalytic dehydrogenation of
abundant, unreactive and low value light alkanes to produce
alkenes, which are key chemical intermediates, is of significant
industrial importance,1,2 and is amplified by the recent
movement in feedstocks from naphtha to shale gas.
Dehydrogenation is an energy intensive process, due to the
high positive enthalpy of reaction (e.g., isobutane, cyclohexane:
ΔHr° ∼ 118 kJmol−1, Scheme 1A),3 and high temperatures are
thus required to drive the reaction (commonly 550−750 °C
using a heterogeneous catalyst), which present challenges for
catalyst decomposition, coking and process selectivity.4 In
molecular homogeneous dehydrogenation systems a sacrificial
alkene H2-acceptor is commonly used at operating temper-
atures of 120−200 °C,5−7 or lower with more exotic
acceptors.8 In the absence of an acceptor dehydrogenation
can be driven photolytically,9−11 or by continuous removal of
H2 at elevated temperatures (∼150 °C) to bias the
thermodynamics.12−14

Key, but undetected, first-formed intermediates in both
homogeneously and heterogeneously catalyzed alkane dehy-

drogenation are σ-alkane complexes, in which the C−H bond
of an alkane interacts with the metal center, in a 3-center 2-
electron σ-interaction, prior to C−H oxidative bond cleavage
and β-hydrogen elimination (Scheme 1B).15−18 As C−H
bonds in alkanes are strong, non-polar and relatively sterically
crowded, alkanes are very poor ligands (M···H−C bond
enthalpies less than 60 kJ mol−1), meaning that such complexes
have generally only been observed using low temperature in
situ (−80 °C or lower) nuclear magnetic resonance
(NMR)19−22 or in situ diffraction techniques,23 or on very
short timescales (μs to s) using time resolved infrared
experiments (TRIR).24−26 An additional challenge for catalytic
alkane dehydrogenation is thus one of pre-equilibrium prior to
C−H activation, as solvent or other ligands will generally
outcompete any weak σ-interaction from the alkane under
normal conditions.21,27−31 However, C−H activation can be a
rather facile process once a σ-complex is formed.7,26,32−34

Combined, all these factors make observing intermolecular
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dehydrogenation processes directly from σ-alkane complexes
very challenging, and many experimental contributions have
thus focused on the overall thermodynamics and catalytic
efficiencies of such processes, as well as kinetic studies of
catalytic systems, including isotopic substitution.5,35 Such work
has also been supported by numerous computational
studies.25,36,37

We have recently reported that σ-alkane complexes can be
prepared using so-called solid-state molecular organometallic
(SMOM) chemistry techniques. By operating under single-
crystal to single-crystal conditions (SC-SC),38 addition of H2
to precursor norbornadiene complexes, e.g., [Rh-
(R2PCH2CH2PR2)(η

2η2-C7H8)][BAr
F
4] (R = iPr, Cy, Cyp;

ArF = 3,5-(CF3)2C6H3) generates the corresponding σ-alkane
(i.e., norbornane) complexes directly in the solid-state. Some
of these show remarkable stability at room temperature, which
we postulate is due to the, albeit non-porous, octahedral
nanoreactor39 environment provided by the [BArF4]

− anions
(Scheme 2, R = Cy, [1-NBA][BArF4]).

40−43

We now report that by using this methodology the synthesis
of σ-complexes of the light alkanes cyclohexane and isobutane
can be achieved at Rh(I) centers, which allow for their detailed
characterization by single-crystal X-ray diffraction, solid-state
NMR (SSNMR) spectroscopy and periodic density functional
theory (DFT) calculations. These complexes are shown to
undergo rapid H/D exchange at all the C−H bonds of the
bound alkane on addition of D2, and a remarkable acceptorless
dehydrogenation at 25 °C by simple removal of H2 under flow
or vacuum, for which significant kinetic isotope effects can be
directly measured for the dehydrogenation of cyclohexane. The
products of dehydrogenation, cyclohexene and isobutene, are
key intermediates in the chemical manufacturing chain (nylon
production and gasoline additives/butyl rubber respec-
tively).44,45 In particular, isobutene is currently produced
commercially using a high temperature non-oxidative dehy-
drogenation of isobutane (e.g., the Oleflex process: heteroge-
neous Pt/Sn catalyst at 525−700 °C). Our results provide
definitive structural and reactivity data for the key
intermediates in both heterogeneous and homogeneous
catalytic dehydrogenation processes. They also demonstrate
the potential for SMOM systems to mediate low temperature
dehydrogenation by biasing both the pre-equilibrium toward σ-

complexes, and the overall dehydrogenation by straightforward
removal of H2.

■ RESULTS AND DISCUSSION
Synthesis and Characterization of Isobutane and

Cyclohexane σ-Alkane Complexes. Alkene precursors to
the σ -a lkane complexes , namely isobutene [Rh-
(Cy2PCH2CH2PCy2)(C4H8)][BAr

F
4] [1-C4H8][BAr

F
4] and

cyclohexadiene [Rh(Cy2PCH2CH2PCy2)(η
4-C6H8)][BAr

F
4]

[1-C6H8][BAr
F
4] were prepared in good yield as crystalline

materials (Figure 1A).46 While [1-C6H8][BAr
F
4] is prepared

using traditional solution routes, [1-C4H8][BAr
F
4] is best

accessed via SC-SC solid/gas reactivity by addition of gaseous
isobutene to [1-NBA][BArF4] and displacement of NBA,47

followed by recrystallization from a solution saturated with
isobutene. Single crystal X-ray diffraction, low temperature
solution and SSNMR spectroscopy confirm the formulations as
alkene complexes.46 The solid-state structure of the isobutene
complex [1-C4H8][BAr

F
4] has a bound alkene fragment that

also has an additional supporting agostic Rh···H3C interaction,
and so features an η2π:η

2
C−H-binding mode, similar to the

recently reported propene analogue.47 The isobutene is
disordered over two superimposed positions that are related
by a non-crystallographic apparent C2 axis, which means that
discussion of the detailed bond metrics is not appropriate. The
cyclohexadiene complex, [1-C6H8][BAr

F
4] adopts the ex-

pected η4 diene binding mode (Figure S95). Both [1-
C4H8][BAr

F
4] and [1-C6H8][BAr

F
4] have extended solid-

state structures in which the organometallic cation is
surrounded in a pseudo-Oh cavity defined by the [BArF4]

−

anions (Figures S93 and S95),46 and Figure 1C shows this for
[1-C4H8][BAr

F
4]. [1-C4H8][BAr

F
4] is a rare example of a

crystallographically characterized isobutene complex.48

Like its propene analogue,47 the isobutene complex [1-
C4H8][BAr

F
4] exhibits fluxional processes at 298 K in both

solution and the solid-state that exchange the methyl and
methylene hydrogens. This symmetry in the cation is
demonstrated by a single environment being observed in the
298 K 31P{1H} NMR solution spectrum [δ 95.3, d, J(RhP) =

Scheme 1. (A) Nonoxidative Dehydrogenation of
Cyclohexane and Isobutane; (B) σ-Alkane Complexes: Pre-
equilibrium, C−H Oxidative Cleavage and
Dehydrogenationa

aL = ligand or solvent.

Scheme 2. SMOM Approach to the Synthesis of Stable σ-
Alkane Complexes in the Solid-State
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179 Hz], while no distinct alkene resonances are observed in
the 13C{1H} NMR (solid-state or solution) or 1H NMR
spectra (solution). We propose a 1,3-shift via an methallyl
hydride intermediate,49 coupled with a further exchange of two
methyl groups by libration. These can be slowed at low
temperature, i.e., 183 K solution, 158 K solid-state. Thus, in
solution two mutually coupled environments are now observed
in the low temperature 31P{1H} NMR spectrum at δ 97.6 [dd,
J(RhP) = 201, J(PP) = 26 Hz], 93.6 [dd, J(RhP) 158, J(PP) =
26 Hz]. The 31P{1H} SSNMR spectrum shows two over-
lapping environments centered at δ 94.8. The solution
13C{1H} NMR spectrum shows two signals due to
the coordinated alkene [δ 111.5, 72.6], and the 1H NMR
spectrum shows a signal that can be assigned to the alkene
groups and an agostic Rh···H3C interaction [δ −0.15],
although the low temperature limit was not reached (Figures
S1−7). The 13C{1H} SSNMR spectrum shows alkene signals
at δ 108.6 and 70.6. The agostic Rh···H3C signal could not be
unambiguously identified, but a resonance at δ 15.7 that is
absent in the 298 K spectrum is consistent with such an
interaction.47 In contrast, [1-C6H8][BAr

F
4] does not show any

fluxional behavior, and its NMR spectra are unremarkable.
Addition of H2 (298 K, 1 bar, 15 min) to single-crystalline

samples of each of the alkene complexes resulted in rapid
hydrogenation of the alkene to form the corresponding σ−
alkane complexes, [1-C4H10][BAr

F
4] and [1-C6H12][BAr

F
4],

via SC-SC transformations, Scheme 3A, in which the Oh
arrangement of [BArF4]

− anions is retained (Figures S94 and
S96). Analysis of the isobutane σ-complex [1-C4H10][BAr

F
4]

by single-crystal X-ray diffraction (R = 9.5%, two independent
molecules in the unit cell) shows the Rh(I)-center has two η2-
Rh···H−C interactions42 from adjacent methyl (C1) and
methine (C2) groups in the alkane [e.g., Rh···C1, 2.362(14);

Rh···C2, 2.442(7) Å for one of the independent molecules in
the unit cell], Figure 2. These distances are similar to those in

[1-NBA][BArF4] that also shows a 1,2-η2:η2-coordination
motif,50 albeit through two methylene groups [2.389(3),
2.400(3) Å].41 This description is also fully supported by
electronic structure analyses (see Supporting Materials). The
C−C distances in the alkane show single bonds [1.516(13)−
1.551(13) Å]. The Rh−P distances in [1-C4H10][BAr

F
4] are

shorter by ∼0.04 Å than in [1-C4H8][BAr
F
4], reflecting the

weaker trans influence of the alkane ligands. A chemically
identical disordered component is related by a small rotation of
the alkane (ca. 25°) around C2 (Figure S94). Hydrogen atoms
were placed in calculated positions in the final refinement.
Addition of H2 is also signaled by a change in geometry around

Figure 1. (A) Synthesis of [1-C4H8][BAr
F
4] and [1-C6H8][BAr

F
4].

(B) Solid-state structure of [1-C4H8][BAr
F
4]. Displacement ellipsoids

shown at the 30% probability level. [BArF4]
− anions and most

hydrogen atoms omitted for clarity. One disordered component
shown. Rh1−P1, 2.2238(9); Rh1−P2, 2.2400(9); Rh1−C1, 2.262(6);
Rh1−C2, 2.136(8); Rh1−C3, 2.368(9); C1−C2, 1.320(12); C2−C3,
1.474(13), 1.513(13). (C) Packing diagram of [1-C4H8][BAr

F
4] (van

der Waals radii) showing the Oh arrangement of [BArF4]
− anions.

Scheme 3. Synthesis and Stability of [1-C4H10][BAr
F
4] and

[1-C6H12][BAr
F
4]

aTime for ∼10% decomposition in the solid-state under 1 atm H2 (by
31P{1H} SSNMR spectroscopy) = 15 and 90 min, respectively.

Figure 2. Solid-state structures of [1-C4H10][BAr
F
4] and [1-

C6H12][BAr
F
4]. Displacement ellipsoids shown at the 30% probability

level. [BArF4]
− anions and most hydrogen atoms omitted for clarity.

Only one disordered component shown. (A) [1-C4H10][BAr
F
4] (one

of the independent cations): Rh1−P1, 2.1830(14); Rh1−P2,
2.1914(14); Rh1−C1, 2.362(14); Rh1−C2, 2.442(7); C1−C2,
1.551(13); C2−C3, 1.528(13); C2−C4, 1.516(13). (B) [1-C6H12]-
[BArF4]: Rh1−P1, 2.191(2); Rh1−C1, 2.62(2); Rh1−C3, 2.53(2);
C1−C2, 1.529(15); C2−C3, 1.531(15).
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the tertiary C-atom (C2) from sp2 in [1-C4H8][BAr
F
4] to sp3

in [1-C4H10][BAr
F
4]: sum of angles around C2 = 360.0° and

335.1°, respectively. The 13C{1H} SSNMR spectrum shows a
featureless alkene region (δ 110−50), while in the 31P{1H}
SSNMR spectrum a major new broad signal is shifted 12 ppm
to lower field compared to the starting alkene complex (δ
106.8). Notably, under these conditions a small amount of
starting material and alkane-loss decomposition product in
which the [BArF4]

− anion is coordinated with the metal center,
[1-BArF4],

41 are also observed (∼10% total). Longer times for
H2 addition (90 min, 298 K) resulted in complete loss of
crystallinity to give [1-BArF4],

51 Scheme 3B, as measured by
31P{1H} SSNMR spectroscopy.
For [1-C6H12][BAr

F
4] the cyclohexane ligand is disordered

over two positions (Figure 2 and Scheme 4A), related by a

crystallographically imposed C2 axis that, when coupled with
the reduction in data quality inherent in SC-SC trans-
formations (R = 10.3%), meant that the C−C distances in
the alkane were necessarily restrained. Nevertheless, the
coordination geometry is fully consistent with a σ-alkane
ligand interacting via two C−H···Rh interactions in a 1,3-
motif.52 The Rh···C distances [2.62(2), 2.53(2) Å] are longer
than in [1-C4H10][BAr

F
4], but similar to those in [1-

pentane][BArF4] [2.514(4), 2.522(5) Å] that also shows a
1,3-coordination mode for the alkane.53 The 31P{1H} and
13C{1H} NMR spectra are consistent with this formulation,
and are similar to [1-C4H10][BAr

F
4]. Notably CC environ-

ments that are observed in the 13C{1H} SSNMR spectrum of
[1-C6H8][BAr

F
4] (96−81 ppm) disappear on addition of H2

(Figures S22 and S25). Despite the longer Rh···C distances,
[1-C6H12][BAr

F
4] is significantly less sensitive to displacement

by H2 than [1-C4H10][BAr
F
4], and after 90 min under H2 only

10% decomposition is observed by 31P{1H} SSNMR (Scheme
3B and Figure S34).51 This may reflect the weak, multiple,
stabilizing dispersive interactions between the surface of
cyclohexane and the proximal [BArF4]

− in the anion-micro-
environment as we have previously commented on for other
alkane-complexes.42

For both [1-C4H10][BAr
F
4] and [1-C6H12][BAr

F
4] addition

of MeCN to the crystalline solids results in liberation of the
free alkane as determined by 1H NMR spectroscopy of the
vacuum transferred volatiles. [1-C4H10][BAr

F
4] or [1-C6H12]-

[BArF4] are also not stable in CD2Cl2 solution, and
zwitterionic [1-BArF4], [1-(CH2Cl2)n][BAr

F
4]
54 and free

alkane are observed by NMR spectroscopy upon dissolving
in cold (183 K) CD2Cl2. Upon warming, these solutions

decompose to give a mixture of products, as identified by
electrospray ionization mass spectroscopy (ESI-MS), some of
which come from C−Cl activation of the solvent.55

The alkane ligands in both the σ-complexes undergo motion
in the solid-state, as we have noted previously for the
norbornane ligand in [1-NBA][BArF4] and related sys-
tems.42,53,56 In the 1H/13C FSLG HETCOR SSNMR59

spectrum of [1-C6H12][BAr
F
4] at 158 K a distinct correlation

is observed between δ(13C) 19.7 and two signals in the 1H
projection at δ −1.6/1.2, consistent with diastereotopic
methylene groups in cyclohexane (i.e., axial and equatorial,
Figures S29−S32). At 198 K these signals disappear,
suggesting the onset of a fluxional process. A 158 K 13C-
NQS experiment, which probes the motion of (CHn) groups in
a frequency range similar to, or greater than, the 1H−13C
dipolar coupling,57 shows two signals at δ 21.4 and 19.7 that
are assigned to the cyclohexane ligand. At 198 K only one
signal is observed at δ 21.4 (Figures S27 and S28). These
observations, combined with the disorder in the single-crystal
X-ray structure, lead us to propose a combination of two low
energy fluxional processes is occurring: a 1,3,5-“ring walk”,
which operates at 158 K, retains the fidelity of the
diastereotopic methylene groups and does not exchange 1,3,5
and 2,4,6 positions; and a higher energy chair−chair “ring flip”
that makes all the carbon positions equivalent (Scheme 4B).
This latter fluxional process mirrors the observed disorder in
the solid-state structure. Low energy fluxional processes in the
solid-state have been reported for other σ-alkane, or related,
complexes.42,53,56 While these two processes make all the
carbon environments equivalent on the NMR time scale, they
do not exchange all the axial and equatorial C−H groups in the
ring, and this model for the fluxional process leads to six C−H
bonds that contact the metal center (highlighted in red,
Scheme 5) and another set of six C−H bonds of the

cyclohexane ligand that are always remote from the metal
(blue). SSNMR calculations (periodic-DFT, GIPAW method)
on the nearest-neighbor ion-pair derived from the optimized
structure of [1-C6H12][BAr

F
4] reveal significant high field

shifts for the C4−Hax and C6−Hax hydrogens that interact
directly with the metal center,20,21,41,56 with smaller high field
shifts computed for the remote C1−Hax and C3−Hax positions.
The latter are likely due to ring current effects from the
nearby58 anion aryl groups (Figure S33).41 The computed
average chemical shift for the Hax and Heq hydrogens at the C2,
C4 and C6 positions is −4.3 and +0.8 ppm, respectively, in
reasonable agreement with the values observed at 158 K.
For the isobutane ligand in [1-C4H10][BAr

F
4] two environ-

ments are observed in the 203 K 13C-NQS spectrum in the

Scheme 4. (A) Crystallographically Imposed Cyclohexane
Disorder in [1-C6H12][BAr

F
4]; (B) Proposed Fluxional

Process in the Solid-State

Scheme 5. Computed Chemical Shifts for [1-C6H12][BAr
F
4]

and [1-C4H10][BAr
F
4]
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aliphatic region, at δ ∼21 and ∼15. At 158 K these signals
disappear, suggesting an arrested low energy motion for the
isobutane ligand in the solid-state. A 1H/13C FSLG HETCOR
SSNMR experiment at 158 K shows a correlation between the
signal at δ ∼ 21 (13C) and δ −3.4 (1H projection), similar to
[1-C6H12][BAr

F
4], signaling a Rh···H−C interaction (Figures

S11−S13). However, these experimental data do not map
directly onto computed chemical shift averages for [1-
C4H10][BAr

F
4] (Scheme 5). Given our recent success in

calibrating computational and experimentally determined
chemical shifts in σ-alkane complexes in the solid-state,53,56

this discrepancy may point to a fluxional/equilibrium process
that is occurring at low temperature that remains to be
determined.
Short-lived, cyclic and branched σ-alkane complexes have

been characterized in solution at low temperature (173 K or
lower) by in situ NMR spectroscopy, e.g., (η5-C5H5)Re-
( C O ) 2 ( c y c l o h e x a n e )

6 0 a n d ( η 5 - C 5 H 5 )M n -
(CO)2(isopentane),

61 or TRIR experiments, (η5-C5H5)Rh-
(CO)(cycloalkane).62 In such species the alkanes bind with the
metal centers through M···H−C interactions in an ensemble of
interconverting isomers; and similar to that suggested to occur
for cyclohexane here, these interconvert by chain or ring
walking, or axial/equatorial isomerization.
H/D Exchange in σ-Alkane Complexes. The isolation of

[1-C4H10][BAr
F
4] and [1-C6H12][BAr

F
4] in the solid-state in

synthetically meaningful amounts (up to 0.15 g) offers an
opportunity to study C−H activation processes in σ-alkane
complexes in the absence of competing pre-equilibria. Catalytic
H/D exchange in alkanes using D2 probes such processes by
reversibly intercepting the corresponding metal−alkyl hydride
intermediate that arises from C−H bond cleavage (Scheme
1B).30 We have recently shown that [1-NBA][BArF4]
undergoes a remarkably selective exo-H/D exchange at the
bound alkane on addition of D2 in a solid/gas SC-SC
reaction.56 Addition of D2 (298 K, 1 bar) to either [1-
C4H10][BAr

F
4] or [1-C6H12][BAr

F
4] results in relatively rapid

H/D exchange at all the C−H bonds of the bound alkane. This
is best shown for crystalline [1-C6H12][BAr

F
4], where 3

successive additions of D2 results in perdeuteration of the
cyclohexane (optimized, 90 min total, 10% decomposition).
This is conveniently measured by liberating the alkane on
addition of MeCN to the crystalline solid (Scheme 6). Gas
chromatography−mass spectrometry (GC−MS) analysis
shows the formation of only one isotopologue, C6D12 (m/z
= 96.17), confirmed by the 13C{1H} NMR spectrum, which
shows a quintet [δ 25.3; J(CD) = 19 Hz], and the 2H NMR
spectrum that shows a single environment for cyclohexane at δ
1.37. Shorter exposure times (3 × 5 min) resulted in a mixture
of isotopologues for which D-incorporation increases monot-
onically, as measured by GC−MS (Figure S48). Interestingly,
despite the shorter reaction times, the isotopologue distribu-
tion is dominated by 6-fold H/D exchange (i.e., C6H6D6) and
above. As the perdeuteration observed indicates all 12 C−H
bonds are involved in H/D exchange an additional fluxional
process that exchanges the faces of the cyclohexane under
conditions of exogenous D2 is necessary that, in combination
with the 1,3,5-ring walk/chair−chair flip already described
(Scheme 4), allows the metal center to access to all the
methylene C−H positions. The distribution of isotopologues
at short exposure times suggests this face exchange process is
likely higher in energy than the other two process (1,3,5-

rotation and chair−chair flip). These processes have been
defined computationally, see later.
For [1-C4H10][BAr

F
4] the limited stability of the isobutane

σ-alkane complex under H2 (D2) meant that H/D exchange
experiments started from the isobutene complex for exper-
imental expediency. This formed a mixture of isobutane
isotopologues, C4HxD(10−x) (x = 0−4, Figure S41), after 90
min, as measured by GC−MS of the volatiles after vacuum
transfer into CD2Cl2. This distribution of isotopologues also
increases monotonically. Beyond this time, complete decom-
position by loss of alkane occurs to form [1-BArF4]. The
13C{1H} NMR spectrum of volatiles liberated on addition of
MeCN shows that H/D incorporation at both methine (C−H)
and methyl (CH3) groups under the timescale of the
experiment, the former signaled by the observation of an
apparent 1:1:1 triplet [δ 22.5; J(CD) = 20 Hz, Scheme 6].
Initial deuteration of isobutene places D in this position.63 The
methyl groups present a more complicated set of overlapping
resonances that have been simulated with CD3/CD2H/CDH2
in a 62:30:8 ratio. Two environments in a relative 1:9 ratio [δ
1.86, 0.85] are observed in the 2H NMR spectrum, and are
assigned to the d-methine and d-methyl, respectively (Figure
S39). Again, there must be a fluxional process in the solid-state
that allows for all the C−H bonds of the methyl groups to
undergo H/D exchange; however, decomposition of the alkane
complex under D2 (H2) atmosphere makes studying this less
straightforward than for its cyclohexane analog. Nevertheless,
the rotational disorder observed in the solid-state structure of
[1-C4H10][BAr

F
4], coupled with the mobility suggested by

NQS experiments and deuteration levels approaching C4D10,
indicates that all methyl groups can contact the Rh-center.
For both cyclohexane and isobutane σ-alkane complexes

stepwise H/D exchange with D2 could occur either by
oxidative addition of D2 followed by σ-CAM64 with a Rh···
H−C bond, or via oxidative cleavage of an alkane C−H bond
to form Rh−H species that are intercepted by D2. The

Scheme 6. H/D Exchange in the σ-Alkane Complexes, and
Associated 13C{1H} NMR (and Simulated) Spectra of the
Liberated Alkanea

aAsterisk indicates pentane impurity.
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alternative pairwise exchange would involve dehydrogenation
to form an alkene that is then deuterated, as we and others
have commented upon previously.21,56 While the monotonic
increase in partially deuterated isotopologues for both alkanes
suggests stepwise exchange, as we show next alkane
dehydrogenation is a remarkably facile process, and thus we
cannot rule out either mechanismor if both operate
contemporaneously. Computational studies are underway to
probe the precise mechanism of H/D exchange and will be
reported in a future contribution.
Acceptorless Dehydrogenation of σ-Alkane Com-

plexes. In the absence of H2 or D2, acceptorless dehydrogen-
ation of the bound σ-alkane ligand occurs in the solid-state to
reform the corresponding alkene complex. Although for both
free isobutane and cyclohexane this is an endothermic
processand this remains the case when these are bound to
a metal center (see Computational Section)removal of the
generated H2 results in a remarkably fast (minutes to hours)
dehydrogenation in the solid-state to reform the alkene
complexes (Figure 3). This process is so facile that isolated
[1-C4H10][BAr

F
4] and [1-C6H12][BAr

F
4], and their deuter-

ated analogues, show measurable dehydrogenation under an Ar
atmosphere after only 5 min at 298 K. Isolation of pure [1-
C4H10][BAr

F
4], especially, is finely balanced: under an H2 (or

D2) atmosphere complete alkane loss occurs over 90 min to
form [1-BArF4] while under Ar, or mild vacuum (10−2 mbar),
dehydrogenation occurs on a comparable time scale. [1-
C6H12][BAr

F
4] is more robust to alkane loss, meaning the

dehydrogenation process is more reliably followed.
The dehydrogenation of [1-C6H12][BAr

F
4] can be moni-

tored by solid-state and solution NMR spectroscopies by
running multiple solid-state experiments in which the time of
reaction is varied before dissolving in CD2Cl2 at 183 K by
vacuum transfer of solvent onto the sample. For consistency,
finely ground microcrystalline powder was used (10 mg), a
dynamic vacuum was applied (10−2 mbar) to remove H2 and
low temperature (183 K, CD2Cl2, internal standard)
quantitative 31P{1H} NMR spectroscopy of the dissolved
samples was deployed to track progress. Under these low
temperature measurement conditions the alkane complexes
form the solvent adducts, [1-(CH2Cl2)n][BAr

F
4], alongside

[1-BArF4], both of which act as a proxy for the σ-alkane
complexes.47 For [1-C6H12][BAr

F
4] these experiments show

complete dehydrogenation to the diene [1-C6H8][BAr
F
4] in

16 h, which was fully characterized by solution NMR
spectroscopy.46 The dehydrogenation can also be tracked
using in situ 31P{1H} and 13C{1H} SSNMR spectroscopy
(Figures S67 and S68), but as long-range order is lost in the
process, likely due to crystal cracking,66 attempts to follow this
by SC-SC X-ray diffraction experiments were not successful.
The material does retain microcrystallinity, however,67,68 as
demonstrated by a powder X-ray diffraction experiment on the
dehydrogenated sample.
The resulting temporal profile shows that after 15 min the

principal component (∼95%) is a new complex that can be
fully characterized using low temperature solution NMR
spectroscopy (183 K) to be the result of a single dehydrogen-
ation, i.e., the cyclohexene complex [1-C6H10][BAr

F
4].

Addition of CO(g) in a solid/gas reaction after 15 min
displaces the cyclohexene allowing for its full characterization
by NMR spectroscopy and GC−MS (Figures S79−S82). By
analogy with other mono-alkene complexes, we propose the
cyclohexene in [1-C6H10][BAr

F
4] adopts an η2π:η

2
C−H binding

mode in which the π-interaction is supported by an agostic
interaction from an adjacent methylene group. This structure is
also located computationally (see Computational Section).
Notable data include two mutually coupled environments in
the 31P{1H} spectrum [δ 98.0, J(RhP) = 207 Hz; δ 91.5,
J(RhP) = 159 Hz], while in the 1H NMR spectrum a single
alkene environment is observed (2H, δ 5.23, confirmed by
heteronuclear single quantum coherence) and a resonance in
the high field region of the 1H NMR spectrum characteristic of
a Rh···H−C agostic interaction (2H, δ −1.01). We propose a
low energy libration of the alkene to account for this Cs
symmetry observed in solution that exchanges Ca and Cb

(Figure 3 and S69), as has been proposed for the closely
associated [1-(cis-2-butene)][BArF4] analogue where the
calculated barrier to libration is 3 kcal mol−1.47 Warming
solutions resulted in decomposition to [1-C6H8][BAr

F
4], the

benzene complex [1-C6H6][BAr
F
4] (independently synthe-

sized) and [1-BArF4].

Figure 3. (A) Dehydrogenation of crystalline [1-C6H12][BAr
F
4] or in situ formed [1-C6D12][BAr

F
4] under Ar flow or vacuum (10−2 mbar). (B)

Temporal plot of the solid-state dehydrogenation under vacuum, as measured by quantitative 31P{1H} NMR spectroscopy of dissolved sample
(CD2Cl2, 183 K). Signals due to [1-(CH2Cl2)n][BAr

F
4] are taken as a proxy for [1-C6H12][BAr

F
4] (not shown). Each time point is an individual

experiment, calibrated to an internal standard of PPh3 of known concentration in a flame-sealed capillary (d6-acetone). Solid lines are simulated
plots (COPASI65) for two consecutive first-order processes. Inset shows dehydrogenation of [1-C6D12][BAr

F
4].
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The corresponding perdeuterated analogue, [1-C6D12]-
[BArF4], also undergoes dedeuteration in the solid-state, but
much more slowly, taking 7 days to afford [1-C6D8][BAr

F
4], as

shown by ESI-MS, 1H, 2H and 31P{1H} solution NMR spectra
(Figure 3). In the 13C{1H} NMR spectrum three environments
are observed at δ 94.7 [1:1:1 triplet, J(CD) = 26 Hz], δ 82.3
[1:1:1 triplet, J(CD) = 23 Hz], δ 21.3 [1:2:3:2:1 quintet,
J(CD) ∼ 20 Hz] assigned to the two pairs of =CD and CD2
groups, respectively (Figure S87). That the bound, deuterated
diene is also seen after addition of D2 to [1-C6H12][BAr

F
4],

shows that the σ-alkane interactions must persist on H/D
exchange prior to undergoing dehydrogenation.
By using a solution-based kinetics model, the temporal

evolution of the dehydrogenation of [1-C6H12][BAr
F
4] to give

first [1-C6H10][BAr
F
4] and then [1-C6H8][BAr

F
4] in the

solid-state as measured by the individual trapping experiments
can be simulated, using COPASI,65 by two consecutive first-
order processes with k1obs = 3.1(2) × 10−3 s−1 and k2obs =
4.2(2) × 10−5 s−1.69 These correspond to ΔG‡ (298 K) of 21
and 24 kcal mol−1, respectively, for these two overall C−H
activation processes. Dedeuteration from the (not isolated) per-
deuterated σ-alkane complex [1-C6D12][BAr

F
4] can also be

modeled by two (slower) first-order processes, and this allows
for a significant kinetic isotope effect (KIE) to be determined
for these two overall dehydrogenation processes: KIE (k1obs) =
3.6(5) and KIE (k2obs) = 10.8(6). The first dehydrogenation
(k1obs) has a KIE similar to other cyclohexane mono-
dehydrogenations, e.g., photodehydrogenation using trans-
Rh(PMe3)2(CO)Cl (kH/kD = 5.3)9 and photo- or transfer-
dehydrogenation using Ir(PR3)2(H)2(O2CCF3) (kH/kD = 4.4−
7.7).6 The second dehydrogenation of the cyclohexene shows a
larger kinetic isotope effect. While this may indicate a small
tunnelling contribution, similarly large KIEs have been
reported for photochemically promoted C−H activations at
Cp*Rh(CO)2,

26,33 or C−H activation of methane in
Cp*2ScCH2CMe3.

70 The details of these dehydrogenation
mechanisms are discussed in the Computational Study.
A remarkably straightforward dehydrogenation process also

occurs from the isobutane complex [1-C4H10][BAr
F
4], so that

after 4 h complete H2 loss has occurred in the solid-state to
give [1-C4H8][BAr

F
4] (Figure 4). This occurs under a mild

dynamic vacuum (10−2 mbar), as for the cyclohexane analogue,
and can be followed using solution trapping or solid-state
NMR spectroscopy. This provides data suitable for a
quantitative analysis, by measuring the concentrations of [1-
C4H8][BAr

F
4] for different samples where the time of

dehydrogenation is varied. This also occurs in an Ar-flow,

resulting in a similar temporal profile. Unlike for [1-
C6H12][BAr

F
4] this SC-SC process retains enough long-

range order to confirm the structure of the isobutene complex
by single-crystal X-ray diffraction, and this is essentially
identical to that prepared independently (see earlier), albeit
with a poorer structural solution (R = 10.8%, twinned crystals),
Figure 4. Surprisingly to us, this dehydrogenation process is
best modeled as following overall second-order classical
solution-based kinetics (i.e., second order in [1-C4H10]-
[BArF4]), k(obs) = 1.6(2) × 10−4 M−1 s−1, and Figure 4
shows a COPASI modeled fit to both first- and second-order
processes. The same process occurs from partially deuterated
[1-C4HxD(10−x)][BAr

F
4] (x= 0−4), formed from 30 min

addition of D2 to [1-C4H10][BAr
F
4], to give [1-C4HxD(8−x)]-

[BArF4] (x = 0−0−2). This partial deuteration meant that
experiments to determine a KIE were not attempted.
The dehydrogenation of these σ-alkane complexes in the

solid-state has also been modeled using modified Johnson−
Mehl−Avrami−Kologoromov (JMAK) kinetics,71−73 which
express the progress (i.e., conversion) of solid-state reactions
in terms of a nucleation and growth model (eq 1, Figure 5):

where k is the growth rate constant and n is the Avrami
exponent. Exponents close to n = 4, 3 and 2 are suggestive of 3-
D, 2-D and 1-D growth, respectively, while n = 1 is indicative
of a noncooperative transformation that occurs throughout the
crystal, and can be related to a classical first-order process in
homogeneous systems.74 Pertinently, JMAK analysis has been
used to describe SC-SC photoreactions in the solid-state,75−77

while Finke has discussed the relationship between solid-phase
reaction progress and classical chemical kinetics, especially the

Figure 4. Dehydrogenation of crystalline [1-C4H10][BAr
F
4] under Ar-flow or vacuum (10−2 mbar). Solid-state structure of [1-C4H8][BAr

F
4]

formed in a SC-SC transformation (ball and stick). Temporal plot of the solid-state dehydrogenation under vacuum. Lines are simulated plots
(COPASI65) for first-order process (dashed), second-order process (solid).

Figure 5. Modified JMAK plot71 of conversion versus time for the
second dehydrogenation of [1-C6H12][BAr

F
4] and dehydrogenation

of [1-C4H10][BAr
F
4]. k = growth rate constant, n = Avrami exponent.

Details as in Figure 3.
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connections between k/n and rate constants/order in
reaction.73 Given the small number of data points for the
first rapid dehydrogenation of [1-C6H12][BAr

F
4], only the

second dehydrogenation was modeled using JMAK reaction
kinetics, and this yielded n = 1.02(3) with an associated growth
rate constant, k, of 4.2(2) × 10−5 s−1 which is also an excellent
fit with that determined using classical chemical kinetics
(Figure 5, k2obs), i.e., first order. We interpret this as each
lattice point in the crystalline material acting independently for
this second dehydrogenation step. For isobutane dehydrogen-
ation in [1-C4H10][BAr

F
4], different solid-state kinetics are

determined: n = 0.55(3) with an associated growth rate
constant, k, of 1.6(6) × 10−3 s−1, which is not directly relatable
to a classical rate constant given that n ≠ 1.74 It has been
suggested that such noninteger Avrami constants point to the
kinetics being diffusion controlled.72 It is interesting to note
that this process can also be modeled using second-order
classical kinetics (vide supra), which may point to a
cooperative process for H2 loss in the single crystal. While
we currently are reluctant to overinterpret these observations,
they could be related to a reaction front (i.e., H2 loss) that
moves through the crystal from outside to in, as we have
previously demonstrated empirically by CO addition to an
analogue of [1-C6H8][BAr

F
4].

78 Differences in the second69

dehydrogenation process between [1-C6H12][BAr
F
4] (n = 1)

and [1-C4H10][BAr
F
4] (n ∼ 0.5) may be related to the loss of

long-range order in the former on dehydrogenation, likely via
crystal degradation that exposes new crystal surfaces,66 that
may result in H2 loss processes being less important to reaction
progress.
Computational Studies: Thermodynamics and Mech-

anism of Dehydrogenation. The thermodynamics of H2
loss from [1-C6H12][BAr

F
4], [1-C6H10][BAr

F
4] and [1-

C4H10][BAr
F
4] were computed with periodic DFT calcula-

tions with the PBE-D3 functional. Extended solid-state
structures were fully optimized in all cases based on
experimental crystallographic data, with the exception of [1-
C6H10][BAr

F
4] where an initial geometry was constructed

from [1-C6H12][BAr
F
4] via removal of H2 from each

cyclohexane ligand while maintaining the space group
symmetry.79 Optimized geometries for [1-C6H12][BAr

F
4]

and [1-C4H10][BAr
F
4] provided good agreement with the

experimental structures and, moreover, showed lengthening of
the C−H bonds in contact with Rh (to 1.14−1.16 Å) that is
consistent with σ-complex formation. This was also confirmed
by electronic structure analyses (see Supporting Informa-
tion).50 Including the solid-state environment in these
calculations is essential. For example, optimizations on the
isolated [1-C6H12]

+ cation show cyclohexane to prefer a 1,2-
binding mode in which a C−C bond lies parallel to the Rh
coordination plane, while in the solid-state this structure is
strongly disfavored (see Figure 9 and the discussion below). In
[1-C6H10][BAr

F
4] the cyclohexene ligand binds to the Rh

center in an η2π:η
2
C−H mode consistent with the NMR data

measured for this species.
Figure 6 shows the computed free energies for dehydrogen-

ation expressed both in terms of ΔG, the free energy change
for dehydrogenation of a complete unit cell, and ΔGRh, the
average free energy loss per Rh center (i.e., ΔG/Z). ΔGRh =
+6.3 kcal/mol for [1-C6H12][BAr

F
4] and +6.7 kcal/mol for [1-

C6H10][BAr
F
4]. Thus, both dehydrogenation processes are

endergonic, but still accessible thermodynamically upon
removing H2 from the system.

For the mechanisms of the sequential dehydrogenations of
[1-C6H12][BAr

F
4] the experimental KIE data clearly signal

significant C−H bond extension in the rate-determining steps
for H2 loss; however, they do not allow us to discriminate
between C−H oxidative cleavage or β-H transfer as being rate
limiting. Periodic DFT calculations were therefore employed
to construct free energy profiles for these processes. These
calculations used our previously published protocol,56 i.e., for
[1-C6H12][BAr

F
4] dehydrogenation at one of the Rh cations

within the unit cell is considered while the remaining cell
contents were free to relax within a unit cell that was
constrained at its experimental dimensions.
Figure 7A shows the computed free energy profile for

dehydrogenation in [1-C6H12][BAr
F
4], denoted I in the

computational study. This commences with oxidative cleavage
of the C−H1 bond via TS(I-II) at +20.6 kcal/mol to give the
hydrido alkyl intermediate II at +15.0 kcal/mol.80 A facile
rearrangement then brings the C−H2 bond into contact with
the Rh center (III, +11.0 kcal/mol) and permits β-H transfer
via TS(III-IV) at +13.6 kcal/mol. This forms the Rh(III)
dihydride intermediate IV at +8.3 kcal/mol in which the
cyclohexene engages in an additional agostic interaction via the
C−H5 bond. H−H reductive coupling then provides η2-H2
complex V from which H2 dissociates via TS(V-VIa) at +16.7
kcal/mol to give the cyclohexene adduct VIa which, once the
H2 molecule is removed from the lattice,81 has a free energy of
+2.8 kcal/mol.82 The overall dehydrogenation barrier of 20.6
kcal/mol agrees well with the value derived from experiment
(21 kcal/mol) and the rate limiting transition state features a
C···H1 distance of 1.70 Å that is consistent with a significant
kH/kD KIE.80 The computed structure of TS(I-II) (Figure 7A,
right) also highlights the proximity of the [BArF4] anion within
the solid-state environment, and indeed this and other
stationary points along the profile all exhibit a number of
H···F contacts below the sum of the van der Waals radii (2.7
Å). A comparison of the solid-state profile in Figure 7A with
that computed with the isolated cation (see Figures S97−
S104) reveals several important differences. In the latter, facile
rearrangement to more stable alternative 1,2-bis σ-cyclohexane
complexes is computed from which C−H oxidative cleavage
can proceed through a transition state at +9.7 kcal/mol. With
this model the final H2 loss becomes rate-limiting with ΔG‡

span
= +19.6 kcal/mol. Thus, although the overall barrier is
reasonable, a simple molecular model fails to account for the
observed KIE and even predicts the wrong geometry for the
alkane complex (see also the discussion of cyclohexane
rearrangements in Figure 9).
Figure 7B shows the equivalent free energy profile for the

dehydrogenation of cyclohexene in the full [1-C6H10][BAr
F
4]

Figure 6. Computed thermodynamics of H2 loss (kcal/mol) from (A)
[1-C6H12][BAr

F
4] and (B) [1-C4H10][BAr

F
4] expressed as ΔG, the

overall free energy change per unit cell, and ΔGRh, the free energy
change per Rh center. See Supporting Information for a comparison
of computed and observed metrics.
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unit cell. Starting from this species (denoted VIb), initial C−H3

bond activation forms allyl hydride VII at +6.7 kcal/mol,
which features an exo-orientation of the allyl ligand (i.e, with
the central C−H oriented away from the Rh−H bond).83 This
allows the C−H6 bond to engage in an agostic interaction cis
the Rh-hydride and so permits H-transfer via a σ-CAM
mechanism to form η2-H2 cyclohexadiene species VIII at +12.4
kcal/mol. H2 dissociation and expulsion from the lattice forms
IX at +6.7 kcal/mol. The overall barrier to dehydrogenation is
24.4 kcal/mol via TS(VII−VIII) and so provides excellent
agreement with the activation barrier derived from experiment
(24 kcal/mol). TS(VII−VIII) again exhibits significant C−H
bond elongation (C···H6 = 1.83 Å), but in this case this rate
determining transition state is preceded by a pre-equilibrium
involving reversible C−H oxidative cleavage. We therefore
suggest that the observed large isotope effect of 10.8 ± 0.6
arises from a combination of an equilibrium isotope effect and
a KIE. A similar scenario has been offered for the isotope effect
measured in photochemically driven cyclohexane dehydrogen-
ation using trans-Rh(PMe3)2(CO)Cl.

9

Calculations also probed the fluxional processes involving
the cyclohexane ligand in [1-C6H12][BAr

F
4]. The most

accessible of these involves exchange of the three axial sites
interacting with Rh via a 1,3,5-ring walk process and occurs

with a very low barrier of 3.7 kcal/mol (see Figure 8A). This
rotation also involves movement of the cyclohexane ring
relative to the Rh coordination such that the intermediate 3,5-
chair structure (coincidentally at 0.0 kcal/mol) has the
cyclohexane moiety oriented as seen in the second disordered
component defined crystallographically (although note that in
this calculation only one of the four Rh centers is accessing this
geometry). To higher energy is a ring flip process by which the
axial and equatorial hydrogens on one face of the cyclohexane
are exchanged. This proceeds through a twist-boat bis-σ-
complex at +5.7 kcal/mol that is bound through the C−H3 and
C−H6 bonds; this reflects a coupling of the half-chair
transition state with a counterclockwise rotation of the
cyclohexane moiety. From this intermediate a further half-
chair transition state can be located that retrieves a chair
conformation and establishes a Rh···H4−C σ-interaction. This
entails a clockwise rotation and again moves the cyclohexane
above the Rh coordination plane84 to the “disordered”
structure.
Finally a mechanism for exchanging all 12 C−H positions

was investigated, as required by the observation of per-
deuterated C6D12 experimentally. This requires a face-flip
process whereby the set of six C−H bonds accessible via the
1,3,5-ring walk and ring flip processes are exchanged with the

Figure 7. Free energy profiles (kcal/mol) for the dehydrogenation of (A) cyclohexane at one Rh center within the [1-C6H12][BAr
F
4] unit cell and

(B) cyclohexene at one Rh center within the [1-C6H10][BAr
F
4] unit cell. Selected distances (Å) within the reacting Rh cations are shown, where

[Rh]+ = [(Cy2P(CH2)2PCy2)Rh]
+ and the remaining cell contents are omitted for clarity. Distances to delocalized π-ligands are to the centroid of

the carbons involved. Also shown are the computed structures of the rate-limiting transition states for each profile, with the reacting Rh cation (ball
and stick mode) set against the nearby unit cell contents (space-filling mode): Rh (teal); P (orange); C (charcoal); H (silver); F (green).
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six C−H bonds that are initially remote from the metal center.
In principle this could proceed via initial formation of a 1,2-bis
σ-complex featuring Rh···Heq−C2 Rh···Hax−C1 interactions
followed by rotation around the C1−C2 vector (see upper
pathway, Figure 9). Such a process is readily accessible when

computed in the isolated cation; however, in the solid-state
none of these structures is a minimum and attempts to
compute the central bis equatorial σ-complex gave energies at
least 30 kcal/mol above the 1,3-reactant. This reflects the
proximity of the [BArF4]

− anion in the solid-state that does not
permit the perpendicular orientation of the cyclohexane
demanded by this pathway and again emphasizes the
importance of taking the full solid-state environment into
account when modeling these SMOM systems.

Instead we found that a face-flip process could be accessed
upon addition and oxidative cleavage of H2. The resultant
Rh(III) dihydride intermediate allows more flexibility for
cyclohexane movement including access to additional σ-
interactions in the axial sites (see lower pathway, Figure 9).
The face-flip transition state, TSFF, again involves rotation
about the C1−C2 vector, but now that the ligand can access
space above the Rh coordination plane this proves to be
accessible within the solid-state pocket and proceeds with an
overall computed barrier of 24.6 kcal/mol. Thus, access to the
remote (“blue”) face of the cyclohexane ligand has a
considerably higher barrier than rearrangements between the
closer (“red”) C−H bonds and this is consistent (assuming
facile H/D exchange mechanisms) with the very rapid
formation of C6H6D6 upon exposure of [1-C6H12][BAr

F
4] to

D2, but the somewhat slower rate of formation of the higher
C6HxD(12−x) isotopologues (x = 0−5).

■ CONCLUSIONS
We report here the industrially relevant, low temperature,
acceptorless, dehydrogenation of the light alkanes isobutane
and cyclohexane when bound as σ-complexes to a Rh(I)
center. This demonstrates the advantages of solid-state
organometallic chemistry (SMOM-chem) for the synthesis,
characterization and subsequent reactivity of well-defined σ-
complexes. Such species are traditionally short-lived when
synthesized using in situ solution techniques at very low
temperature, due to facile displacement of the weakly bound
alkane by solvent or other exogenous ligand,60,61 making
onward exploration of structure and reactivity very challenging.
It is, without doubt, the microenvironment provided by the
[BArF4]

− anions in the solid-state that allows for this chemistry
of M···H−C alkane interactions described here to be
developed.
By biasing the pre-equilibrium completely to the side of

alkane binding in the solid-state, a number of important
observations can be made. Experimental and computational
studies show that both alkane ligands can access low energy
fluxional processes in the solid-state that allow all the C−H
bonds to come into contact with the metal center. This, in
turn, permits per-deuteration by H/D exchange using D2,
indicating that C−H oxidative cleavage of the bound alkane
must also be a relatively low energy process. When followed by
β-H-elimination alkane dehydrogenation occursan overall
endothermic process that normally requires very high temper-
atures, or (at lower temperatures) a sacrificial acceptor. The
SMOM approach thus promotes both (i) alkane complex
formation and (ii) the easy removal of liberated H2 by simple
application of vacuum or Ar-flow: two consecutive processes
that are necessary for the observed reactivity. With the
cyclohexane σ-complex dehydrogenation occurs via a cyclo-
hexene intermediate to give the corresponding cyclohexadiene
product. Coupling these dehydrogenations with prior per-
deuteration allows for kH/kD KIEs of 3.6(5) and 10.8(6),
respectively, to be determined. Periodic DFT calculations
identify rate-limiting C−H oxidative cleavage (for cyclohexane
dehydrogenation) and β-H transfer (for cyclohexene dehydro-
genation). The large KIE of the latter arises from the
combination of significant C−H bond elongation in rate-
limiting transition state with a pre-equilibrium that also
involves C−H oxidative cleavage. The importance of solid-
state computational studies, which capture the holistic
microenvironment, compared with those on an isolated cation

Figure 8. Computed pathways for cyclohexane rearrangements in [1-
C6H12][BAr

F
4] via (A) 1,3,5-ring walk and (B) ring flip mechanisms,

with free energies indicated in kcal/mol. aThe SCF electronic energy
of this 4,6-chair structure places it 2.1 kcal/mol above the 1,3-chair;
however, a large stabilization due to thermodynamic corrections gives
this anomalously low free energy.84

Figure 9. Pathways for the cyclohexane face-flip in [1-C6H12][BAr
F
4].

The upper pathway shows potential 1,2-bis σ-intermediates as
Newman projections looking down the C2−C1 bond, but which
proved inaccessible in the solid-state. The lower pathway shows the
proposed H2-facilitated pathway with free energies in kcal/mol. See
text for details.
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(i.e., so-called “gas phase”) is reflected by the excellent
agreement between computation and experiment studies in
probing the rate-limiting step, which is not captured in the
absence of the solid-state environment.
While driving catalytic (acceptorless) dehydrogenation by

removal of H2,
13 working in the solid-phase,85 or under

continuous-flow gas phase conditions at high temperatures,86

are not new concepts, that stoichiometric dehydrogenation
occurs at such well-defined σ-alkane complexes in the solid-
state at 25 °C suggests opportunities to develop this process
catalytically at lower temperatures. Fine-tuning of the metal
ligand coordination environment in the single-crystalline
phase,42 coupled with the possibilities offered by expediently
removing H2, offer potential solutions to move from
stoichiometric to catalytic regimes in the single-crystalline
state. Encouraging this approach, we have recently shown that
SMOM-systems are highly effective solid/gas alkene-isomer-
ization catalysts.47 Overcoming the acknowledged problems of
product (alkene) inhibition,5 and understanding how gaseous
reagents/products move in and out of the nonporous
crystalline lattice are future challenges that we are currently
focused on resolving.
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(45) Olah, G. A.; Molnaŕ, Á.; Prakash, G. K. S. Hydrocarbon
Chemistry; John Wiley & Sons, Inc: Hoboken, 2018.
(46) See Supporting Materials
(47) Chadwick, F. M.; McKay, A. I.; Martinez-Martinez, A. J.; Rees,
N. H.; Kram̈er, T.; Macgregor, S. A.; Weller, A. S. Solid-State
Molecular Organometallic Chemistry. Single-Crystal to Single-Crystal
Reactivity and Catalysis with Light Hydrocarbon Substrates. Chem.
Sci. 2017, 8, 6014−6029.
(48) Baumann, R.; Stumpf, R.; Davis, W. M.; Liang, L.-C.; Schrock,
R. R. Titanium and Zirconium Complexes That Contain the
Tridentate Diamido Ligands [(I-Prn-O-C6H4)2]

2‑ ([I-Prnon]2‑) and
[(C6H11-O-C6H4)2]

2‑ ([Cynon]2‑). J. Am. Chem. Soc. 1999, 121,
7822−7836.
(49) Chapp, S. M.; Schley, N. D. Evidence for Reversible
Cyclometalation in Alkane Dehydrogenation and C−O Bond
Cleavage at Iridium Bis(Phosphine) Complexes. Organometallics
2017, 36, 4355−4358.
(50) See Supporting Materials for QTAIM, NBO and NCI plot data.
A full account of the bonding in these and related alkane complexes
will be the subject of a separate publication.
(51) Under these conditions an intermediate is observed on the way
to [1-BArF4], δ ∼ 100, that we have not been able to idenfity but
propose it is the initial product of H2-promoted alkane loss (see
Figure S14).
(52) QTAIM, NBO and NCI analyses suggest an interaction
intermediate between the extremes of η2:η2 and η1:η1 (see Figures
S118−120 for details)

Journal of the American Chemical Society Article

DOI: 10.1021/jacs.9b05577
J. Am. Chem. Soc. 2019, 141, 11700−11712

11711

http://dx.doi.org/10.1021/jacs.9b05577


(53) Chadwick, F. M.; Rees, N. H.; Weller, A. S.; Kram̈er, T.;
Iannuzzi, M.; Macgregor, S. A. A Rhodium−Pentane Sigma-Alkane
Complex: Characterization in the Solid State by Experimental and
Computational Techniques. Angew. Chem., Int. Ed. 2016, 55, 3677−
3681.
(54) Characterized at low temperature by analogy with crystallo-
graphically characterized [Rh(iPr2PCH2CH2CH2P

iPr2)(κ
2-Cl2C2H4)]

[BArF4]. See ref 41.
(55) Douglas, T. M.; Chaplin, A. B.; Weller, A. S. Dihydrogen Loss
from a 14-Electron Rhodium(III) Bis-Phosphine Dihydride to Give a
Rhodium(I) Complex That Undergoes Oxidative Addition with Aryl
Chlorides. Organometallics 2008, 27, 2918−2921.
(56) Chadwick, F. M.; Kram̈er, T.; Gutmann, T.; Rees, N. H.;
Thompson, A. L.; Edwards, A. J.; Buntkowsky, G.; Macgregor, S. A.;
Weller, A. S. Selective C−H Activation at a Molecular Rhodium
Sigma-Alkane Complex by Solid/Gas Single-Crystal to Single-Crystal
H/D Exchange. J. Am. Chem. Soc. 2016, 138, 13369−13378.
(57) NMR Crystallography; Harris, R. K., Wasylishen, R. E., Duer, M.
J., Eds.; John Wiley & Sons: Chichester, 2009.
(58) Methylene groups C4 and C6 and each show one relatively
close H···arene centroid distance 3.0 and 2.7 Å similar to [1-NBA]
[BArF4].
(59) Smart, K. A.; Grellier, M.; Coppel, Y.; Vendier, L.; Mason, S.
A.; Capelli, S. C.; Albinati, A.; Montiel-Palma, V.; Muñoz-Hernańdez,
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