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Abstract: A facile synthesis of reduced graphene oxide (rGO) and methionine film modified screen
printed carbon electrode (rGO-methionine/SPCE) was proposed as a disposable sensor for deter-
mination of food colorants including amaranth, tartrazine, sunset yellow, and carminic acid. The
fabrication process can be achieved in only 2 steps including drop-casting of rGO and electropoly-
merization of poly(L-methionine) film on SPCE. Surface morphology of modified electrode was
studied by scanning electron microscopy (SEM). This work showed a successfully developed novel
disposable sensor for detection of all 4 dyes as food colorants. The electrochemical behavior of all 4
food colorants were investigated on modified electrodes. The rGO-methionine/SPCE significantly
enhanced catalytic activity of all 4 dyes. The pH value and accumulation time were optimized
to obtain optimal condition of each colorant. Differential pulse voltammetry (DPV) was used for
determination, and two linear detection ranges were observed for each dye. Linear detection ranges
were found from 1 to 10 and 10 to 100 µM for amaranth, 1 to 10 and 10 to 85 µM for tartrazine, 1 to
10 and 10 to 50 µM for sunset yellow, and 1 to 20 and 20 to 60 µM for carminic acid. The limit of
detection (LOD) was calculated at 57, 41, 48, and 36 nM for amaranth, tartrazine, sunset yellow, and
carminic acid, respectively. In addition, the modified sensor also demonstrated high tolerance to
interference substances, good repeatability, and high performance for real sample analysis.

Keywords: azo dyes; amaranth; carminic acid; methionine; reduced graphene oxide; sunset yellow;
tartrazine; sensor

1. Introduction

Recently, food colorants have demonstrated an outstanding role in improving food
appearance and making them look more attractive. There are many of synthetic and natu-
ral dyes that are used in the food industry. Nevertheless, excessive consumption of some
colorants can lead to health risks. Therefore, the food law is required to control the amount
of hazardous dyes in food.

Azo dyes are the most popular synthetic dye in the food industry. About 70% of
syn-thetic food colorant belongs to azo dyes. In general, this dye is utilized for coloring
of con-fectioneries, soft drinks, and alcoholic beverages. However, health effects were
revealed for excessive consumption. The azo dye molecule can be cleaved into aromatic
amines, which are suspected to be carcinogens and mutagens [1]. Moreover, superexcitation
and hyper-activity in children were revealed for overconsumption [2]. To manage health
risks, Euro-pean Food Safety Authority (EFSA) defined the acceptable daily intake (ADI)
for each azo dye. For example, ADI was set at 0.15, 4.0, and 7.5 mg/kg body weight for
amaranth (AM), sunset yellow (SY), and tartrazine (TZ), respectively [3–5]. The chemical
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structure of ama-ranth, tartrazine, and sunset yellow are illustrated in Scheme 1. Given that
the molecule contains azo group (–N = N–), it is possible to be reduced by electrochemical
reduction. Moreover, there is a hydroxyl group on their chemical structure, thus they can
be oxidized as well [6].
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As the consumer requires foods to be as natural as possible, natural dyes are an
al-ternative way of coloring food. Carminic acid (CA) is a red shade natural dye obtained
from dried bodies of insects, Dactylopius coccus. The chemical structure of carminic acid
is illustrated in Scheme 1. Its chemical structure consists of a glucose and an anthraqui-
none [7]. In comparison with azo dyes, carminic acid does not exhibit carcinogenic and
toxic properties [8]. Given that carminic acid is produced from insects, there are insect
proteins left over from the manufacturing process. These proteins can trigger acute hyper-
sensitivity reactions and cause severe anaphylactic reactions [8]. Moreover, due to the
low molecular size of carminic acid, it can act as a hapten and trigger immune response
when it combines with large carrier molecules such as proteins [9]. Consequently, EFSA
defined ADI of carminic acid at 2.5 mg/kg body weight and introduced the appropriate
purifica-tion to reduce allergens as much as possible [8]. Therefore, an effective and reliable
method is required for detecting those food colorants.

Due to high sensitivity, high specificity, low cost, short time analysis, and simplicity,
electrochemical methods were widely proposed for food dyes determination instead of
conventional methods, i.e., spectrophotometry [10,11], chromatography [12], and capillary
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electrophoresis [13]. According to azo and hydroxyl group of azo dyes, direct voltammet-
ric determination is divided into 2 categories including cathodic reduction and anodic
oxidation. However, azo dyes determination by azo reduction attracts less attention than
hydroxyl oxidation due to the problem of removal of dissolved oxygen [6]. The reduction
of dissolved oxygen can alter the cathodic current response of azo dyes. To improve
sensitiv-ity and specificity, nanomaterials or chemicals were modified on several types
of electrode.

Graphene is a single layer of carbon atoms arranged in a hexagonal lattice. This
structure confers fascinating properties to graphene including large surface area and high
electrical conductivity [14]. Therefore, graphene and its derivatives as a hybrid material
have been widely used in electrochemical sensor field.

Given that amino acids contain amine (–NH2) and carboxyl (–COOH) functional
groups, they are able to form conductive polymer by electropolymerization. Beside elec-
trocatalytic activity improvement, poly(amino acid) film also provides more active sites
for target analytes resulting in sensitivity and selectivity enhancement of the sensor [15].
Therefore, poly(amino acid) has received great attention to modify on electrode surface for
sensitivity improvement. Various substances have been determined by amino acid based
electrochemical sensor, for example, butylated hydrox-yanisole (BHA) [16], simultaneous
detection of uric acid, xanthine and hypoxanthine [17], and epinephrine [18]. Moreover,
there is a cooperation between poly(amino acid) film and other nanomaterials to increase
electrode’s sensitivity, for example, methionine/gold na-noparticles modified glassy carbon
electrode (GCE) for hydroquinone determination. With high surface area and strong ad-
sorptive ability of methionine/gold nanoparticles film, the accumulation of hydroquinone
on the electrode was improved [19]. Poly(L-arginine)/graphene composite film modified
GCE was proposed for simultaneous determination of uric acid, xanthine, and hypoxan-
thine. With the catalytic property of poly(L-arginine) and excellent electric conductivity
of graphene, the electrochemical signal was amplified [20]. In addition, poly(amino acid)
film was used for azo dyes determination as well [21–26]. On the other hand, only a few
reports based on poly(amino acid) film was proposed for electrochemical determination of
carmine [21]. However, previous poly(amino acid) film based electrochemical sensor for
azo dyes determination is still em-ployed on traditional electrodes, i.e., GCE, carbon paste
electrode or even pencil graphite electrode. Although these types of electrodes exhibit high
sensitivity, they still lack the ca-pability for on-site detection. Due to the limitation of high
cost, they need to be cleaned for reuse. This stint makes traditional electrodes inappropriate
for mass production. Screen printed carbon electrode (SPCE) was proposed to break these
limitations. SPCE demon-strates various advantages such as low fabrication cost, variable
configuration, and being able to be produced for large scale. Thus, SPCE is appropriate
to use for on-site detection. However, to the best of our knowledge, there is no report
of electrochemical sensors based on reduced graphene oxide (rGO) and methionine film
modified SPCE for azo dyes and carminic acid determination. Therefore, this is the first
developed novel disposable sensor for detection of 4 dyes; amaranth, tartrazine, sunset
yellow, and carminic acid.

This work aims to develop a disposable sensor for food colorants detection. The
chemical structure of methionine presents in Scheme 1. The synergistic effect of rGO and
methio-nine film are proposed for sensitivity improvement of SPCE. Poly(L-methionine)
film and rGO were modified on SPCE for determination of carminic acid and 3 azo dyes
(amaranth, tartrazine, and sunset yellow). With synergistic effect, the modified electrode
demonstrated good catalytic activity to target analytes. Moreover, the modified SPCE
demonstrated good performance for real sample analysis.

2. Results and Discussion
2.1. Morphology of Modified Electrode

The morphology of bare SPCE, rGO/SPCE, and rGO-Methionine/SPCE were charac-
terized by SEM as demonstrated in Figure 1a–c. The bare SPCE presented rough surface
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while smooth surface was observed on rGO/SPCE. The smooth surface is the layer of
rGO that covered the SPCE. Thereafter, polymeric layer was observed on the layer of
rGO after electrochemical polymerization of methionine film on rGO/SPCE. SEM result
demonstrat-ed successful deposition of rGO and electropolymerization of methionine
on SPCE. The insets of Figure 1a–c represent the image of bare SPCE, rGO/SPCE, and
rGO-methionine/SPCE taking by light microscope. Bare SPCE demonstrated rough surface
which was different to rGO/SPCE and rGO-methionine/SPCE. With the modification
of rGO, the smoother surface was observed on rGO/SPCE and rGO-methionine/SPCE.
More-over, with the methionine film covering, the fine surface demonstrated on rGO-
methionine/SPCE. Thus, the results from microscopic image can ensure the success-ful
modification of rGO and methionine film on SPCE.
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2.2. Electrochemical Characterization of Electrode Modification

To study the effect of rGO and methionine on SPCE and characterize the modification
process, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were
used to investigate each step of SPCE modification. A 5 mM of ferricyanide/ferrocianyde
redox couple (Fe(CN)6

3−/4−) containing 0.1 M KCl was used as electrolyte. The cyclic
voltammograms of rGO/SPCE, methionine/SPCE, and rGO-methionine/SPCE were com-
pared with bare SPCE at scan rate of 50 mV/s as illustrated in Figure 2a. The current
response was the signal of the redox probe. The obtained current response increased
from bare SPCE, methionine/SPCE, rGO/SPCE, and rGO-methionine/SPCE, respectively.
Given that the effect of high surface area of rGO can accelerate electron transfer [14], the
current response was significantly increased on rGO/SPCE. The obtained current response
of rGO/SPCE increased almost 5 times to bare SPCE. However, since methionine film is
a barely conductive material, the catalytic current increased slightly after modification
on bare SPCE and rGO/SPCE. Moreover, the result demonstrated the same tendency
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with EIS as depicted in Figure 2b. EIS was performed at amplitude of 10 mV. The charge
transfer re-sistance (Rct) of bare SPCE and methionine/SPCE were interpreted by Randle’s
equivalent circuit. Bare SPCE exhibited the largest Rct (38.49 ± 1.74 kΩ) as a result of the
poor conduc-tivity of SPCE. For methionine/SPCE, the semicircle can still be observed,
but it was smaller than bare SPCE. The Rct was found to be 29.79 ± 2.22 kΩ. However,
the semicircle was not revealed on both rGO and rGO-methionine/SPCE. This can be
attributed to rGO, which can improve the conductivity of SPCE. Moreover, we can prove
that rGO and methionine film was successfully modified on SPCE by the changed current
response and Rct of each step of modification.
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2.3. Electrochemical Behavior of Amaranth, Tartrazine, Sunset Yellow and Carminic Acid on
Modified Electrode

The electrochemical behavior of each dye was tested separately on rGO-methionine/
SPCE in comparison with bare SPCE and rGO/SPCE to investigate performance of mod-
ified sensor. CV was used to study the electrochemical behavior of all 4 dyes. Cyclic
voltammograms of 0 and 10 µM of amaranth, 0 and 50 µM of tartrazine, 0 and 50 µM
of sunset yellow, and 0 and 50 µM of carminic acid were recorded as demonstrated in
Figure 3a–d, respectively. The results demonstrated that catalytic current response was
observed only when the detected dyes presented in the samples. Thus, the current response
was the signal of the detected dyes. The oxidative current responses of each dye on bare
SPCE, rGO/SPCE, and rGO-methionine/SPCE are presented in Table 1. For amaranth,
acetate buffer pH 4.0 was used as the supporting electrolyte. The anodic peak of amaranth
was observed at about 0.8 V, and no cathodic peak was observed on all of 3 different modi-
fied electrodes, as shown in Figure 3a. Only anodic peak was also observed for tartrazine.
The oxidation peak appeared at a potential of about 1.05 V in citrate-phosphate buffer pH
3.0 (Figure 3b). For sunset yellow, voltammograms were recorded by using phosphate
buffer pH 7.0, while carminic acid used citrate phosphate buffer pH 3.0 as electrolyte. Both
of sunset yellow and carminic acid demonstrated a pair of redox peak as illustrated in
Figure 3c,d, respectively.

All 4 dyes represented the consistent result. Bare SPCE demonstrated small electro-
chemical current response indicating weak catalytic activity of dyes on bare electrode,
while the rGO/SPCE significantly enhanced the electrochemical response of all 4 dyes.
With the high conductive property, the rGO film can help to facilitate electron transfer rate
on electrode. This phenomenon affects the improvement of sensitivity [14]. Moreover, the
layer of poly(L-methionine) film has a good catalytic effect due to its active groups, such as
amino group and carboxyl group [17,25]. In addition, the result showed that methionine
film decreased the background current of rGO. The well-defined peak was observed on
rGO-methionine/SPCE. With the synergistic effect between rGO and poly(L-methionine)
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film, the catalytic activity of amaranth, tartrazine, sunset yellow, and carminic acid were
significantly enhanced on rGO-methionine/SPCE.

Table 1. Electrochemical response of amaranth, tartrazine, sunset yellow, and carminic acid on bare SPCE, rGO/SPCE, and
rGO-methionine/SPCE.

Dye Electrode Dye Concentration (µM) Oxidative Current (µA)

Amaranth
Bare SPCE 0.09 ± 0.01
rGO/SPCE 10 0.94 ± 0.08

rGO-methionine/SPCE 1.05 ± 0.12

Tartrazine
Bare SPCE 0.41 ± 0.01
rGO/SPCE 50 1.45 ± 0.20

rGO-methionine/SPCE 3.28 ± 0.51

Sunset yellow
Bare SPCE 0.45 ± 0.04
rGO/SPCE 50 1.52 ± 0.22

rGO-methionine/SPCE 1.77 ± 0.37

Carminic acid
Bare SPCE 0.35 ± 0.01
rGO/SPCE 50 1.49 ± 0.23

rGO-methionine/SPCE 1.76 ± 0.33
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2.4. Effect of pH of Electrolyte

The appropriate electrolyte and its pH is the most important factor required to obtain
the best catalytic current response, therefore various types of electrolytes at different pH
values, including citrate-phosphate buffer at pH 2.5 and 3.0, acetate buffer at pH 4.0 and
5.0, and phosphate buffer at pH 6.0, 7.0, and 8.0, were investigated. The effect of pH on the
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catalytic activity of 50 µM amaranth, tartrazine, sunset yellow, and carminic acid was stud-
ied on rGO-methionine/SPCE by DPV. The results are illustrated in Figure 4a–h. Catalytic
activities of amaranth, tartrazine, sunset yellow, and carminic acid were pH dependent.
The anodic peak potential of all 4 dyes shifted to a negative direction with further increase
in pH. This evidence can be attributed to the participation of protons in electrode reaction.
In addition, the relationship between peak potential (Ep) and pH value was investigated.
The linear regressions were demonstrated as E(AM) = 0.9203–0.0322 pH, R2 = 0.9987 for
amaranth, E(TZ) = 1.1122–0.0328 pH, R2 = 0.9945 for tartrazine, E(SY) = 0.8611–0.0315 pH,
R2 = 0.9993 for sunset yellow, and E(CA) = 0.7760–0.0777 pH, R2 = 0.9981 for carminic
acid. The slope values at 0.0322, 0.0328, and 0.0315 of amaranth, tartrazine, and sunset
yellow were close to half of theoretical value (0.059 V/pH). Therefore, the ratio between
proton and electron in the reaction was equal to 1:2. This ratio is line with previous reports
of amaranth [27–29], tartrazine [30,31], and sunset yellow [25,32]. The electrochemical
mechanism of amaranth, sunset yellow and tartrazine may be summarized as follow [33]:

Dye − 2e−1H+→Dye (ox)

where dye refers to amaranth, sunset yellow, and tartrazine. On the other hand, the slope
value between E(CA) vs. pH was almost close to the theoretical value, indicating that
the number of protons was equal to the number of electrons involved in the reaction.
The oxidation of carminic acid was based on hydroquinone [34], and can be summarized
as follows:

Carminic acid − 22− − 2H+ → Carminic acid (ox)

To achieve the best condition, the pH value of the highest oxidative current response
was chosen for further experiments. Thus, acetate buffer pH 4.0 was chosen for deter-
mination of amaranth, while citrate phosphate buffer pH 3.0 was applied for tartrazine
and carminic acid. For sunset yellow, the highest current response was obtained from
phosphate buffer pH 7.0, therefore it was chosen for determination of sunset yellow.

2.5. Effect of Scan Rate

The influence of scan rate on catalytic activity of amaranth, tartrazine, sunset yellow,
and carminic acid were investigated on rGO-methionine/SPCE by CV at scan rate of 10
to 100 mV/s. The obtained optimal pH value from previous section (Section 2.4) was
applied for each dyes. Similar result was observed from all 4 dyes as shown in Figure 5a–d.
The catalytic current response increased corresponding to increasing scan rate from 10
to 100 mV/s. The linear equations were obtained as Ipa = 0.0458v + 0.9022, R2 = 0.9636
for amaranth, Ipa = 0.1251v − 0.4153, R2 = 0.9637 for tartrazine, Ipa = 0.0844v − 0.3744,
R2 = 0.9817 and Ipc = −0.0699v + 1.0699, R2 = 0.9702 for sunset yellow, and Ipa = 0.0864v
+ 0.2467, R2 = 0.9722 and Ipc = −0.0795v + 0.5845, R2 = 0.9764 for carminic acid. The
results demonstrated a linear relationship between catalytic current response and scan
rate suggesting that electrochemical reactions of amaranth, tartrazine, sunset yellow, and
carminic acid on rGO-methionine/SPCE were controlled by adsorption-controlled process.

2.6. Effect of Accumulation Time

Given that the catalytic activities of amaranth, tartrazine, sunset yellow, and carminic
acid are controlled by adsorption, the effect of accumulation time on rGO-methionine/SPCE
was evaluated by DPV. Oxidative current response of 50 µM of each dye was evaluated in
this experiment. All 4 dyes demonstrated similar results, where catalytic current response
increased until it reached saturation time and was stable or dropped slightly after further
increase in time, as demonstrated in Figure 6a–d. This may be the result of saturation of
amaranth, tartrazine, sunset yellow, and carminic acid molecules on the modified elec-
trode [35]. To accomplish the highest response and minimize the detection time, the lowest
accumulation time at highest oxidative current was chosen for determination of each dye.
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Consequently, accumulation time at 300 s was applied for amaranth and sunset yellow,
420 s for tartrazine, and 240 s for carminic acid determination.
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2.7. Determination of Linear Range and Detection Limit

DPV was utilized to determine the linear detection range of amaranth, tartrazine,
sunset yellow, and carminic acid. Step potential at 0.01 V and modulation amplitude at
0.1 V were applied for all determinations. Each concentration was tested in triplicate. The
two linear detection ranges were observed. For amaranth, the detection was performed
under potential from 0.5 to 1 V in acetate buffer pH 4.0 with accumulation time at 300 s.
The current response increased proportionally with concentration of amaranth. Two linear
detection ranges were obtained at 1 to 10 and 10 to 100 µM of amaranth, as shown in
Figure 7a. The equations can be expressed as y = 1.3824x − 0.0266, R2 = 0.9902, and
y = 0.3202x + 13.283, R2 = 0.9631. The limit of detection (LOD) was calculated from 3 times
the standard deviation of the blank (n = 10) divided by the slope from the linear range,
thus the LOD was obtained at 57 nM.
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detection range of each dye.

For tartrazine, potential range of 0.7 to 1.2 V, citrate phosphate buffer pH 3.0, and
accumulation time of 420 s were used for tartrazine determination. Oxidative current
also increased proportionally with tartrazine concentration. Figure 7b demonstrates linear
detection ranges of tartrazine at 1 to 10 and 10 to 85 µM. The linear equations were
obtained as y = 0.8368x + 0.3514, R2 = 0.9959, and y = 0.2038x + 7.7123, R2 = 0.9641. LOD
was calculated to be 41 nM.

For sunset yellow, the determination was done under potential range of 0.3 to 1 V
in phosphate buffer pH 7.0 with accumulation time at 300 s. Current response increased
proportionally with increase in sunset yellow concentration and exhibited two detection
ranges at 1 to 10 and 10 to 50 µM as shown in Figure 7c. The linear equations were
expressed as y = 3.0507x + 2.6023, R2 = 0.9802, and y = 0.9111x + 26.417, R2 = 0.9757. LOD
of 48 nM was obtained for sunset yellow determination.
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To determine carminic acid concentration, a potential window from 0.2 to 0.8 V
was applied. The electrochemical determination was done under the condition of citrate
phosphate buffer pH 3.0 and accumulation time at 240 s. Two linear ranges were observed
as well as the other 3 dyes, but the concentration range was different, as shown in Figure 7d.
The first linear range was observed from 1 to 20 µM, and the second linear range was
observed from 20 to 60 µM of carminic acid. Linear equations were demonstrated as
y = 2.7736x + 2.1769, R2 = 0.9896, and y = 0.8702x + 40.018, R2 = 0.9809 while LOD was
calculated as 36 nM.

However, the optimization conditions were performed at 50 µM of detecting dyes
which locate in the second linear range of all 4 detecting dyes. The change of slope of peak
current versus concentration plot might affect the change in reaction mechanism, number
of electrons involved, and accumulation time. Thus, the proposed conditions were the
optimal condition for only the linear detection range of 50 µM. Type of reaction mechanism
and number of electron transfer were reported for linear detection range of 50 µM as well.

The performance comparison of previous reports and the modified sensor is shown
in Table 2. The modified electrode showed excellent and recovery range of detection in
all dyes. EFSA has regulated the maximum permitted level (MPL) of use of amaranth at
30 mg/L for fish roe, aperitif wines, and spirit drinks, including products with less than
15% alcohol by volume [36]. MPL at 50 and 100 mg/L of non-alcoholic flavored drinks was
defined for sunset yellow [37] and tartrazine [5], respectively. For carminic acid, MPL was
set ranging from 50 to 500 mg/kg in 58 food categories [8]. The obtained LOD of amaranth,
tartrazine, sunset yellow, and carminic acid were below the MPL which was regulated by
EFSA. Thus, the modified sensor was acceptable. In addition, as the modified sensor was
fabricated by using SPCE as based electrode and decoration with inexpensive materials
and simple method, it gained the advantages of simple preparation, low cost and short
analysis time compared with previous reports. Moreover, given that SPCE is a disposable
electrode, the modified electrode can be used as a portable device, which is convenient for
on-site detection.

Table 2. Comparison of the analytical performance between the developed sensor and previous electrochemical sensors of
amaranth, tartrazine, sunset yellow, and carminic acid.

Dyes Modification Method Electrode Linear Range
(µM) LOD (nM) Ref.

AM PSS-GR-Pd/GCE DPV GCE 0.1–9 7 [27]
CPE/RuO2/NR/DPIBr SWV CPE 0.008–550 3 [38]

PLA-ERGO/GCE DPV GCE 0.75–75 250 [21]
1-M-3-BIBR/CuO/SWCNTs/CPE SWV CPE 0.004–750 1 [39]

GS/GCE DPV GCE 2500–125,000 0.75 [40]
Au/GTA LSV AuE 0.3–100 100 [1]

rGO-methionine/SPCE (This work) DPV SPCE 1–10
10–100 57 -

TZ Microspheres-laccase/AuNPs/SPE DPV SPCE 0.2–14 40 [41]

PGMCPE CV CPE 1–27
35–87 283 [22]

g-C3N4/Graphite electrode DPV Graphite 0.1–10 210 [42]
PEDOT@TbHCF/GCE DPV GCE 0.1–206 32 [43]

H-SWCNT/SPCE SWAdV SPCE 1–8.5 60 [31]

rGO-methionine/SPCE (This work) DPV SPCE 1–10
10–85 41 -

SY MnO2 NRs-ERGO/GCE LSV GCE
0.01–2
2–10

10–100
2 [44]

Re@CDACs/SPCE Amperometry SPCE 0.05–390 16 [45]
CS/GCE SWAdV GCE 0.25–3.25 98 [46]
NC-CPE SWV CPE 0.001–0.1 0.2 [47]

Poly(AAm-co-EMA)/Lac/GCE DPV GCE 0.08–10 20 [48]
AuNPs/PANI-co-PoAN-co-PoT/GO/AuE SWV AuE 5–500 14.2 [49]

rGO-methionine/SPCE (This work) DPV SPCE 1–10
10–50 48 -
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Table 2. Cont.

Dyes Modification Method Electrode Linear Range
(µM) LOD (nM) Ref.

CA Unmodified DPP DME 1–90 160 [50]
Pd-AuNPs/Poly(Pr)/GE SWV Graphite 0.01–1 5.9 [34]

rGO-methionine/SPCE (This work) DPV SPCE 1–20
20–60 36 -

PSS = Poly(sodium p-styrenesulfonate; GR = Graphene; Pd = Palladium nanoparticles; RuO2/NR = RuO2 nano-road. DPIBr = 1,3-
dipropylimidazolium bromide; PLA = Poly(L-arginine); ERGO = Electrochemical reduction of graphene oxide; 1-M-3-BIBR = 1-methyl-
3-butylimidazolium bromide; SWCNTs = Single-wall carbon nanotubes; GS = Graphene nanosheets; GTA = Graphene/TiO2-Ag
based composites; AuNPs = Gold nanoparticles; PG = Poly(glycine); g-C3N4 = Graphitic carbon nitride; PEDOT@TbHCF = Poly(3,4-
ethylenedioxythiophene)@Terbium hexacyanoferrate; H-SWCNT = Double-stranded copper(I) helicate-single-walled carbon nanotube;
MnO2 NRs = MnO2 nanorods; Re@CDACs = Rhenium nanoparticles decorated on activated carbon; CS = Chitosan; NC = Montmorillonite
nanoclay; Poly(AAm-co-EMA) = Poly(acrylamide-co-ethyl methacrylate); PANI-co-PoAN-co-PoT = Poly (aniline-co-o-anisidine-co-o-
toluidine); Pd-AuNPs = Pd–Au bimetallic nanoparticles; Poly(Pr) = Polypyroline; SWV = square wave voltammetry; LSV = linear sweep
voltammetry; SWV = square wave adsorption voltammetry; DPP = differential pulse polarography.

2.8. Interference Test

In general, soft drinks, beverages, or other confectionaries contain several ingredients,
thus there is a need to be concerned about the effect of interference on the performance of
the sensor. To study the interference of other substances, the amaranth, tartrazine, sunset
yellow, and carminic acid at 5 and 50 µM were tested with common substances in beverages
at various concentrations. Effect of interference was studied by DPV, and the results of
interference substances testing with dye concentration at 5 and 50 µM are presented in
Tables 3 and 4, respectively. Current responses of with and without interference substance
were compared and reported in terms of variance. The results demonstrated that 1000-
fold concentration of glucose and sucrose, 100-fold concentration of NaCl and KCl, and
10-fold concentration of glycine, ascorbic acid, and citric acid did not significantly affect
the determination of all 4 dyes on both concentrations (5 and 50 µM). The percentage error
was obtained below ±5% which indicated good selectivity for amaranth, tartrazine, sunset
yellow, and carminic acid.

Table 3. Effect of interference substances on rGO-methionine/SPCE with dye concentration at 5 µM.

Substance
Variance

Amaranth Tartrazine Sunset Yellow Carminic Acid

Without substance 100.00 100.00 100.00 100.00
Glucose 1000x 104.73 96.97 99.73 98.30
Sucrose 1000x 102.74 95.77 98.20 99.94

NaCl 100x 97.16 97.25 100.05 96.77
KCl 100x 99.14 95.82 99.62 96.48

Glycine 10x 95.30 102.53 99.93 97.43
Ascorbic acid 10x 98.48 101.49 101.51 95.95

Citric acid 10x 95.80 102.65 98.08 104.08

Table 4. Effect of interference substances on rGO-methionine/SPCE with dye concentration at 50 µM.

Substance
Variance

Amaranth Tartrazine Sunset Yellow Carminic Acid

Without substance 100.00 100.00 100.00 100.00
Glucose 1000x 104.01 97.84 103.33 97.24
Sucrose 1000x 99.38 100.95 103.37 96.61

NaCl 100x 101.41 103.76 96.94 100.61
KCl 100x 104.21 99.62 99.33 102.94

Glycine 10x 99.57 98.84 98.94 103.60
Ascorbic acid 10x 98.36 97.24 98.98 104.08

Citric acid 10x 95.36 104.11 97.42 102.54
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2.9. Real Sample Analysis

To study the performance of the modified sensor, it was tested with real samples. The
standard addition method was used to determine concentration of amaranth, tartrazine,
sunset yellow, and carminic acid in real sample. The rGO-methionine/SPCE was evaluated
with 2 groups of sample with and without target dye. Sprite no sugar (lemon-lime flavored
soft drink) was tested as a sample without target dyes. Spy wine cooler (red) was tested
as a sample containing target amaranth dye. 100 Plus lemon lime flavored carbonated
drink and Sponsor active vitamin C lemon lime flavored were evaluated for tartrazine
detection. Two orange flavor soft drinks, Mirinda and Fanta, were tested for sunset yellow
determination. Betagen (strawberry flavored probiotic milk beverage) and Nestlé Eskimo
Ice-Cream (Nomyen flavored ice cream with milk flavored white compound coating) were
tested for carminic acid evaluation. The results presented in Tables 5–8 are for amaranth,
tartrazine, sunset yellow, and carminic acid, respectively. The great percentage recovery
obtained for all 4 dyes indicated great performance, high accuracy, and reliability of the
modified sensor for real sample analysis.

Moreover, UV-Vis spectrophotometer, was tested to confirm the performance of rGO-
methionine/SPCE. Unfortunately, the real samples containing the interested dyes show
high interference when measured using UV-Vis absorbance measurement. The other
substances as well as its translucence interfered the absorbance. Therefore, only 1 sample
(Sprite) with the spiked dye solution can be compared by this method. The standard
addition method was also used for dyes determination. The result of UV-Vis measurement
shows in the parentheses in Tables 5–8. The result showed satisfying %recovery for all
4 detecting dyes. Moreover, the %recovery from UV-Vis measurement and the rGO-
methionine/SPCE was about the same, indicating that the modified electrode was reliable
for amaranth, tartrazine, sunset yellow, and carminic acid determination.

Table 5. Performance of modified sensor for amaranth determination in real sample.

Sample Added (µM) Expected (µM) Found (µM) Recovery (%)

Sprite

0.00 Not found
1.50 1.50 1.49 (1.41) 99.45 (94.02)
2.00 2.00 2.01 (1.90) 100.44 (95.01)
2.50 2.50 2.51 (2.41) 100.36 (96.30)

SPY classic red

0.00 0.52
1.50 2.02 1.95 96.44
2.00 2.52 2.45 97.29
2.50 3.02 3.10 102.87

Table 6. Performance of modified sensor for tartrazine determination in real sample.

Sample Added (µM) Expected (µM) Found (µM) Recovery (%)

Sprite

0.00 Not found
1.50 1.50 1.55 (1.48) 103.43 (98.34)
2.00 2.00 2.01 (2.05) 100.48 (102.36)
2.50 2.50 2.49 (2.40) 99.53 (96.12)

100 Plus

0.00 0.98
3.00 3.98 4.15 104.21
4.00 4.98 4.91 98.46
5.00 5.98 6.27 104.85

Sponsor lemon
lime

0.00 1.82
4.00 5.82 5.58 95.90
5.00 6.82 6.42 94.14
6.00 7.82 7.89 100.82
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Table 7. Performance of modified sensor for sunset yellow determination in real sample.

Scheme Added (µM) Expected (µM) Found (µM) Recovery (%)

Sprite

0.00 Not found
1.50 1.50 1.29 (1.57) 85.98 (104.76)
2.00 2.00 1.92 (1.99) 96.12 (99.70)
2.50 2.50 2.40 (2.48) 95.99 (99.17)

Mirinda (orange)
4 fold dilution

0.00 1.10
3.00 4.10 4.24 103.38
4.00 5.10 5.18 101.50
5.00 6.10 6.20 101.63

Fanta (orange)

0.00 2.71
3.00 5.71 5.71 100.01
5.00 7.71 7.26 94.06
7.00 9.71 8.88 91.44

Table 8. Performance of modified sensor for carminic acid determination in real sample.

Sample Added (µM) Expected (µM) Found (µM) Recovery (%)

Sprite

0.00 0.00
5.00 5.00 5.48 (4.87) 109.63 (97.40)
10.00 10.00 11.13 (9.72) 111.29 (97.24)
15.00 15.00 15.58 (14.28) 103.87 (95.23)

Betagan
strawberry

flavour

0.00 0.46
3.00 3.46 3.14 90.75
4.00 4.46 4.14 92.95
5.00 5.46 4.85 88.93

Ice-cream Nestle
Eskimo

(2 fold dilution)

0.00 0.95
3.00 3.95 3.31 83.83
4.00 4.95 4.36 88.12
5.00 5.95 4.86 81.66

2.10. Reproducibility Test

To study reproducibility of modified sensor, the rGO-methionine/SPCE was tested
with 50 µM of amaranth, tartrazine, sunset yellow, and carminic acid on 50 independent
modified electrodes. The repeatability performance was reported in terms of the percent
of relative standard deviation (%RSD). The %RSD was found to be 8.98, 6.49, 8.91, and
4.17 for amaranth, tartrazine, sunset yellow, and carmnic acid, respectively. The %RSD of
ama-ranth, tartrazine, and sunset yellow was over 5%, but below 10%, indicating the slight
ef-fect of independent preparation.

3. Materials and Methods
3.1. Reagents and Apparatus

Graphene oxide (GO), L-methionine, amaranth, sunset yellow, and tartrazine were
purchased from Sigma-Aldrich Pte. Ltd. (Singapore). Carminic acid was obtained from
Tokyo Chemical Industry (TCI) (Tokyo, Japan). All other chemicals were of analytical grade.
All supporting electrolytes were prepared with milliQ water. Citrate-Phosphate buffer pH
2.5 and 3.0 were prepared from adjusting solution between 0.1 M citric acid and 0.2 M
Na2HPO4. Acetate buffer pH 4.0 and 5.0 were prepared from mixing solution of 0.1 M
acetic acid and 0.1 M of sodium acetate. Phosphate buffer solution (PBS) pH 6.0–8.0 were
prepared from 0.1 M Na2HPO4 and 0.1 M NaH2PO4. All electrolytes were prepared using
0.1 M KCl and purged with nitrogen gas for at least 30 min to eliminate dissolved oxygen.

All the electrochemical measurements including CV, EIS, and DPV were performed on
Autolab PGSTAT128N with NOVA software version 1.11. Screen printed carbon electrode
(SPCE) was purchased from Quasence. Co, Ltd. (Bangkok, Thailand). The working elec-
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trode’s area was 3 mm2. A conventional three-electrode system containing the modified
SPCE was used as working electrode, Ag/AgCl as reference electrode and platinum
wire as counter electrode. UV-Vis spectrophotometer was used as a standard method for
compar-ing in real sample analysis. The detecting samples for amaranth, tartrazine, sunset
yel-low, and carminic acid were measured at the wavelength of 520, 426, 485, and 500 nm,
respectively.

3.2. Synthesis of rGO

Reduced graphene oxide was prepared by glucose reduction [51,52]. Firstly, 10 mg
of graphene oxide (GO) and 40 mg of glucose were dispersed in 10 mL of deionized (DI)
water. The mixed solution was stirred for 30 min at 95 ◦C. Thereafter, 100 µL of ammonium
hy-droxide (~25% NH3 basis) was added by dropping. Then, the mixed solution was
stirred for 1 h at 95 ◦C. The rGO was collected by filtration on nitrocellulose membrane
with 0.45 µm pore size and washed with DI water until filtrated solution attained a pH
of 7.0. The synthesized rGO was separated from membrane by sonication in DI water.
Thereafter, the dispersed rGO was collected by centrifugation. The precipitated rGO was
dried overnight at 37 ◦C and kept in dry condition.

3.3. Preparation of rGO-Methionine Modified SPCE

The synthesized rGO was modified on SPCE by drop-casting. Firstly, 1 mg of pre-
pared rGO was dispersed in 1 mL of 30% ethanol and sonicated for 30 min. Then, 3 µL of
well-dispersed rGO was dropped directly on the surface of SPCE. The rGO modified SPCE
was dried in a desiccator for 2 h. Poly(L-methionine) film was modified on rGO modified
SPCE by electrochemical polymerization. CV was carried out in PBS pH 7.0 containing
2.5 mM of L-methionine with potential range of −0.6 to 2.0 V at scan rate of 100 mV/s
for 3 cy-cles. After polymerization, the rGO-methionine modified SPCE was rinsed with
DI water and dried overnight in the desiccator. Schematic representation of modification
process is illustrated in Scheme 2.
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Scheme 2. Schematic representation of modification process of rGO-methionine/SPCE.

4. Conclusions

In conclusion, we reported the electrochemical determination of amaranth, tartrazine,
sunset yellow, and carminic acid by SPCE modified with rGO and methionine film. With the
synergistic effect of rGO and methionine film, the modified sensor significantly enhanced
the catalytic activity, exhibited wide linear range, and demonstrated low detection limit of
these 4 dyes. Moreover, the modified sensor showed great performance in selectivity and
repeatability as well as in real sample analysis. Thus, the proposed sensor can be a good
alternative for food dyes determination.
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