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Abstract
Birds are important hosts for many RNA viruses, including influenza A virus, Newcastle disease virus, West Nile virus 
and coronaviruses. Innate defense against RNA viruses in birds involves detection of viral RNA by pattern recognition 
receptors. Several receptors of different classes are involved, such as endosomal toll-like receptors and cytoplasmic reti-
noic acid–inducible gene I-like receptors, and their downstream adaptor proteins. The function of these receptors and their 
antagonism by viruses is well established in mammals; however, this has received less attention in birds. These receptors 
have been characterized in a few bird species, and the completion of avian genomes will permit study of their evolution. For 
each receptor, functional work has established ligand specificity and activation by viral infection. Engagement of adaptors, 
regulation by modulators and the supramolecular organization of proteins required for activation are incompletely under-
stood in both mammals and birds. These receptors bind conserved nucleic acid agonists such as single- or double-stranded 
RNA and generally show purifying selection, particularly the ligand binding regions. However, in birds, these receptors and 
adaptors differ between species, and between individuals, suggesting that they are under selection for diversification over 
time. Avian receptors and signalling pathways, like their mammalian counterparts, are targets for antagonism by a variety 
of viruses, intent on escape from innate immune responses.
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Birds are important hosts of many RNA viruses, some having 
zoonotic potential. Ducks and shorebirds are critical reservoir 
hosts of influenza A viruses, propagating all strains (Olsen 
et al. 2006; Webster et al. 1992). West Nile virus cycles 
between birds and mosquitoes, with humans and horses as 
accidental infections (Saiz et al. 2021). More than 30 differ-
ent avian species can be experimentally infected, implicating 
them in transmission (Komar et al. 2003). Newcastle disease 
viruses (NDV) are capable of infecting over 200 avian spe-
cies, and changes in virulence due to cross-species adaptation 
have been thoroughly reviewed (Afonso 2021). Wild aquatic 
birds are hosts to a diversity of coronaviruses (Chu et al. 
2011). Recently, virome analyses in waterfowl and shorebirds 
identified 27 viruses, 24 of which were novel (Wille et al. 
2019). These studies reveal multi-host generalist viruses (like 
influenza and coronaviruses) and others that are host-specific. 
Our knowledge of avian RNA viruses is far from complete, 

and prediction of zoonotic risk is difficult (Wille et al. 2021). 
RNA viruses are constantly evolving in these hosts and have 
diverse strategies to antagonize host immunity.

Innate immunity provides the first line of defense against 
microbial pathogens. Recognition stimulates innate immune 
signalling leading to synthesis of a host of antimicrobial 
effectors, as well as instructing the adaptive immune 
response to the type of response to make (Iwasaki and 
Medzhitov 2015). The initial step of detection and recogni-
tion is key to initiation of a successful immune response 
(Janeway 1989). Pathogen recognition involves pattern rec-
ognition receptors on the cell surface and within the cyto-
plasm. These pattern recognition receptors (PRR) recognize 
pathogen parts or pathogen associated molecular patterns 
(PAMPs), typically very conserved molecular structures, 
which are often also recognized as danger associated molec-
ular patterns (DAMPs) arising from within the cell. Pat-
tern recognition of RNA viruses involves primarily toll-like 
receptors (Kawai and Akira 2010) and intracellular nucleic 
acid detectors (Hur 2019; Wu and Chen 2014).

Avian pattern recognition receptors have been reviewed 
recently (Neerukonda and Katneni 2020), and avian sensing 
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of viral pathogens reviewed in 2013 (Chen et al. 2013). Two 
reviews recently examine avian detection and response to influ-
enza (Campbell and Magor 2020; Evseev and Magor 2019) 
and avian toll-like receptor (TLR) expression and variants in 
association with response to various pathogens (Rehman et al. 
2021). In the last 10 years, much has been learned about avian 
pattern recognition receptors. Furthermore, comparisons of 
receptors in related species emerging from genome projects 
reveal interesting patterns of evolution of these receptors in 
avian species (Velova et al. 2018). Here, I will explore the 
function and evolution of pattern recognition receptors of 
birds involved in the detection of RNA viruses through detec-
tion of nucleic acids and their signalling pathways. The main 
signalling pathways downstream of RNA detection converge 
on inducing type I interferons and proinflammatory cytokines 
(Fig. 1). Functional data from avian PRRs and signalling com-
ponents (Table 1) support the pathways shown and molecular 
details are predicted to be conserved across species.

Toll‑like receptors and supramolecular 
organization

Toll-like receptors (TLR) are mediators of detection and 
signalling in response to conserved molecular patterns and 
were recently the subject of a comprehensive and excel-
lent review (Fitzgerald and Kagan 2020). TLRs form a 

multigene family that are found in vertebrates and inver-
tebrates, composed of 10 members in humans (Kawai and 
Akira 2006a) and 10 in chickens (Boyd et al. 2007; Brownlie  
and Allan 2011; Temperley et al. 2008). TLR are com-
posed of leucine-rich repeats which form the agonist bind-
ing region, and an intracellular toll/interleukin-1 receptor 
(TIR) domain which connects to downstream adaptors for 
signalling (Kawai and Akira 2006b). TLRs dimerize when 
stimulated by the detection of infectious agents, and their 
signalling triggers the generation of the supramolecular 
organizing centers involved in co-ordinating the cellular 
signals through transcription factors and metabolic changes 
(Fitzgerald and Kagan 2020). TLR signalling is divided by 
the adaptors recruited, with myeloid differentiation primary 
response 88 (MyD88) leading to proinflammatory cytokine 
signalling, or TIR domain containing adaptor (TRIF) (Hoebe 
et al. 2003; Yamamoto et al. 2003) leading to interferon. All 
TLRs except TLR3, interact with TIRAP/Mal and MyD88, 
generating a multiprotein complex termed the myddosome 
(Motshwene et al. 2009), while TLR3 and TLR4 interact  
with TRAM and TRIF forming an analogous signalling plat-
form called a triffosome (Fitzgerald and Kagan 2020). The  
MyD88 myddosome recruits TRAF6 which activates TBK1. 
The formation of the supramolecular complex and oligomer-
ization of additional components are necessary for activation  
of E3-ubiquitin ligase TRAF6 and the associated kinase trans-
forming growth factor β (TGFβ)–activated kinase 1(TAK1)  

Fig. 1   RNA viruses are primarily detected in avian cells by binding 
of RNA by endosomal TLRs and cytoplasmic nucleic acid sensors. 
Single-stranded RNA is detected by TLR7 (primarily in B cells and 
possibly pDCs). Double-stranded RNA is detected by TLR3 and 
MDA5. RIG-I detects 5′-triphosphate RNA panhandle structures. 
E3 ubiquitin ligases are involved in activation of mammalian RIG-
I, and MDA5; however, this is still unclear in birds. Both RIG-I and 
RIPLET are missing in chickens. STING potentiates the signal from 
MDA5 and also detects viral fusion. Oligomerization of components 
(MAVS) or formation of a supramolecular complex (myddosome or 

triffosome) initiates the signalling. Phosphorylation of adaptor pro-
teins TRIF, MAVS, and STING by TBK1 (or IKK) recruits IRF7 
(phosphorylation in red), whereby it becomes phosphorylated by 
TBK1 (blue) and dimerizes to enter the nucleus and drive transcrip-
tion of type I interferons. Signalling from MyD88 recruits IRAK and 
TRAF6 to activate IRF7 and degrade the inhibitor of NF-κB to drive 
transcription of proinflammatory cytokines. Intracellular signalling 
is inferred from interpretation of functional data and conserved sig-
nalling mechanisms, many of which still need to be experimentally 
tested in birds.
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(Wang et al. 2001). This kinase complex phosphorylates 
IκBα within the inhibitory IκB complex which tags it for 
polyubiquitination and subsequent degradation. Release 
of the inhibitor uncovers a nuclear localization signal on 
nuclear factor kappa B (NFκB) heterodimers (Karin 1999), 
which translocate to the nucleus and bind target sites in the 
promoters and enhancers of immune genes including TNF-
alpha and other proinflammatory cytokines.

On the endosomal membrane, TLR4 interacts with 
TRAM and TRIF, and TLR3 also recruits TRIF, both leading 
to activation of TANK binding kinase (TBK1) which acti-
vates IRF3 and drives transcription of interferon and inter-
feron stimulated genes (Fitzgerald et al. 2003; McWhirter 
et al. 2004; Sharma et al. 2003). TLR3 uses only TRIF for 
interferon induction and is the only TLR that does not signal 
through MyD88. TRIF signals through TBK1 and recruits 
interferon regulatory factor 3 (IRF3), leading to the produc-
tion of type I interferon. The phosphorylation site in TRIF 

resides in a consensus pLxIS motif, which is shared with 
other intracellular adaptors (Liu et al. 2015b). In this motif, 
the p is any hydrophilic residue, L leucine, x any residue and 
phosphorylation site at S serine.

Many of the components of PRR signaling, including 
MyD88, TRIF and TBK1 are conserved in birds (Cormican  
et al. 2009; Gillespie et al. 2011; Wang et al. 2017; Wheaton 
et al. 2007); however, IRF3 is notably absent. In mammals, 
IRF3 is constitutively expressed and dimerizes upon phos-
phorylation to enter the nucleus and turn on type I inter-
feron (Lin et al. 1998). Interferon activates IRF7, a related 
regulatory factor, that is critically involved in both TLR and 
RIG-I-like receptor (RLR) signalling (Honda et al. 2005). 
A gene was originally named IRF3 in chickens (Grant et al. 
1995); however, it is interferon-inducible and more closely 
resembles IRF7 in sequence and synteny of surrounding 
genes (Santhakumar et al. 2017). Others have previously 
noted the absence of IRF3 in birds (Cormican et al. 2009;  

Table 1   Functional analyses of avian pattern recognition receptors and signalling components involved in detection of RNA viruses

PRR pathway Signalling component Description of function References

chTLR3 Response to dsRNA Karpala et al. (2008); Kogut et al. 
(2005); Schwarz et al. (2007)

duTLR3 Response to dsRNA Yilmaz et al. (2005); Zhang et al. (2015)
chTRIF Identified in genome Gillespie et al. (2011)

TLR3 duTRIF Activates IFN-β signalling Wei et al. (2016)
chIRF7 Knockout impairs IFN-β signalling Kim et al. (2020); Cheng et al. (2019b)
duIRF7 Overexpression reduces viral titre Chen et al. (2019)
chIFNα Antiviral activity Sick et al. (1996)
chIFN2 (chIFN-β) Antiviral activity Sick et al. (1996)
chTLR7 Detection of small ligands and ssRNA Philbin et al. (2005)
duTLR7 Detection of small ligands MacDonald et al. (2008)
chMyD88 Tissue distribution Wheaton et al. (2007)
duMyD88 Induced NF-κB and IL-6 Cheng et al. (2015b)
chTRAF6 Upregulated by viral infection Jin et al. (2017)

TLR7 duTRAF6 Activated NF-κB Zhai et al. (2015)
chTBK1 siRNA knockdown reduced IFN-β signalling Wang et al. (2017)
duTBK1 siRNA knockdown reduced IFN-β signalling Hua et al. (2018)
duIKKβ Knockdown decreased NF-κB signaling Li et al. (2021)
duIKKα Knockdown decreased NF-κB signalling Zhou et al. (2021)
chNF-kB Binds consensus κB motifs in DNA Ikeda et al. (1993)
duRIG-I Recognizes RIG-I ligand Barber et al. (2010)

RIG-I duMAVS siRNA knockdown decreases IFN-β expression; Induces IFN-β 
signalling by oligomeric helical assembly

Li et al. (2016); Wu et al. (2014)

duTRIM25 Ubiquitinates RIG-I Miranzo-Navarro and Magor (2014)
duRIPLET Undetermined Magor et al. (2013)
chMDA5 activates IFN-β reporter; siRNA knockdown decreased IFN-β 

signalling to AIV and poly (I:C)
Childs et al. (2007); Liniger et al. 

(2012); Karpala et al. (2011)
MDA5 duMDA5 Overexpression of CARD domains decreased viral titre Wei et al. (2014)

chTRIM65 Uncharacterized
STING chSTING siRNA knockdown increased viral titres for AIV, NDV and 

FPV
Cheng et al. (2015a)

duSTING Overexpression inhibited AIV replication Cheng et al. (2019a)
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Huang et al. 2010). Chicken IRF7 translocates to the nucleus 
and drives transcription of an interferon reporter (Xiao et al. 
2018), and overexpression of duck IRF7 decreases viral 
replication (Chen et al. 2019). The absence of IRF3 and 
key role of chIRF7 were confirmed by analyzing de novo 
assembled RNA-seq data in response to the dsRNA viral 
mimic poly (I:C), following IRF7 knockdown or overex-
pression (Kim and Zhou 2015). Ultimately, knockout of 
IRF7 in the DF-1 chicken embryonic fibroblast cell line 
(Cheng et al. 2019b; Kim et al. 2020) greatly decreased 
expression of type I interferon. In birds, two serologically 
distinct types of type I interferon genes have been identified 
on the Z chromosome (Sick et al. 1996). Of these, there are 
at least 10 genes with a core region resembling IFN-alpha 
(IFN-α), while chicken IFN-2 has similarities to IFN-beta 
(IFN-β). Their presumed receptor composed of IFNAR1 
and IFNAR2 has been identified in chickens (Guo et al. 
2014). Interferon signalling leads to the induction of inter-
feron stimulated genes (ISGs) many of which have antiviral 
function, as reviewed recently (Campbell and Magor 2020; 
Evseev and Magor 2019; Santhakumar et al. 2017).

Avian TLR receptors

The composition of avian TLR genes has been the sub-
ject of several comprehensive reviews (Boyd et al. 2007; 
Brownlie and Allan 2011; Cormican et al. 2009; Keestra 
et  al. 2013; Nawab et  al. 2019; Temperley et  al. 2008; 
Velova et al. 2018). Birds have 10 TLR genes with most 
being direct orthologues, while others are unique to birds. 
Two genes representing TLR1 (types A and B), two TLR2 
(types A and B), TLR3, TLR4, TLR5 and TLR7 appear to 
be orthologous genes. Phylogenetic relationships of TLR1 
and TLR2 to mammalian orthologues have been inferred 
(Huang et al. 2011). Inclusion of more species and construc-
tion of phylogenetic trees based on the regions excluded 
from gene conversion events, support their conclusions 
and suggest that TLR1B should be renamed TLR1, while 
TLR1A is the TLR10 orthologue (Velova et al. 2018). With 
emerging avian genomes, recent phylogenetic analyses of 
TLRs from 50 bird species show a complicated history of 
duplications of TLR7 in some species, deletions of TLR8 
and pseudogenization of TLR5 in some birds (Velova et al. 
2018). TLR15 is unique to birds and reptiles (Boyd et al. 
2012; Higgs et al. 2006), and TLR21 is also found in fish 
and amphibians (Brownlie et al. 2009; Keestra et al. 2010).

Similar to their mammalian counterparts, each avian TLR 
orthologue has specificity for different pathogen molecu-
lar patterns. TLR1 and 2 have specificity for lipoproteins 
and peptidoglycans (Higgs et al. 2006; Yilmaz et al. 2005), 
TLR3 for double-stranded RNA (Karpala et al. 2008), TLR4 
for lipopolysaccharide (Keestra and van Putten 2008), TLR5 

for flagellin monomers (Iqbal et al. 2005b) and TLR7 binds 
single-stranded RNA (Philbin et  al. 2005). TLR15 has 
specificity for a protein component of yeast that must be 
enzymatically processed (Boyd et al. 2012) and diacylated 
lipopeptide from mycoplasma (Oven et al. 2013). Alterna-
tively, TLR15 itself is proteolytically cleaved by microbial 
proteases for activation (de Zoete et al. 2011). TLR21 is 
the avian sensor for CpG, analogous to TLR9 (Brownlie 
et al. 2009). MyD88 and TRIF adaptors are present in birds, 
but TRAM, the TLR4 associated adaptor used for signal-
ling interferon, is not (Keestra et al. 2013). The chicken 
macrophage–like cell line HD-11 does not activate IFNβ in 
response to stimulation with LPS (Keestra and van Putten 
2008).

TLR function is restricted by cellular location, although 
this differs with cell type. Mammalian TLR1, TLR2, TLR4 
and TLR5 are present on cellular membranes where they 
survey the extracellular milieu (Kawai and Akira 2006b), 
and the chicken orthologs are presumed to be on the cell 
surface (Neerukonda and Katneni 2020). Avian TLR15 is 
also on the cell surface (Boyd et al. 2012). Avian TLR3 
and TLR7 are present on the endosomal membrane where 
they sample the contents of the endosome. TLR3 and TLR7 
are the most important for detection of viruses internalized 
through receptor mediated endocytosis, as their nucleic 
acid can be detected by the TLRs in the endosome (Lund 
et al. 2004). Similarly, TLR21 localizes to the endosomal 
membrane for detection of CpG DNA from bacterial or viral 
DNA (Brownlie et al. 2009). The restriction of these TLRs 
to the endosomal compartment ensures that the entry of 
nucleic acids from incoming viral particles can be detected, 
while self nucleic acids are normally excluded from this 
compartment (Brencicova and Diebold 2013).

TLR3

TLR3 recognition of dsRNA (Alexopoulou et al. 2001) 
recruits the adaptor molecule TRIF to its intracellular TIR 
domain which leads to the production of interferon and other 
proinflammatory cytokines. The ectodomain composed of 
leucine rich repeats (LRR) is involved in ligand recognition. 
TLR3 detection of RNA agonists has been clarified through 
crystal structures of human (Bell et al. 2005; Choe et al. 
2005) and mouse ectodomains (Liu et al. 2008) in associa-
tion with dsRNA. The LRR ectodomains form dimers on 
RNA, and each binds dsRNA at either end of the horseshoe 
structure (LRR-NT to LRR3 and LRR19 to LRR21), requir-
ing a strand of dsRNA of at least 40–50 nucleotides long 
(Leonard et al. 2008). Ligand binding brings the ends of 
two outwardly facing LRRs into close apposition to stabi-
lize the dimer, leading to dimerization of the TIR domains 
promoting downstream signalling (Liu et al. 2008). TLR3 
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cleavage by cathepsins in the endosome is required for acti-
vation, with a 70-kDa C-terminal fragment (having only one 
of the ectodomain RNA binding sites) retaining full activity 
(Garcia-Cattaneo et al. 2012).

TLR signal transduction has been elaborated in mam-
mals and reviewed in detail previously (Kawasaki and 
Kawai 2014). Upon transduction of a signal through 
TLR3, the cytoplasmic TIR domain engages TRIF and 
recruits TRAF6 which ubiquitinates TAK1, phosphoryl-
ating MAPKs and transcription factor AP-1, driving tran-
scription of type I IFN. TAK1 also acts on IKK to degrade 
IκBs, releasing NF-κB. Finally, phosphorylation of TRIF 
by TBK1 recruits IRF3 which dimerizes and drives tran-
scription of IFN. Most signalling components are present  
in the chicken genome (Gillespie et al. 2011), and this can  
be revisited with improved genomic resources. TBK1 is 
highly conserved in birds, with chTBK1 having 86% identity 
to human TBK1 (Wang et al. 2017). Knockdown of chTBK1 
or duTBK1 using siRNA resulted in reduced expression of 
IRF7 and IFN-β (Hua et al. 2018; Wang et al. 2017). TRIF 
has been identified in birds, and chicken and duck TRIF 
are 67% identical to each other, and only 29–34% identical 
to the human homologue (Wei et al. 2016; Wheaton et al. 
2007). Duck TRIF is upregulated with poly I:C treatment 
of duck embryonic fibroblasts (Wei et al. 2016) and able to 
activate IFN-β signalling. Most of the intermediate steps 
have not been confirmed in birds, so the signalling pathway 
downstream is inferred from functional data and conserved 
molecular interactions.

Chicken and Pekin duck TLR3 are 61% and 62% identical 
to the human ortholog, and share 86% identity to each other 
(Yilmaz et al. 2005; Zhang et al. 2015). Tissue and cellular 
expressions of chicken TLRs were systematically examined 
by RT-PCR (Iqbal et al. 2005a). TLR3 is expressed in most 
tissues examined including throughout the trachea and intes-
tinal tract and caecum, and many immune tissues includ-
ing, thymus, spleen, and caecal tonsils, and weakly in bursa. 
It is expressed in heterophils and highest in CD8 + cells. 
TLR3 is expressed in chicken embryonic fibroblasts and in 
immortal cell lines, chicken kidney cells (CKC) and chicken 
macrophage-like HD-11 cells and weakly in immortalized 
chicken B cells (DT-40 B cell line). Chicken TLR3 is upreg-
ulated by interferon alpha (IFN-α) treatment of leukocytes, 
and on DF-1 cells, but not chicken HD-11 cells (Karpala 
et al. 2008). Both mallard and Muscovy ducks have a simi-
lar tissue expression profile, which is slightly different from 
chickens (Jiao et al. 2012). In Pekin ducks, TLR3 is consti-
tutively expressed highest in the trachea, but low in intes-
tine. In Muscovy ducks, TLR3 is constitutively expressed in 
healthy ducks and basal expression is high in trachea, spleen 
and pancreas (Jiao et al. 2012).

The function of chicken TLR3 was assessed, as in mam-
mals, using agonists. When heterophils are stimulated with 

the dsRNA mimic polyinosinic:polycytidylic acid (poly I:C), 
they show an induced oxidative burst and degranulation 
(Kogut et al. 2005). Ectopic expression of chicken TLR3 in 
the human embryonic kidney (HEK293) cell line and stimu-
lation with hTLR3 agonist, poly I:C, activated a reporter 
assay (Schwarz et al. 2007). Chicken cells respond to poly 
(I:C) (Karpala et al. 2008), and RNAi-mediated knock-
down of TLR3 decreased IFN-β production by DF-1 cells 
stimulated with IFN-α and poly (I:C) (Karpala et al. 2008). 
Mallard ducks challenged with poly (I:C) upregulate genes 
associated with the TLR3 pathway in their transcriptome, 
and this is confirmed by qPCR analyses (Jax et al. 2021). 
Chicken DF-1 cells with TLR3, knocked out using CRISPR, 
could still respond to RNA mimics; however, TLR3/MDA5 
double knockout rendered these cells unable to respond to 
RNA ligands (Lee et al. 2020).

In cell culture, TLR3 induces antiviral effects. Overex-
pression of chTLR3 in DF-1 cells reduced viral replication 
and viral titre, implicating TLR3 in a successful response 
against Newcastle disease virus (NDV) (Cheng et al. 2014). 
Infection of ducks with two different virulent strains of NDV 
shows upregulation of TLR3, TLR7 and RLR detectors in 
the lungs and thymus of NDV-infected ducks (Kang et al. 
2015). Activation and upregulation of TLR3 in chicken 
embryonic fibroblasts (CEFs) through stimulation with poly 
I:C also inhibited Marek’s disease virus infection (MDV) 
(Hu et al. 2016). A comparison of several TLR agonists 
showed 81% inhibition of MDV by poly (I:C), while other 
agonists gave partial inhibition (Bavananthasivam et al. 
2018). Prophylactic TLR agonists can protect chickens from 
viral infection with several pathogens and, furthermore, are 
important immunostimulatory adjuvants in vaccine formula-
tions, as reviewed by St Paul et al. (2013).

In other viral infections, TLR3 may be primarily induc-
ing inflammatory responses, sometimes to the detriment of 
the host. The expression of TLR3 was examined in ducks 
challenged with duck reovirus, a dsRNA virus that causes 
necrotic lesions in liver and spleen and 30–40% mortality. 
Upon infection with duck reovirus, TLR3 is highly induced 
in the brain, liver and spleen, but not in the lung until 3 dpi 
(Zhang et al. 2015). In the duck fibroblast cell line CCL141, 
the upregulation of TLR3 correlated with viral load. Chick-
ens infected with an H5N1 highly pathogenic avian influenza 
strain showed upregulation of TLR3 in the lung (Ranaware 
et al. 2016) or lung and brain (Karpala et al. 2008). Chickens 
infected with a highly pathogenic H7N1 strain had increased 
TLR3 expression in the lung, the spleen and especially the 
brain (Cornelissen et al. 2013). Unfortunately, duck TLR3 
was not included in the direct comparisons in that study, 
which would have been interesting because ducks typically 
suffer less pathology. In Pekin ducks, TLR3 is upregulated in 
all tissues tested following highly pathogenic H5N1 infection  
in the lung, spleen and intestine (Campbell et al. 2021). Muscovy  
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ducks infected with an H5N1 strain showed upregulation of 
TLR3 in the brain, but not in the spleen or lungs (Jiao et al. 
2012). Similarly, infection of Muscovy ducks with two other 
H5N1 strains showed upregulation in brain, with downregu-
lation in the lungs (Wei et al. 2013). Muscovy ducks are 
more susceptible to H5N1 virus infection (Pantin-Jackwood 
et al. 2013). Notably, in mice infected with an H3N2 strain 
of influenza, TLR3 was highly upregulated in the lungs and 
mice showed increased inflammation in comparison with 
TLR3 knockout mice, and knockout mice survived longer 
(Le Goffic et al. 2006).

TLR7

TLR7 recognizes ssRNA (Lund et  al. 2004) and small 
chemical compounds mimicking nucleosides. Mammalian 
TLR7 can be stimulated by loxoribine and imiquimod, while 
resiquimod (R848) can stimulate both TLR7 and TLR8 
(Hemmi et al. 2002; Jurk et al. 2002). Murine TLR7 is pre-
sent on plasmacytoid dendritic cells (pDCs), also called pro-
fessional interferon producing cells (IPCs) (Liu 2005), and 
is involved in the detection of single-stranded RNA viruses 
like influenza (Diebold et al. 2004). Detection of influenza 
virus requires the intact hemagglutinin receptor indicating 
that entry occurs through receptor mediated endocytosis 
and leads to the production of IFN-α. Interferon production 
is dependent on TLR7 and MyD88 and can be blocked by 
chloroquine, which stops endosomal trafficking (Diebold 
et al. 2004). TLR7 dimerizes and must be cleaved within 
the extracellular domain in the endosome for generation 
of the downstream signal, but the parts remain associated 
through a disulphide bond and are both involved in ligand 
discrimination (Kanno et al. 2013). Mammalian TLR7 rec-
ognition involves two sites: one for small agonists (or guano-
sine) and the second for uridine containing ssRNA (Zhang 
et al. 2016). TLR7 exists as a monomer in the absence of 
ligands, but dimerization is induced by R848 alone or by the 
combination of guanosine and poly U RNA. Ligand binding 
at the first site bridges the two TLRs involving LRR8, and 
LRR11-14 of one TLR7, and LRR16*-18* of the second 
and the same for the second TLR7 molecule (Zhang et al. 
2016). Disulphide bonds create the secondary structure and 
residues of a Z-loop, and LRR1-5 and LRR20* generate 
the surface for binding ssRNA (Zhang et al. 2016). Further 
crystallographic studies identified guanosine 2′3′-cyclic 
phosphate (2′3′-cGMP) as a possible endogenous ligand for 
site 1 and demonstrate affinity for uridine containing RNAs  
at site 2 is greater if there are successive uridines (Zhang et al.  
2018b).

Chicken and duck TLR7 are 62% and 66% identical to 
human TLR7 and 85% identical to each other (MacDonald 
et al. 2008; Philbin et al. 2005). Chicken splenocytes respond 

to TLR7/8 agonists (including R848 and loxoribine, poly 
U RNA and ssRNAs) with the production of proinflamma-
tory cytokines, but not interferons (Philbin et al. 2005). The 
chicken macrophage–like cell line HD-11 also responded with 
the production of IL-1β, but not interferons. This appears to 
be strain dependent in chickens, with some lines producing 
interferon in response to loxoribine (Kogut et al. 2006). Duck 
splenocytes stimulated with imiquimod produce both proin-
flammatory cytokines and IFN-α. Confirming chTLR7 is also 
endosomally located; treatment of chicken splenocytes with 
chloroquine completely abrogates the production of IL-1β, in 
response to R848 (Philbin et al. 2005).

Signalling downstream of TLR7 involves MyD88 and 
TRAF6 recruitment to the myddosome described above 
(Fitzgerald and Kagan 2020). Duck MyD88 showed 88% 
similarity to chicken MyD88 (Cheng et al. 2015b). Overex-
pression induced activation of NF-κB and IL-6. Duck and 
chicken TRAF6 share 96.5% amino acid identity (Jin et al. 
2017; Zhai et al. 2015). Overexpression of duck TRAF6  
activated NF-κB, and knockdown impaired poly (I:C) or 
SeV stimulated activation of NF-kB (Zhai et al. 2015). The 
duck IKKα and IkB subunits of IkB kinase (IKK) were 
cloned, and overexpression of either initiated gene expres-
sion of IFN-β, while knockdown inhibited Sendai virus 
induced NF-kB activation (Li et al. 2021; Zhou et al. 2021).

TLR7 and 8 are adjacent in most vertebrates, clearly the 
products of an ancient duplication. TLR8 is disrupted in the 
genome of both chickens (Philbin et al. 2005) and ducks 
(MacDonald et al. 2008). Indeed, it appears that intact 
TLR8 is not found in avian genomes (Velova et al. 2018). 
Some birds, however, show duplication of TLR7 genes 
(Velova et al. 2018). Duplicated TLR7s appear in 8 dif-
ferent species of birds, which are in different phylogenetic 
clades. Duplicated TLR7 genes appear in killdeer, cuckoo 
and passerines including crows and zebra finch (Velova 
et al. 2018). In each case, these sequences differ from one 
another by as much as 21 amino acids, but these sequences 
only group with the gene from the same species. They also 
do not show any evidence of gene conversion. The authors 
conclude that TLR7 has been duplicated many times and 
independently in each species (Velova et al. 2018). Ruddy 
turnstones may have three copies of TLR7 since five allelic 
sequences were identified in some individuals (Raven et al. 
2017). Birds do not have an equivalent of the mammalian 
TLR9, which is phylogenetically close to TLR7 and TLR8 
(Roach et al. 2005).

Chicken TLR7 is expressed in the spleen, bursa, caecal ton-
sil and most intestinal tissues (Iqbal et al. 2005a). It is strongly 
expressed in primary B cells and other leukocytes (Philbin 
et al. 2005) and expressed in the HD11 and DT40 immor-
talized cell lines (Philbin et al. 2005). Duck TLR7 is highly 
expressed in the spleen, bursa and lung (MacDonald et al. 
2008). High expression in the lung was not seen in chicken.
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Mammalian TLR7 is expressed in plasmacytoid dendritic 
cells (pDCs) and is involved in the production of IFN-α by 
these professional interferon producing cells (Diebold et al. 
2004). Intriguingly, small round intraepithelial haemato-
poetic cells in duck ileum have the hallmarks of pDCs, as 
they are TLR7-positive cells, detected by in situ hybridiza-
tion, and expand in numbers in response to R848 agonist or 
infection with avian influenza (Volmer et al. 2011). These 
cells are the same shape and in the same location as IFN-
α-positive cells, suggesting the cells are double positive for 
TLR7 and IFN-α. These data suggest that potentially pDCs 
as professional interferon–producing cells are conserved in 
birds. Other types of dendritic cells have been characterized 
in birds (Nagy et al. 2016; Wu et al. 2010), but not pDCs.

Viral antagonism of TLR signalling

Many bacterial and viral proteins antagonize human TLR 
signaling at almost every step (Rosadini and Kagan 2015). 
A few examples of RNA viruses blocking avian TLR signal-
ling are beginning to emerge. Comparison of three different 
Newcastle disease virus (NDV) strains showed that the most 
virulent NDV strain decreases TLR7 expression in HD11 
cells, although IFN-α and IFN-β increased for this strain 
(Zhang et al. 2018a). Prior treatment of cells with loxoribine, 
a TLR7 agonist, decreases viral replication. Infectious bron-
chitis virus (IBV) inhibits activation of the TLR7 pathway 
by downregulating transcription, but upregulates TLR3 (Zhu 
et al. 2020). Activation of TLR7 with agonists decreased 
IBV replication in chicken embryo kidney cells, but inhibi-
tion of TLR3 increased viral titres.

Evolution of avian TLR3 and 7

A comprehensive study of all avian TLR receptors in 
which sequences were available (Velova et  al. 2018) 
showed low levels of positive selection acting on the endo-
somal receptors compared to others, presumably because 
of the conserved nature of the nucleic acid ligands. Across 
diverse species, TLR3 showed a number of conservative 
positive selected sites across the three protein domains, 
with most in the extracellular domain, including 3 that 
were non-conservative differences, changing the physio-
chemical nature of that residue. In TLR7, there were more 
PSS with most being conservative; however, there were 
7 sites of non-conservative changes. Five of these were 
located near the cleavage site, where TLR7 is cleaved for 
signal transduction (Kanno et al. 2013). Two sites in TLR3 
were near the dimerization site, and since dimerization 
depends on RNA length, selection on these residues may 
influence binding. Many of the sites identified in these 

receptors will be important to consider in future analyses 
of bird populations and pathogen selection.

A comparison of TLR sequences from the galloanseri-
form clade looked at interspecific differences within TLR4, 
TLR5 and TLR7 sequences (Vinkler et al. 2014). There were 
stronger signatures of positive selection acting on the ligand 
binding region of TLR4 and TLR5, compared to TLR7. This 
likely reflects that TLR4 and TLR5 are recognizing struc-
turally variable bacterial ligands, while TLR7 is recogniz-
ing a conserved molecular structure. In TLR7, 4 positively 
selected sites were identified, and 25 non-conservative sites 
were shown to be diversifying between species. Some of the 
non-conservative sites are potentially important; however, 
for TLR7, most are in the part of the extracellular domain 
that is cleaved in the priming step for signalling, one in 
the signal peptide and one in the TIR domain. A system-
atic analysis of 66 representative bird species, covering 26 
orders, identified 9 positively selected sites in TLR3, and 
25 in TLR7 (Yang et al. 2021). Several of these sites were 
identified using two different prediction methods.

In a study aimed at identifying differences in RNA detec-
tors in shorebirds, Raven and colleagues amplified a frag-
ment of TLR3 and TLR7 from birds from three species, 
the sanderling (Calidris alba), red-necked stint (C. ruficol-
lis) and ruddy turnstone (Arenaria interpres) (Raven et al. 
2017). They included sequences from 50 available bird 
genomes. TLR3 and TLR7 showed overall a predominance 
of purifying selection. However, there were a small num-
ber of positively selected sites in TLR3 (3.2%) and TLR7 
(2.5%). Sites under positive selection appear to be in the 
LRR domains. In the population data, for TLR3, they found 
six sites were under positive selection, with half of these 
being in LRR14 in one species (C. alba). In TLR7, there 
were 14 sites under positive selection, and several of these 
were shared in more than one species (Raven et al. 2017). 
Interestingly, even domestic chicken breeds show substantial 
allelic diversity of TLR genes (Świderská et al. 2018). For 
example, there were 18 non-synonymous single nucleotide 
variants or alleles of TLR3 and 7 alleles of TL7. There was 
also evidence of convergent evolution leading to the same 
allele of TLR7 in unrelated breeds. In all, the level of avian 
TLR polymorphism far exceeds the polymorphism found in 
human TLRs.

RLR receptors and activation through MAVS 
oligomerization

A family of pattern recognition receptors named for the pro-
totype retinoic acid gene-I (RIG-I) is called the RIG-I-like 
receptor (RLR). Two other members of this family include 
melanoma differentiation–associated factor 5 (MDA5) and 
laboratory of genetics and physiology 2 (LGP2). The RLR 
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receptors detect viral RNA in the cytoplasm to initiate a signal-
ling cascade leading to type I interferon, turning on hundreds 
of interferon stimulated genes (ISGs). RIG-I-like receptors are 
involved in detection of a number of RNA viruses (Loo and 
Gale 2011; Rehwinkel and Gack 2020). RIG-I has specificity 
for nascent viral RNA that forms panhandle structures with 
a 5′-triphosphate overhang (Hornung et al. 2006; Liu et al. 
2015a; Schlee et al. 2009a, 2009b). In an influenza virus infec-
tion, these RIG-I agonists are generated as short minigenome 
viral RNAs as a result of RNA polymerase dysregulation dur-
ing replication (Te Velthuis et al. 2018). In mouse and man, 
RIG-I and MDA5 detect distinct viruses (Kato et al. 2006). 
RIG-I is involved in detection of short ds RNA and single-
stranded RNA viruses with panhandle structures like Sen-
dai virus, influenza virus, hepatitis C, ebolavirus and others. 
MDA5 has specificity for long double-stranded RNA and is 
involved in the detection of picornaviruses and vaccinia virus. 
Both receptors are required for detection of other viruses like 
West Nile virus. RIG-I and MDA5 selectively recognize short 
and long dsRNA of synthetic or viral origin depending on 
length, respectively (Kato et al. 2008). MDA5 measures RNA 
length in the range of 0.5 to 7 kb by forming and disassembling 
filaments depending on ATP hydrolysis (Peisley et al. 2012). 
Sun Hur has critically reviewed the details of recognition by 
RLRs and how this prevents the discrimination between host 
and viral RNA (Hur 2019). The RLR receptor LGP2 has no 
CARD domains, and thus cannot engage mitochondrial anti-
viral signalling (MAVS), and has been implicated in a confus-
ing array of positive or negative regulatory roles, reviewed 
recently (Rehwinkel and Gack 2020). This has been clarified 
recently as its role as an inhibitor of DICER has come to light 
(van der Veen et al. 2018). DICER is the mediator of RNA 
interference pathways of destruction of double-stranded RNA, 
an ancient antiviral pathway which is not active in cells with 
a functional interferon response (Maillard et al. 2019). Since 
many RNA viruses also have avian hosts, this family of recep-
tors are critically involved in detecting viruses relevant to birds 
such as influenza A viruses, NDV and WNV.

RIG‑I

A RIG-I receptor was identified in ducks and shares only 
53% identity to human RIG-I (Barber et al. 2010). How-
ever, it conserves the structure of two N-terminal caspase 
activation and recruitment domains (CARD), a central 
helicase domain and a C-terminal regulatory domain. 
The C terminal domain recognizes the ligand, while the 
N-terminal tandem CARD domains recruit the MAVS pro-
tein. Remarkably, a RIG-I homologue could not be iden-
tified in the chicken genome sequence derived from the 
red junglefowl. It was also not found among the available 
transcriptome sequences, while the same approach was 

used to identify the zebra finch RIG-I sequence. The duck 
RIG-I sequence could functionally compensate to allow 
recognition of RIG-I ligand in chicken cells (Barber et al. 
2010). Subsequent examination of 62 bird genomes for 
RLR sequences also failed to identify RIG-I in chicken, 
Japanese quail or turkey (Zheng and Satta 2018). Together, 
these data support the idea that RIG-I has been lost in 
the galliform bird lineage, or it has undergone signifi-
cant sequence divergence. The region has retained some 
synteny as the flanking aconitase 1 gene can be found; 
however, the gene order and organization differ between 
ducks and chickens. The apparent lack of any gene in birds 
must be considered with the caveat that avian genomes are 
not completely assembled, typically were built using the 
chicken genome as scaffold, and high GC content regions 
are notoriously difficult to sequence by high throughput 
sequencing (Hron et al. 2015).

The duck RIG-I was crystallized before other RIG-I 
sequences (Kowalinski et al. 2011), which can probably 
be attributed to unique features of the sequence. Notably,  
duck RIG-I lacks the critical lysine residue K172, the site 
where TRIM25 covalently attaches polyubiquitin chains 
for activation of human RIG-I CARD domains (Gack  
et  al. 2007). Mutation of potential ubiquitin sites in 
the duck CARD domains showed ubiquitin is attached 
at K167 and K193, but the double mutant is still active 
(Miranzo-Navarro and Magor 2014). Ubiquitin chains 
stabilize the structure of the CARD domains for ligation 
with MAVS. Duck RIG-I, like mammalian RIG-I (Zeng 
et  al. 2010), can associate with unanchored ubiquitin 
chains allowing the formation of the crystal structure. 
Availability of the duck RIG-I crystal structure enabled 
prediction and mutation of critical residues involved in 
the interaction with MAVS, and we performed experi-
ments alongside mutational analyses of human RIG-I, 
allowing us to contribute to the elucidation of a general 
model of activation of RIG-I (Wu et al. 2014). The RIG-I 
CARD domains from four bound molecules form a tetra-
meric lock-washer type structure offset by one CARD 
domain, upon which the single CARD domain of MAVS 
can bind and begin the process of oligomerization. Then, 
MAVS oligomerizes and assembles into a helical fila-
ment which initiates signal transmission. Mutants that 
cannot oligomerize are unable to activate the interferon 
reporter; thus, oligomerized MAVS is required to recruit  
TRAF6. This mechanism is highly conserved despite weak  
sequence conservation of duck and human MAVS, having 
only 28% sequence identity. More recently, RIPLET was 
shown to be more important in the activation of RIG-I in 
mammalian cells (Hayman et al. 2019), and it binds to 
RIG-I once it has bound to dsRNA, allowing discrimi-
nation depending on RNA length (Cadena et al. 2019). 
However, RIPLET appears to be missing in chickens, and  
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ducks primarily express an incomplete protein lacking the  
RING domain (Magor et al. 2013b), although a full-length  
version is present in the genome. An additional TRIM 
protein, TRIM27-L, is present in ducks but not chickens or  
turkeys, and co-expression with the constitutively active 
duck RIG-I N-terminal end (CARD domains) greatly 
augments activation of the MAVS signalling pathway 
in chicken DF-1 cells (Blaine et al. 2015). Activation of 
human MDA5 requires the E3 ligase TRIM65 (Kato et al. 
2021; Lang et al. 2017). Comparison of mammalian RLR-
TRIM contact sites determined by crystallography sug-
gest that well-conserved sites in RIPLET/TRIM65 contact 
well-conserved sites in RIG-I/MDA5, respectively, while 
less conserved sites interact with less conserved sites, sug-
gesting that these pairs of proteins have co-evolutionary 
relationships (Kato et al. 2021). The mechanism of activa-
tion of avian RIG-I and MDA5 remains unresolved.

RIG-I involvement in antiviral responses in birds is 
inferred from upregulation of RIG-I during infection with 
highly pathogenic avian influenza in ducks (Barber et al. 
2010) and NDV infection of geese (Sun et al. 2013b). Micro-
arrays from chicken cells, transfected with duck RIG-I and 
infected with influenza viruses, show augmented expression 
of many of ISGs in the cells with duck RIG-I in comparison 
to vector only (Barber et al. 2013). Infection of ducks, chick-
ens and quail with highly pathogenic H5N1 were carried out, 
and transcriptomes compared to reveal a cluster of 189 genes 
upregulated in ducks, but not quail or chickens (Morris et al. 
2020). These genes are strongly enriched for the RIG-I path-
way and ISGs. Our recent transcriptome analyses of ducks 
infected with high and low pathogenic influenza mirror these 
results with RIG-I pathway genes being important in both 
the lung and the intestine, sites of infection (Campbell et al. 
2021). Among the top 100 genes in the lung following infec-
tion with H5N1 are type I interferons and ISGs.

Duck RIG-I transfected into chicken DF-1 cells can initi-
ate signalling and induce antiviral proteins including IFN-β, 
Mx and PKR (Barber et al. 2010). Similarly, pigeon and 
goose RIG-I are functional in DF-1 cells (Xu et al. 2015). 
Goose RIG-I lacks a serine at residue 8 which is phospho-
rylated for autorepression in mouse and man (Nistal-Villan 
et al. 2010). The mutant G8S, restoring this site, induces 
much less interferon than wild-type goose RIG-I (Xu et al. 
2015). This residue is not well conserved in birds.

Independent of stimulating interferon pathways, mamma-
lian RIG-I can directly restrict incoming influenza virus par-
ticles (Weber et al. 2015). Binding of RIG-I to the incoming 
influenza ribonucleoprotein (RNP) is altered by the residue 
627 in PB2. RNPs with PB2 627 K in mammalian strains are 
bound inefficiently, while RNPs with the avian glutamate are 
efficiently bound by RIG-I. This function does not require 
signalling capacity of RIG-I, and was lost with deletion of 
RIG-I but not MAVS. Chickens, lacking RIG-I, may allow 

greater viral replication by the absence of this direct restric-
tion of incoming virus.

TRIM25 can also be a viral restriction factor. Mammalian 
TRIM25 has capacity to directly restrict influenza virus in 
the nucleus by binding to viral RNPs and prevents the viral 
RNA from moving into the polymerase complex (Meyerson 
et al. 2017). This activity is independent of the ubiquitin 
ligase activity or the interferon pathway. Duck TRIM25 is 
69% similar to chicken TRIM25 and only 48% identical to 
the human ortholog. Overexpression of TRIM25 in chicken 
cells does inhibit replication of avian leukosis virus, and 
siRNA knockdown increases viral titre (Zhou et al. 2020). 
It is not known whether this is due to direct antiviral action 
or TRIM25 acting on chMDA5, but TRIM25 is not known 
to activate mammalian MDA5. Similarly, knockdown of 
TRIM25 in duck cells increases the viral titre of DTMUV 
(Kaikai et al. 2021). TRIM25 is a direct restriction factor for 
infectious bursal disease virus (IBDV), which ubiquitinates 
viral protein 3 (VP3) marking it for degradation (Wang et al. 
2021).

MDA5

MDA5 is a detector for long double-stranded RNA and syn-
thetic RNAs like poly (I:C). MDA5 detects RNA involving 
both its helicase domain and the C terminal domain, and 
clustering of CARD domains again allows engagement of 
MAVS. The length of the RNA ligand is essential, as MDA5 
stacks along the length of the RNA and the tandem CARD 
domains oligomerize and recruit MAVS (Peisley et al. 2012; 
Wu et al. 2013). Again, the oligomerization step is essential 
for activation of MAVS and recruitment of TRAF6 to initiate 
the downstream signaling cascade.

Chicken MDA5 shares around 60% identity with human 
MDA5 (Karpala et al. 2011), with most of the difference 
concentrated in the CARD domain (43% identity)(Childs 
et  al. 2007). Chicken MDA5 can activate an interferon 
inducible reporter in chicken DF-1 cells (Childs et al. 2007). 
MDA5 is upregulated by treatment with type I interferon or 
influenza infection suggesting it is involved in detecting this 
virus, but knockdown does not alter viral replication kinet-
ics (Karpala et al. 2011). However, chMDA5 does affect 
the response to the virus, since silencing MDA5 decreases 
IFN-β production in infected cells (Liniger et al. 2012). 
This suggests that MDA5 does functionally compensate 
for the loss of RIG-I in chickens. Chicken MDA5, distinct 
from mammalian MDA5, preferentially responds to short 
dsRNA (Hayashi et al. 2014), although it can also respond 
to long poly (I:C) (Barber et al. 2010; Karpala et al. 2011). 
Indeed, it can recognize in vitro transcribed RNA with or 
without 5′-triphosphate at the ends (Karpala et al. 2011). 
Chicken MDA5 can also recognize NDV, showing sites of 
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positive selection in the DECH helicase domain and also in 
LGP2 (Xu et al. 2019). One positive selected site L625 was 
swapped back to the consensus avian glutamate, L625E, and 
this mutant had lower affinity for NDV RNA. LGP2 aug-
mented this interaction. Three additional positive selected 
sites in LGP2 were similarly shown to increase interaction 
with NDV RNA (Xu et al. 2019). Duck MDA5 does not 
share these residues (Barber et al. 2010) and is unlikely to 
bind NDV RNA. Duck MDA5 is upregulated in influenza 
infected tissues (Fleming-Canepa et al. 2019), and over-
expression of the CARD domain can decrease viral titres 
(Wei et al. 2014).

Conservation of MAVS in birds

MAVS is critically involved in the production of NFκB and 
IRF3 in multiple cell types, except pDCs, as knockout mice 
failed to respond to poly (I:C) and were severely compro-
mised in immune defense against viruses (Sun et al. 2006). 
Knockdown of MAVS in ducks significantly reduced induc-
tion of IFN-β following poly (I:C) or Sendai virus infection 
(Li et al. 2016). MAVS sequences are very poorly conserved 
throughout vertebrates. Duck and chicken MAVS are 58% 
identical, and duck and human MAVS are only 28% identical 
(Xiao et al. 2020). Of the many potential post-translational 
modification sites in human MAVS, only a few are conserved 
in birds. These include the lysines K7 and K442 (numbering 
based on human sequence) where ubiquitination to target 
MAVS for degradation occurs. Sequences within the CARD 
domain are conserved between avian and human MAVS 
(Sun et al. 2019), a T54 and GWV at residues 67–69, sites 
involved in activation of human MAVS (Seth et al. 2005). 
The duck and chicken MAVS conserve sequences around a 
putative pLxIS motif (Xiao et al. 2020). This motif, which 
is DLAIS in human MAVS, is phosphorylated by IKKβ, 
which in turn recruits TBK1 that phosphorylates IRF3 for 
activation. Upon activation, IRF3 undergoes dimerization 
and entry into the nucleus where it is involved in the produc-
tion of type 1 interferon. Even the sequence of this site is not 
well conserved in birds and hints at the selective pressures 
of pathogens on this protein.

Viral antagonism of RLR receptors

In mammals, there are many viral proteins that directly 
interfere with signaling through MAVS, either by cleaving 
it or modulating function as a strategy to overcome host 
responses, as recently reviewed (Ren et al. 2020). While 
very few studies look at this in birds, as these pathways 
are studied, examples emerge. In fact, chicken MDA5 was 
characterized initially as a target for interference by avian 

and human paramyxoviruses, through the V protein (Childs 
et al. 2007). Influenza NS1 shuts down interferon signal-
ling through interaction with TRIM25 and RIPLETs, the E3 
ubiquitin ligases that activate RIG-I. This has been shown 
to be strain and species dependent. Influenza NS1 protein 
from four different strains inhibit human TRIM25, but only 
one interacts with chicken TRIM25 (Rajsbaum et al. 2012). 
Another influenza protein derived from the second read-
ing frame of polymerase B1 called PB1-F2 inhibits MAVS 
signalling induced by overexpressed duck MAVS or RIG-I 
in chicken DF-1 cells (Xiao et al. 2020). We showed an 
interaction between duck MAVS and PB1-F2 through co-
immunoprecipitation from these cells. This interaction also 
blocks the TRIM25 mediated RIG-I CARD ubiquitination, 
possibly through loss of mitochondrial membrane poten-
tial. The NS1 protein of the flavivirus duck Tembusu virus 
(DTMUV) also blocks MAVS signalling by interacting 
with the C-terminal region of MAVS (Wu et al. 2019). This 
effectively sequesters MAVS from signalling downstream of 
RIG-I or MDA5 in the duck cells, accounting for the weak 
induction of interferon by infection with DTMUV.

Evolution of avian RLRs

Analysis of the evolution of RIG-like receptors in 62 
avian species highlights the conserved and evolving 
features of the three RLRs (Zheng and Satta 2018). The 
conservation scores and dN/dS ratios indicate that avian 
MDA5 is highly conserved in the helicase domain, with 
lower scores in the CARD domains. MDA5 shows several 
sites of positive selection in the CARD domain, while 
RIG-I shows only one potential site. Two sites showing 
positive selection at either ends of the helicase domain 
are located at identical places in both RIG-I and MDA5, 
although the functional significance of this variation is 
not known. LGP2 has the lowest conservation score of the 
three RLR receptors but shows unique sites of positive 
selection only in the three species for which RIG-I was 
not found (chicken, turkey and quail). With the RLRs, 
almost all the positively selected sites are exposed, and 
none is located where they would alter contact with the 
RNA. Most likely, these sites may affect regulation of the 
receptor and not detection of RNA ligands. Functionally 
important sites were analysed, including the two ubiqui-
tination sites identified in ducks (K167 and K193). Of 
these K167 is invariant in all sequences, while K193 has 
substitutions to threonine in two crow species and the car-
mine bee-eater. Finally, the only positively selected site 
in RIG-I is located the region that can be spliced out in 
a splice variant that is created in duck (Miranzo-Navarro 
and Magor 2014), and humans (Gack et al. 2008), which 
renders RIG-I inactive.
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STING

Stimulator of interferon gene (STING) is an adaptor protein 
critically involved in the detection of DNA and RNA viruses 
and initiation of NF-κB signalling and IRF3 transcription 
(Ishikawa and Barber 2008). STING is the key adaptor 
involved in the cyclic GMP-AMP synthase (cGAS) signal-
ling pathway, primarily a cytoplasmic DNA sensor (Sun 
et al. 2013a). Upon detection of cGAMP, STING triggers 
phosphorylation of IRF3 and TBK1. Several experiments 
showed that STING is also involved in defense against RNA 
viruses (Holm et al. 2016; Schoggins et al. 2014). cGAS 
knockout mice were more susceptible to West Nile virus, 
and infected cGAS−/− bone marrow macrophages had higher 
viral load than wild-type and lower expression of IFNβ and 
all ISGs (Schoggins et al. 2014). In mouse embryonic fibro-
blasts, lack of STING (but not cGAS) significantly reduced 
the IFN produced upon infection with NDV and Sendai virus 
(SeV) (Holm et al. 2016). Co-immunoprecipitation experi-
ments demonstrated that STING interacts with RIG-I and 
MAVS, but not MDA5 (Ishikawa and Barber 2008). Infec-
tion with SeV greatly increased the interaction between 
STING and RIG-I. These studies suggest a role for STING 
signalling, perhaps involving endogenous ligands, in protec-
tion against RNA viruses.

Because chickens lack RIG-I, it was of interest whether 
chicken STING is involved in RNA virus detection in 
chickens. Indeed, chicken STING is capable of activation 
of the IFN pathway in chicken DF-1 cells (Cheng et al. 
2015a). Overexpression of STING in DF-1 cells activates 
IRF-7 signalling and NF-κB and an IFN-β reporter. STING 
is upregulated in these cells upon infection with NDV, AIV 
or fowlpox virus FPV, and upon knockdown of STING, 
the titre of all three viruses increased. Duck STING has 
recently been characterized, and overexpression in duck 
embryonic fibroblasts increases IFN-β promoter activ-
ity (Cheng et al. 2019a). Constitutive expression of duck 
STING is high in stomach and intestinal tissues and also in 
the trachea and lung (all relevant in influenza virus infec-
tions). It is also upregulated in duck embryonic fibroblasts 
and in tissues of ducks infected with a low pathogenic 
H9N2 influenza strain. This suggests that STING may be 
involved in viral defense in ducks. It is not yet known 
whether STING interacts with duck RIG-I or MDA5.

Chicken and duck STING share only 43% identity to 
human STING and 71% amino acid sequence identity to 
each other (Cheng et al. 2019a, 2015a). The overall struc-
ture of STING is conserved, having four predicted trans-
membrane domains, two c-di-GMP binding domains and 
a carboxy-terminal tail (Cheng et al. 2019a). The location 
of the pLxIS motif in the C-terminal tail can be predicted, 
although the sequence shows considerable divergence 

compared to the human sequence ELLIS, as SLQVS in 
chickens (Cheng et al. 2019b). The site SLQIS was func-
tionally characterized in duck STING (Zhang et al. 2020). 
Phosphorylation at this serine is required for recruiting 
TBK1 and signalling through IRF3. Because birds lack 
IRF3 (Magor et al. 2013b), signalling was presumed to 
involve IRF7. By making an IRF7 knockout in chicken 
DF-1 cells, Cheng and colleagues showed that IRF7 is 
indispensable for signalling through MAVS and STING 
in chicken cells (Cheng et al. 2019b).

RNA virus antagonism of avian STING

Numerous viral proteins are capable of inhibiting the STING 
pathway as reviewed recently (Eaglesham and Kranzusch 
2020; Ma and Damania 2016). While this has been rela-
tively unexplored in avian cells, some examples have been 
noted. Several RNA viruses affecting human STING, also 
circulate in birds, notably influenza A viruses. The influenza 
A virus hemagglutinin fusion peptide can directly inhibit 
human STING (Holm et al. 2016). Fusion peptide inhibits 
STING activation triggered by membrane fusion, a function 
of STING previously noted (Holm et al. 2012). It is likely 
that detection of damage by viral entry into membranes is a 
fundamental function of evolutionarily ancient STING. The 
flavivirus DTMUV cleaves STING using protease NS2B3, 
contributing to this virus’ arsenal of ways to inhibit IFN-β 
transcription (Wu et al. 2019). Finally, DTMUV strongly 
blocks the signalling pathway by binding STING with non-
structural protein NS2A, interfering with the binding of 
TBK1 (Zhang et al. 2020). A functional screen of the onco-
genic herpesvirus that causes Marek’s disease (a DNA virus) 
identified five proteins that can inhibit the STING pathway, 
including one called Meq, that blocks recruitment of TBK1 
to STING in chicken cells (Li et al. 2019). These examples 
demonstrate the vulnerability of this point in the signalling 
pathways.

Conclusions

Great strides have been made in establishing the function of 
avian PRR involved in detection and signalling in response 
to RNA viruses. Several studies have identified sites within 
these receptors that are under positive selection, and some 
are non-conservative changes. These sites will be impor-
tant to consider in the context of populations and patho-
gens. It will also be interesting to consider evolution of the 
PRR receptors and their adaptors TRIF, MAVS and STING 
between birds of different species, which may emerge from 
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the avian genome projects. It is largely unknown whether 
RLR receptors and adaptors show variation within bird pop-
ulations contributing to pathogen susceptibility. Consider-
able effort is needed to understand the regulation of these 
signalling pathways in any species, including birds. Finally, 
much remains to be done to understand viral antagonism of 
these pathways in birds. The number of ways that viruses 
interfere in these pathways is undoubtedly as great in birds 
as it is in mouse and man.
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