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The versatile nature of miR-9/9* in human cancer
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ABSTRACT

miR-9 and miR-9* (miR-9/9*) were first shown to be expressed in the nervous 
system and to function as versatile regulators of neurogenesis. The variable expression 
levels of miR-9/9* in human cancer prompted researchers to investigate whether these 
small RNAs may also have an important role in the deregulation of physiological and 
biochemical networks in human disease. In this review, we present a comprehensive 
overview of the involvement of miR-9/9* in various human malignancies focusing on 
their opposing roles in supporting or suppressing tumor development and metastasis. 
Importantly, it is shown that the capacity of miR-9/9* to impact tumor formation is 
independent from their influence on the metastatic potential of tumor cells. Moreover, 
data suggest that miR-9/9* may increase malignancy of one cancer cell population 
at the expense of another. The functional versatility of miR-9/9* emphasizes the 
complexity of studying miRNA function and the importance to perform functional 
studies of both miRNA strands in a relevant cellular context. The possible application 
of miR-9/9* as targets for miRNA-based therapies is discussed, emphasizing the need 
to obtain a better understanding of the functional properties of these miRNAs and to 
develop safe delivery methods to target specific cell populations.

INTRODUCTION

MiRNAs are short non-coding RNAs that by 
binding to target mRNAs decrease protein levels and 
in this way regulate crucial cellular processes. [1–3] 
miRNA transcripts are expressed as hairpin-like precursor 
structures that undergo stepwise maturation into double-
stranded miRNA/miRNA* duplexes. In the past, it 
was proposed that one of the strands, called the mature 
miRNA, is stabilized and becomes functional, whereas 
another, referred to as the passenger strand or miRNA*, is 
degraded. Recently, it has been shown that miRNA*s can 
also display functionality and play complementary roles to 
their related miRNAs. [4–6]

miR-9 (miR-9-5p) and miR-9* (miR-9-3p) are two 
miRNAs that originate from the same precursor and are 
highly conserved during evolution from flies to humans. 
[7] All vertebrate miR-9/9* orthologs have an identical 

mature sequence. In mammals, miR-9/9* are encoded by 
three genes: MIR9-1, MIR9-2 and MIR9-3. In humans, 
these genes are located on the chromosomes 1 (1q22), 
5 (5q14.3) and 15 (15q26.1), respectively. miR-9/9* are 
mainly expressed in the nervous system and were initially 
studied as regulators of neurogenesis. [8] Interestingly, 
aberrant expression of miR-9/9* has been found in 
various types of human cancer revealing an unanticipated 
functional versatility. [9–11] The high level of sequence 
conservation and the fact that miR-9/9* are encoded by 
three different genomic loci points to important functional 
roles of these miRNAs that may be exploited by cancer 
cells.

In the past years, several studies have reported on 
the relationship of miR-9/9* expression with different 
cellular processes, such as differentiation, proliferation, 
migration and metastasis. [11–14] Interestingly, miR-
9 and miR-9*, although concomitantly expressed from 
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one precursor miRNA, may be preferentially retained 
and can play synergistic or opposite roles within one 
malignancy. [15–17] Here, we summarize the diverse 
functions of miR-9/9* in the biology of human cancer. 
We outline the mechanisms through which miR-9/9* 
are involved in tumorigenesis and the cellular context 
in which these miRNAs operate. Although most of the 
reported findings still need validation under physiological 
(in vivo) conditions, they underscore the complexity of 
miRNA functionality within the heterogeneous population 
of cancer cells. This review may serve as the basis for a 
broader dispute about the often counteracting functions of 
a particular miRNA in the pathobiology of human cancer 
and their implications for future treatment opportunities.

GLIOBLASTOMA MULTIFORME

Glioblastoma multiforme (GBM; grade IV 
astrocytoma) is the most common and aggressive brain 
tumor. [18] It has been proposed that GBM originates 
from the cancer cell population with stem cell-like 
properties that is characterized by CD133 expression. 
[19] GBM can be divided into clinically and genetically 
distinct groups based on the similarity of miRNA and 
mRNA expression signatures to different neural precursor 
cell types: radial glia, oligoneuronal precursors, neuronal 
precursors, neuroepithelial/neural crest precursors or 
astrocyte precursors. [20]

In CD133+ GBM stem cells, miR-9/9* are highly 
expressed and needed for stem cell renewal. [17] 
Inhibition of miR-9 as well as miR-9* using 2’-O-
methylated antisense inhibitors results in reduced colony 
numbers (Figure 1A). Both miRNAs directly target 
a tumor suppressor calmodulin binding transcription 
activator 1 (CAMTA1), of which overexpression mimics 
the phenotype of miR-9/9* inhibition. Additionally, R28 
GBM cells that overexpress CAMTA1 form smaller 
tumors in vivo than control cells.

The highest expression of miR-9 has been found in 
the oligoneural subclass of GBM. [20] miR-9 is considered 
a regulator of a subtype-specific gene expression 
network and drives subtype-specific cell decisions. [20] 
Overexpression of miR-9 using a mimic in CD133+ GBM 
stem cells promotes oligoneural and suppresses a more 
aggressive mesenchymal phenotype by downregulating 
expression of Janus kinases (JAK1 and JAK3), 
inhibiting activation of signal transducer and activator of 
transcription 3 (STAT3) and decreasing expression of the 
STAT3 transcriptional target CCAAT/enhancer-binding 
protein β (C/EBPβ) (Figure 1A). [20, 21]

In GBM cell lines, miR-9 has been reported to 
play a critical role in determination of the so-called “go 
or grow” phenotype. [13] miR-9 is part of a feedback 
minicircuitry that allows a tight control of the expression 
levels of target genes that coordinate the proliferation 
and migration of GBM cells (Figure 1B). In contrast 

to increasing colony numbers of CD133+ GBM stem 
cells via CAMTA1, miR-9 has been shown to inhibit 
proliferation of GBM cell lines by targeting the cyclic 
AMP response element-binding protein (CREB) but to 
promote migration by targeting neurofibromin 1 (NF1). 
Additionally, the transcription of both miR-9 and NF1 is 
under CREB’s control. Gene copy amplification of miR-9 
hinders the balance of this regulatory minicircuitry and 
contributes to motility of GBM cells. Another miR-9 
target that contributes to reduced proliferation and tumor 
growth is stathmin (STMN1), which regulates microtubule 
formation dynamics during cell-cycle progression. [22, 
23] U87MG GBM cells transfected with miR-9 mimic 
are characterized by decreased expression of STMN1 and 
form smaller tumors than control cells.

In GBM cells that are resistant against alkylating 
agents, miR-9 is highly expressed and miR-9* is 
downregulated. [15, 16, 24, 25] miR-9 has been shown 
to contribute to the chemoresistance of GBM cells by 
direct targeting of patched homolog 1 protein (PTCH1) 
and subsequent activation of sonic hedgehog (SHH) 
signaling pathway (Figure 1C). [25] Additionally, 
the delivery of anti-miR-9 to the resistant GBM cells 
indirectly downregulates the expression of the multidrug 
transporter (MDR1) and sensitizes the GBM cells to 
chemotherapy. [15] miR-9* is part of an ID4-miR-9*-
SOX2-ABCC3/ABCC6 regulatory pathway. [16] Inhibitor 
of differentiation 4 (ID4) suppresses miR-9* expression 
and upregulates the direct target of this miRNA SRY (sex 
determining region Y)-box 2 (SOX2). SOX2 is highly 
expressed in patients with GBM. [26] Its upregulation 
leads to increased chemoresistance, self-renewal and 
tumorigenicity of GBM cell lines and patient-derived 
CD133+ GBM stem cells. [16]

40% to 50% of primary GBM cases exhibit 
epidermal growth factor receptor (EGFR) amplification, 
overexpression, and/or mutations. [27] An EGFR 
mutant that lacks exons 2-7 (ΔEGFR) is constitutively 
active and present in a high proportion of GBM cases 
with EGFR amplification. This EGFR mutant confers a 
strong tumor-enhancing effect by promoting growth, cell 
invasion and chemoresistance. [28–30] In GBM cells 
that express ΔEGFR, miR-9 acts as a tumor suppressor 
that downregulates transcription factor forkhead box P1 
(FOXP1) (Figure 1D). [31] Viral overexpression of miR-
9 or silencing of FOXP1 antagonizes ΔEGFR-dependent 
tumor growth in vivo. ΔEGFR activates Ras/PI3K/
AKT, which in turn suppresses miR-9. Of note, the viral 
transduction as used here likely results in overexpression 
of both miR-9 and miR-9* making it difficult to discern 
whether both or only a single miRNA display activity. 
However, as the presented outcome is in line with the 
previously mentioned reports concerning the function of 
miR-9* in chemoresistant GBM cells the expression of 
miR-9* and its influence on tumorigenicity of ΔEGFR 
GBM cells needs to be further investigated. [16]
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Figure 1: miR-9 and miR-9* functions in human glioblastoma multiforme. Each graph schematically depicts the reported 
levels of expression of miR-9/9* as well as their functional significance including relevant target genes and phenotypical effects in (A) 
CD133+ stem cells, (B) glioblastoma cell lines, (C) chemoresistant glioblastoma cells, (D) ΔEGFR cells.
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BREAST CANCER

Breast cancer (BC) is a heterogeneous malignancy 
that can be classified by estrogen receptor (ESR1) 
expression (ER+), human epidermal growth factor 
receptor 2 (ERBB2) expression (HER2+), the absence of 
ESR1, ERBB2 and the progesterone receptor in triple-
negative breast cancer (TNBC) or the expression of 
driver oncogenes (e.g. MYC). [32–35] A vast amount of 
data concerning the diverse roles of miR-9/9* have been 
obtained for breast cancer.

Because of the availability of endocrine-targeted 
therapy (e.g. tamoxifen treatment), patients with BC 
that express ER have better prognosis. [36] Nonetheless, 
therapeutic resistance eventually occurs in a large number 
of cases. In the ER+ MCF-7 cell line, miR-9 has been 
shown to directly target ER and to influence, not only 
ER signaling but also other steroid receptor pathways 
(Figure 2A). [37] miR-9 levels are reduced in most of ER+ 
BC cases compared to ER-. However, when upregulated 
it is associated with worse patient outcome and its viral 
overexpression in MCF-7 cells contributes to tamoxifen 
resistance. [37, 38] The expression of miR-9 in ER+ BC 
has recently been linked to the level of lncRNA taurine-
upregulated gene 1 (TUG1). It has been proposed that 
TUG1 and miR-9 may co-regulate each other to impact 
cell proliferation [39].

In TNBC cells, miR-9/9* are expressed at low levels 
due to promoter hypermethylation of the MIR-9 loci. [40] 
miR-9 has been suggested to play a tumor suppressive 
role by targeting mitochondrial bifunctional enzyme 
MTHFD2 and NOTCH1 receptor (Figure 2B). [14, 41] 
Overexpression using pre-miR-9 or lentiviral constructs 
decreases the invasiveness and migration of TNBC MDA-
MB-231 cells. [14, 41] In line with this, knockdown of 
MTHFD2 recapitulates the anti-invasive effect of miR-9. 
NOTCH1 is known to be involved in the pathogenesis of 
TNBC and its inhibition reduces the migratory potential 
of MDA-MB-231 cells. [42, 43] Interestingly, the 
downregulation of NOTCH1 with γ-secretase inhibitors 
in ER+ MCF-7 cell line stimulates migration in vitro and 
promotes tumor growth in vivo. [43] Recently, it has been 
reported that miR-9 may influence TNBC aggressiveness 
by taking part in cross-talk between cancer cells and 
cancer-associated fibroblasts [44].

Mitogen-activated protein kinase enzymes 1 and 2 
(MEK1/2) inhibitors have been used in cancer therapy but 
can become ineffective due to acquired drug resistance. 
[45] In TNBC cells, treatment with a MEK1/2 inhibitor 
together with a miR-9 mimic increases cell proliferation, 
whereas treatment together with a miR-9* mimic 
suppresses growth, migration and invasion of tumor cells 
(Figure 2B). [40] miR-9* activity is mediated through 
downregulation of β1 integrin(ITGB1), which is important 
for growth factor receptor and extracellular matrix-related 
signaling.

The expression of miR-9 has been widely related 
to BC metastasis. In non-metastatic SUM159 cells, 
miR-9-mediated downregulation of leukemia inhibitory 
factor receptor (LIFR) induces migration, invasion 
and metastatic colonization through deregulation of 
the Hippo-YAP pathway. [46] Additionally, miR-9 
has been reported to be higher expressed in metastatic 
than in non-metastatic primary human breast cancer. 
In MCF-7 and MDA-MB-231 cells, miR-9 has been 
shown to downregulate the expression of another tumor 
suppressor gene FOXO1 that belongs to the FOXO 
family of Forkhead transcription factors. [47] FOXO1 
3’ UTR may sequester miR-9 from E-cadherin 3’ UTR. 
Overexpression of FOXO1 leads to upregulation of 
E-cadherin and decreases the migration and invasiveness 
of BC cell lines. In 2010, Ma et al. reported that miR-
9 plays an important role in metastasis of MYC-driven 
breast tumors. [11] MYC oncoprotein activates miR-9 
expression, which consequently causes downregulation 
of miR-9 direct target E-cadherin (Figure 2C). This leads 
to increased cell motility and invasiveness of BC cells in 
vitro. E-cadherin is an epithelial cell adhesion molecule 
that forms the core of adherens junctions between adjacent 
epithelial cells and its inactivation enables dissociation 
of carcinoma cells. [48] By targeting E-cadherin in 
breast tumor cells, miR-9 enables non-metastatic cells to 
form pulmonary micrometastasis. [11] In summary, the 
data show that in BC miR-9 can target two alternative 
metastatic suppressors: LIFR (which activates Hippo 
signaling, leading to inactivation of the transcriptional co-
activator YAP) and E-cadherin (that maintains adherens 
junctions) [11, 46].

CERVICAL CANCER

Cervical cancer can be classified into two prevailing 
subtypes: cervical squamous cell carcinoma (CSCC; 
about 80% of cases) and cervical adenocarcinoma (CA; 
about 5-20% of cases). [49] In CSCC, a chromosomal 
gain of 1q results in upregulation of miR-9 (1q23.3) 
and is linked with malignant progression (Figure 3A). 
[50] Overexpression of miR-9 in normal keratinocytes 
blocks epithelial differentiation, and induces proliferation 
and migration. Beside chromosomal gain, an elevated 
expression of miR-9 in CSCC is caused by human 
papillomavirus (HPV) infection (Figure 3A). [51] miR-
9 expression is activated by HPV E6 – an essential 
oncogene in cervical cancer development. In normal 
keratinocytes, overexpression of HPV E6 and miR-9 
leads to downregulation of miR-9 target genes involved 
in cell migration, such as activated leukocyte cell 
adhesion molecule (ALCAM) and follistatin-related 
protein 1 (FSTL1). [51–53] This leads to increase in cell 
motility [51].

In CA, miR-9 is downregulated due to frequent 
promoter-hypermethylation and has been shown to act as 
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Figure 2: miR-9 and miR-9* functions in human breast cancer. Each graph schematically depicts the reported levels of expression 
of miR-9/9* as well as their functional significance including relevant target genes and phenotypical effects in (A) ER+ cells, (B) triple-
negative cells, (C) metastatic cells.
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a tumor suppressor (Figure 3B). [54] Ectopic expression 
of miR-9 inhibits the JAK/STAT3 pathway by targeting 
interleukin 6 (IL-6). This results in decreased proliferation 
and migration of HeLa cells in vitro and reduced tumor 
growth in vivo. IL-6 is highly expressed in human 
cervical cancer promoting tumorigenesis by activation 
of the JAK/STAT3 pathway, subsequent upregulation of 
vascular endothelial growth factor (VEGF) and increased 
angiogenesis [55].

SQUAMOUS CELL CARCINOMA OF 
SKIN AND ORAL CAVITY

Squamous cell carcinoma (SCC) is a type of cancer 
that develops from squamous epithelial cells in diverse 
tissues, e.g. within skin and oral cavity. Cells of skin 
epithelium undergo constant self-renewal throughout 
life, therefore it is believed that SCC originates from 
keratin 15-expressing stem cells (K15+) that harbor 
pro-proliferative mutations in KrasG12D. [56] Additional 
deletion of Smad4 in these cells leads to the spontaneous 
development of multi-lineage tumors, including metastatic 

squamous cell carcinoma. [57, 58] In murine K15.
KrasG12D.Smad4–/– cancer stem cell-enriched population, 
viral overexpression of miR-9 leads to the expansion of 
metastatic cell population resulting in increased invasion 
and metastasis (Figure 4A). [58] In primary human SCC 
cells, high expression of miR-9 correlates with metastasis 
and the loss of a predicted direct target α-catenin. 
However, α-catenin depletion alone does not cause SCC 
metastasis suggesting that additional targets are required 
for miR-9-mediated effect. [59] miR-9 has been reported 
to be expressed at high levels in patients with recurrent 
head and neck SCC [60].

In non-metastatic human oral SCC specimens, miR-
9 is downregulated probably due to frequent promoter 
hypermethylation. [61, 62] Overexpression using miR-9 
mimic in human the UM-SCC22A cell line inhibits cell 
proliferation (Figure 4B). [61] Curcumin has been reported 
to have growth-suppressive potential in different types 
of cancer, as well as in oral SCC. [62, 63] In the human 
SCC-9 cell line, curcumin treatment leads to upregulation 
of miR-9, which in turn inhibits cell proliferation via 
downregulation of cyclin D1 and suppression of Wnt/β-

Figure 3: miR-9 and miR-9* functions in human cervical cancer. Each graph schematically depicts the reported levels of 
expression of miR-9/9* as well as their functional significance including relevant target genes and phenotypical effects in (A) cervical 
squamous cell carcinoma cells, (B) cervical adenocarcinoma cells.
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catenin signaling (Figure 4B). [62] Cyclin D1 and the Wnt/
β-catenin signaling pathway are frequently deregulated in 
human cancer and may play essential roles in the process 
of tumorigenesis [64, 65].

HEMATOLOGICAL MALIGNANCIES

Hematopoiesis is a hierarchical differentiation 
process in which hematopoietic stem cells (HSCs) 
undergo step-wise maturation into various types of 
blood cells. [66, 67] During this process, HSCs lose 
their self-renewal and multi-lineage differentiation 
capability to give rise to lymphoid and myeloid progeny. 
Deregulation of normal hematopoiesis may result in 
development of hematological tumors. [68, 69] Acute 
and chronic myelogenous leukemia, myelodysplastic 
syndromes, and myeloproliferative disorders are tumors 
derived from the myeloid line, whereas lymphomas, 
lymphocytic leukemias, and myeloma have a lymphoid 
origin. Hematological malignancies are heterogeneous 
disorders that are characterized by frequent chromosomal 
abnormalities, genetic mutations and aberrations in 
epigenetic regulation. [68, 69]

In acute lymphoblastic leukemia (ALL), low 
miR-9 expression is associated with hypermethylation 
of MIR9 gene family (Figure 5A). [70] This epigenetic 
downregulation leads to upregulation of predicted miR-
9 and miR-9* targets, fibroblast growth factor receptor 1 
(FGFR1) and cyclin-dependent kinase 6 (CDK6). FGFR1 

and CDK6 are involved in cell proliferation and survival. 
[71, 72] Treatment with FGFR1 and CDK6 inhibitors 
suppresses the proliferation of ALL cells. [70] MIR9 genes 
have been reported to be also frequently methylated in 
chronic lymphocytic leukemia (CLL) and overexpression of 
miR-9 using a mimic decreases CLL cell proliferation. [73]

CD99 is a transmembrane glycoprotein that is 
implicated in cell migration, adhesion and differentiation. 
[74–76] It is expressed at low levels in Hodgkin/Reed-
Sternberg (HRS) cells of Hodgkin lymphoma (HL). 
[77] CD99 downregulates the expression of miR-9 and 
upregulates a direct miR-9 target: positive regulatory 
domain 1 (PRDM1/BLIMP-1) (Figure 5B). [10, 77] 
PRDM1 is the master regulator of terminal B-cell 
differentiation. miR-9 is highly expressed in HL cells 
and its downregulation by CD99 overexpression or 
a direct knockdown using miR-9 inhibitor augments 
PRDM1 levels that trigger B-cell differentiation into 
plasma cells. [77] During normal B-cell development 
within the germinal centers, B cells closely interact 
with follicular dendritic cells (FDC). [78] Only B cells 
that bind to these cells survive in the germinal centers 
and differentiate. It has been shown that direct cell-cell 
contact between follicular dendritic cells and B cells leads 
to downregulation of miR-9 and upregulation of PRDM1. 
This subsequently may promote B-cell differentiation.

In multiple myeloma (MM), insulin-like growth 
factor 2 mRNA binding protein 3 (IGF2BP3) stabilizes 
the expression of a cell surface glycoprotein CD44 that 

Figure 4: miR-9 and miR-9* functions in human skin and oral cavity squamous cell carcinoma. Each graph schematically 
depicts the reported levels of expression of miR-9/9* as well as their functional significance including relevant target genes and phenotypical 
effects in (A) metastatic skin squamous cell carcinoma cells, (B) non-metastatic oral squamous cell carcinoma cells.
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is involved in drug resistance of MM cells. [79] Histone 
deacetylase (HDAC) inhibitors are promising novel 
chemotherapeutics in MM since they downregulate 
CD44 expression. HDAC inhibitors treatment leads to 
upregulation of miR-9 and downregulation of its direct 
target IGF2BP3 (Figure 5C). Subsequent downregulation 
of CD44 sensitizes the resistant MM cell to lenalidomide 
treatment.

miR-9*, has been reported to have a tumor 
suppressive role in Waldenström macroglobulinemia 
(WM) (Figure 5D). [80] WM is a B-cell low-grade 
lymphoma characterized by the accumulation of B cells in 
the bone marrow. miR-9* is expressed at reduced levels in 
WM CD19+ cells compared to normal CD19+ counterparts. 
Its overexpression using pre-miR-9* in WM cells inhibits 
the unbalanced HDAC activity by downregulation of 

Figure 5: miR-9 and miR-9* functions in human lymphoid malignancies. Each graph schematically depicts the reported levels 
of expression of miR-9/9* as well as their functional significance including relevant target genes and phenotypical effects in (A) acute 
lymphoblastic leukemia cells, (B) Hodgkin lymphoma cells, (C) multiple myeloma cells, (D) Waldenström macroglobulinemia cells.
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HDAC4 and 5. This results in decreased proliferation, 
increased apoptosis and autophagy. Neither adherence to 
primary BM stromal cells nor growth factors protected 
against the miR-9*-dependent growth inhibition. Aberrant 
HDAC activity has been reported to have a tumorigenic 
effect in many malignancies by influencing the expression 
of genes controlling cellular proliferation, differentiation 
and apoptosis [81].

In acute myeloid leukemia (AML), miR-9 has 
been reported to be differentially expressed between 
AML subtypes. [12, 82, 83] Dependent on the type of 
leukemic cell, it may suppress or promote leukemic 
development. The t(8;21) rearrangement is the most 
common chromosomal translocation in AML resulting 
in the formation of AML1-ETO fusion protein. 
[84] AML1-ETO downregulates miR-9 and in this 

way promotes the expression of UBASH3B/Sts-1, a 
tyrosine phosphatase that inhibits CBL and enhances 
STAT5/AKT/ERK/Src signaling to promote myeloid 
proliferation (Figure 6A). Ectopic expression of 
miR-9 in t(8;21) AML cells reduces leukemic growth 
and enhances monocytic differentiation induced 
by calcitrol by direct repression of the oncogenic 
LIN28B/HMGA2 axis. [82] LIN28 and HMGA2 are 
expressed in undifferentiated proliferating cells during 
embryogenesis and their upregulation in adult cells 
leads to oncogenic transformation [85, 86].

miR-9 is highly upregulated in MLL-
rearranged leukemic cells as compared to non-MLL-
rearranged cells and normal controls (Figure 6A). 
[12, 83] MLL fusion proteins may promote miR-9 
expression by direct binding to the promoter regions 

Figure 6: miR-9 and miR-9* functions in human myeloid malignancies. Each graph schematically depicts the reported levels of 
expression of miR-9/9* as well as their functional significance including relevant target genes and phenotypical effects in (A) acute myeloid 
leukemia cells.
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Table 1: Summary of the reported oncogenic or tumor suppressor functions of miR-9 and 9* in human cancer. 
Tumor types and functions affected are listed in alphabetical order. It is indicated whether miR-9 levels are increased (↑) or 
decreased (↓) together with a list of direct targets when miR-9 or 9* is expressed or re-introduced in the given cell type. The 
information about the possible pathways involved has been added according to the literature based on the reported targets.

Function Apoptosis Autophagy Cell 
frequency

Chemo/drug 
resistance

Differentiation Invasion Metastasis Migration Proliferation Self-renewal Tumori-
genicity

Tumor Cell type Feature

BC ER+ Direction ↑ ↓

Target ESR1 TUG1

Pathway* ER signaling
ERK

Metastatic Direction ↑ ↑ ↑

Target LIFR
CDH1

LIFR
CDH1
FOXO1

LIFR
CDH1
FOXO1

Pathway Ras
ERK
E-cadherin

Ras
ERK
E-cadherin
PI3K/AKT

Ras
ERK
E-cadherin
PI3K/AKT

TNBC Direction ↓ ↓

Target MTHFD2
NOTCH1

MTHFD2
NOTCH1

Pathway ERK
NOTCH1

ERK
NOTCH1

GBM CD133+ Direction # ↑ ↑

Target JAK1
JAK3

CAMTA1
CAMTA1

Pathway ERK
JAK/STAT
EGFR
PI3K/AKT

Cell lines Direction ↑ ↓

Target NF1 CREB
STMN1

Pathway EGFR
ERK
Ras

NOTCH1
JAK/STAT
EGFR
ERK

Chemo-
resistant

Direction ↑ ↓ ↓ ↓

Target PTCH1
SOX2

SOX2 SOX2

Pathway ERK
Wnt

ERK
Wnt

ERK
Wnt

ΔEGFR Direction ↓

Target FOXP1

Pathway Wnt

CC CA Direction ↓ ↓ ↓

Target IL6 IL6 IL6

Pathway JAK/STAT
ERK

JAK/STAT
ERK

JAK/
STAT
ERK

CSCC Direction ↓ ↑ ↑

Target ALCAM
FSTL1

Pathway CAM
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of MIR9 genes. Knockdown of endogenous miR-
9 expression with a miR-9 sponge inhibits MLL 
fusion–induced immortalization/transformation of 
normal hematopoietic progenitor cell, whereas its viral 
overexpression has the opposite effect. miR-9 function 

may be mediated by the two predicted targets: RING1 
and YY1-binding protein (RYBH) and Ras homolog 
family member H (RHOH). RYBP is a polycomb 
complex-associated protein that can stabilize p53 and 
has tumor suppressor activity. [87] RHOH is a member 

Function Apoptosis Autophagy Cell 
frequency

Chemo/drug 
resistance

Differentiation Invasion Metastasis Migration Proliferation Self-renewal Tumori-
genicity

Tumor Cell type Feature

(Continued)

HM ALL Direction ↓ ↓

Target FGFR1
CDK6

Pathway ERK
Ras
PI3K/AKT

AML Direction ↓ ↑↓ ↑↓ ↑

Target RYBH
RHOH
HES1

LIN28B/
HMGA2
ERG

UBASH3B
LIN28B/
HMGA2
RYBH
RHOH
HES1

RYBH
RHOH

Pathway ERK
AKT
NOTCH1

Wnt ERK
AKT
NOTCH1
Wnt

ERK

HL Direction ↓

Target PRDM1

Pathway TP53
NF-kappaB

MM Direction ↓

Target IGF2BP3

Pathway IGF2BP

WM Direction ↑ ↑ ↓

Target HDAC4
HDAC5

HDAC4
HDAC5

HDAC4
HDAC5

Pathway JAK/STAT
NOTCH1
HDAC

JAK/STAT
NOTCH1
HDAC

JAK/STAT
NOTCH1
HDAC

SCC Oral Direction ↓

Target CCND1

Pathway ERK
JAK/STAT
AKT
Wnt

Skin Direction ↑ ↑ ↑

Target CTNNA1 CTNNA1 CTNNA1

Pathway Wnt
ERK
E-cadherin

Wnt
ERK
E-cadherin

Wnt
ERK
E-cadherin

*: Possible affected target-related pathways according to www.genecards.org.
#: miR-9 has been reported to influence the direction of differentiation – it promotes oligoneural and suppresses more aggressive mesenchymal phenotype.
Functions attributed to miR-9* are marked in red.
Abbreviations: ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; BC, breast cancer; CA, cervical adenocarcinoma; CC, cervical cancer; CSCC, cervical 
squamous cell carcinoma; ΔEGFR, mutant epidermal growth factor receptor; ER, estrogen receptor; GBM, glioblastoma multiforme; HL, Hodgkin lymphoma; HM, 
hematological malignancies; MM, multiple myeloma; SCC, squamous cell carcinoma; TNBC, triple-negative breast cancer; WM, Waldenström macroglobulinemia.
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of the Rho GTPase protein family and it can function 
as an oncogene or tumor suppressor depending on the 
context [88].

In AML patients with a normal karyotype, miR-9 
is expressed at higher levels in leukemic stem/progenitor 
cells (LSPCs) than in normal hematopoietic stem 
cells derived from the same patient. [89] Additionally, 
miR-9 expression is inversely correlated to the levels 
of hairy and enhancer of split-1 (HES1), a known 
tumor-suppressor (Figure 6A). [90, 91] Knockdown of 
miR-9 by lentiviral infection decreases leukemic cell 
proliferation and survival by increasing HES1 expression 
in vitro and in vivo [89].

miR-9/9* are both aberrantly upregulated in most 
of human AML cases. [12] In normal hematopoietic stem 
and progenitor cells, ectopic expression of miR-9/9* 
inhibits myeloid differentiation by post-transcriptional 
regulation of ETS-related gene (ERG) (Figure 6A). ERG 
is a transcription factor that is essential for definitive 
hematopoiesis and its functional activity depends on 
its expression level. [12, 92, 93] In patients with AML, 
expression of miR-9 has no prognostic significance, 
whereas miR-9* predicts favorable outcome. [94] 
Recently, it has been proposed that miR-9* may sensitize 
tumor cells to chemotherapy in chronic myelogenous 
leukemia [95].

CONCLUSIONS AND OUTLOOK

Initially discovered as versatile regulators of 
neurogenesis, miR-9/9* quickly became a focus of 
attention in cancer research. In the past years, multiple 
studies have reported on the deregulated expression 
of miR-9/9* in various types of human cancer and 
the relation of their aberrant expression levels with 
different processes, e.g. self-renewal, proliferation 
and differentiation. Furthermore, these miRNAs have 
been shown to have important regulatory roles in 
cancer biology regulating processes such as tumor 
initiation, tumor progression and chemosensitivity. 
Table 1 summarizes the different reported functions 
of miR-9/9* in various cell and tumor types. It also 
provides information on the up- or downregulation of 
miR-9/9* and lists putative mRNA targets and target-
related pathways according to www.genecards.org. 
It is evident that miR-9/9* expression affects many 
biochemical pathways commonly deregulated in human 
cancer such as the PI3K/AKT, JAK/STAT, NOTCH1, 
Wnt/β-catenin, Ras and ERK signaling pathways. This 
underscores the relevance and intricate involvement 
of miR-9/9* in human cancer biology. The picture that 
emerges from the current literature is still fragmentary 
impeding firm conclusions about the role(s) of miR-9/9* 
in cancer. More research is needed that incorporates: 1) 
systems biology to delineate and integrate the miR-9/9* 

regulatory networks; 2) in vivo experiments performed 
under physiological conditions and 3) the need to address 
miR-9 and miR-9* functions separately. Interestingly, 
miR-9 and miR-9* serve as an example of miRNAs 
that, although co-transcribed and derived from the same 
precursor, may fulfill different and sometimes opposing 
functions. As of yet, not much is known about the 
functional relationship between miR-9 and miR-9* and 
which factors determine their individual stability and 
functionality. These insights are critical to improve our 
understanding of the functional significance of miR-9/9* 
in the context of cancer.

Recently, several miRNA-based therapeutics 
have entered clinical trials in humans, e.g. miR-
122 and miR-155. [96–100] As demonstrated in this 
review, miR-9/9* may exert gross functional effects and 
change cellular phenotypes. The use of such miRNAs 
in human-cancer therapy might theoretically attenuate 
oncogenic effects and offer potential novel therapeutic 
avenues for treatment of human cancer. The precise 
functional role of miR-9/9*, however, depends on a 
specific cellular context and may consequently vary 
in different cell populations within one malignancy. 
Moreover, the capacity of miR-9/9* to impact tumor 
formation does not necessarily predict their influence 
on the metastatic potential of tumor cells. These facts 
make future miR-9/9*-based anticancer therapies 
challenging. Furthermore, the potency of miR-9/9* 
requires careful toxicity studies complemented with 
development of reliable and safe delivery methods to 
specifically target distinct cancer cell populations with 
miRNA mimics or antimiRs. Only when these technical 
issues are adequately addressed and we have a better 
understanding of miR-9/9* biology both in health and 
disease, we can consider the full therapeutic potential 
of these miRNAs.
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