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We assessed how synchronous speech listening and lipreading affects speech
recognition in acoustic noise. In simple audiovisual perceptual tasks, inverse
effectiveness is often observed, which holds that the weaker the unimodal stimuli,
or the poorer their signal-to-noise ratio, the stronger the audiovisual benefit. So far,
however, inverse effectiveness has not been demonstrated for complex audiovisual
speech stimuli. Here we assess whether this multisensory integration effect can also
be observed for the recognizability of spoken words. To that end, we presented
audiovisual sentences to 18 native-Dutch normal-hearing participants, who had to
identify the spoken words from a finite list. Speech-recognition performance was
determined for auditory-only, visual-only (lipreading), and auditory-visual conditions.
To modulate acoustic task difficulty, we systematically varied the auditory signal-to-
noise ratio. In line with a commonly observed multisensory enhancement on speech
recognition, audiovisual words were more easily recognized than auditory-only words
(recognition thresholds of −15 and −12 dB, respectively). We here show that the
difficulty of recognizing a particular word, either acoustically or visually, determines the
occurrence of inverse effectiveness in audiovisual word integration. Thus, words that are
better heard or recognized through lipreading, benefit less from bimodal presentation.
Audiovisual performance at the lowest acoustic signal-to-noise ratios (45%) fell below
the visual recognition rates (60%), reflecting an actual deterioration of lipreading in the
presence of excessive acoustic noise. This suggests that the brain may adopt a strategy
in which attention has to be divided between listening and lipreading.

Keywords: multisensory, lipreading, listening, hearing, speech recognition in noise

INTRODUCTION

Speech is a complex, dynamic multisensory stimulus, characterized by both an auditory and a
visual information stream. Congruent information of the sensory modalities (i.e., spatial and
temporal coincidence of the sensory streams, and their meanings) is integrated in the brain (Calvert
et al., 2000; van de Rijt et al., 2016) to form a coherent, often enhanced, percept of the common
underlying source (Stein and Meredith, 1993). Indeed, additional synchronous visual information
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(i.e., speech-reading/lipreading) has a positive impact on speech
perception, and audiovisual speech recognition in acoustic noise
is substantially better than for auditory speech alone (O’Neill,
1954; Sumby and Pollack, 1954; MacLeod and Summerfield, 1987,
1990; Helfer, 1997; Grant and Seitz, 2000; Bernstein et al., 2004;
Sommers et al., 2005; Ross et al., 2007; Tye-Murray et al., 2007,
2010; Winn et al., 2013).

Audiovisual integration in general, has been the topic
of a variety of behavioral and electrophysiological studies,
involving rapid eye-orienting to simple peripheral stimuli
(Corneil et al., 2002; van Barneveld and van Wanrooij, 2013),
spatial and temporal discrimination of audiovisual objects (Alais
and Burr, 2004; Wallace et al., 2004; Körding et al., 2007),
and the integrative responses of single neurons in cats and
monkeys (Meredith and Stein, 1986; Wallace et al., 1998;
Bell et al., 2005). Three main principles have been shown
to govern the mechanisms of multisensory integration: (i)
spatial alignment of the different sources, (ii) temporal (near-
)synchrony, and (iii) inverse effectiveness. The latter holds
that multisensory enhancement strongly increases for poorly
perceptible unisensory signals, for example in the presence
of acoustic background noise or visual distracters (Stein and
Meredith, 1993). Although these principles have mostly been
demonstrated at the neurophysiological level of anesthetized
experimental animals (for review, see Stein and Meredith,
1993), several studies on audiovisual saccadic eye movements in
humans or on manual reaction times in macaques and humans
(Bremen et al., 2017), have revealed systematic modulations of
the effects of audiovisual congruency and inverse effectiveness
that corroborate the neurophysiological data (Frens et al., 1995;
Corneil et al., 2002; van Wanrooij et al., 2009).

In this study, we focus on whether the phenomenon of
inverse effectiveness can also be applied to speech perception.
This is not a trivial extension of the classical audiovisual
integration studies, as the underlying speech-related sensory
signals are complex and dynamic signals, requiring advanced
(top–down) neural processing within the auditory and visual
systems. One way of studying the presence of inverse effectiveness
in the perception of audiovisual speech stimuli is by adding
background noise (Ross et al., 2007; Ma et al., 2009; Tye-
Murray et al., 2010), which effectively changes the saliency of the
auditory stimulus. By doing so, earlier studies have suggested an
absence of inverse effectiveness, as at low unimodal performance
scores, the audiovisual enhancement decreases. The principle of
inverse effectiveness has also been studied by quantifying the
differences in unimodal word-recognition performance scores
across (groups of) subjects (Rouger et al., 2007; Tye-Murray
et al., 2010, 2016; Winn et al., 2013), however, outcomes were not
consistent. To our knowledge, the effect of the visual or auditory
recognizability of words (irrespective of background noise) on
the presence or absence of inverse effectiveness has not been
studied. For example, words that contain more spectral-temporal
information, or are articulated more pronouncedly, will likely be
better heard or visually recognized over a large range of noise
levels. If the principle of inverse effectiveness would hold at the
word level, highly informative words should benefit less from
bimodal presentation than less-informative words. To study this

possibility, we determined how well words can be recognized by
listening and/or lipreading under noisy listening conditions in
normal-hearing subjects.

RESULTS

Overview
Eighteen normal-hearing subjects had to identify 50 words
(Table 1) occurring in 155 unique five-word sentences, by
selecting the words they recognized (10-alternative forced choice)
on a screen. The speech material was based on the Dutch version
of the speech-in-noise matrix test developed by Houben et al.
(2014; see section Materials and Methods on the construction
of the speech material, Figure 1). The words were presented
in acoustically only (A-only, e.g., Figure 1A), visual-only (V-
only, e.g., Figure 1D) or bimodal (AV, e.g., Figures 1A,D
combined) blocks. An acoustic background noise (Figure 1B)
was played in the A-only and AV conditions at five signal-to-
noise ratios. Note that the words vary substantially in ongoing
amplitude and duration (Figure 1A), spectral-temporal dynamics
(Figure 1C), and articulation (Figure 1D). This variation will
likely affect speech recognition, and is the foundation on which
we will test inverse effectiveness. In what follows, we will
quantify how well each word is recognized visually and aurally,
then how simultaneous audiovisual presentation of a word
affects recognition accuracy, and finally we will determine how
unimodal recognition accuracy affects audiovisual enhancement.

Lipreading
We will first describe the lipreading abilities (V-only). These
were quantified for every subject (n = 18) and every word
(n = 50) as the number of correct responses, z, divided by
the number of presentations, (N = 18), i.e., the correct scores
(Figure 2A), in the V-only block. The correct scores varied both
across words and subjects from perfect (i.e., 18 correct responses
to 18 presentations, e.g., for the word ‘vijf ’ by subject S2), to
around chance level (0.1, e.g., a score of 0 correct responses for 18
word presentations for the word ‘telde’ presented to subject S8).
Notably, some words were easily correctly identified by almost

TABLE 1 | Words of the Dutch matrix test.

Name Verb Numeral Adjective Object

Anneke geeft twee dure bloemen

Christien had drie goede boeken

Heleen kiest vier groene boten

Jan koopt vijf grote dozen

Mark maakte zes kleine fietsen

Monique tekent acht mooie messen

Pieter telde negen nieuwe munten

Sarah vond tien oranje ringen

Tom vroeg twaalf vuile schoenen

Willem wint achttien zware stenen

Bold words indicate an example sentence: ‘Tom telde zes groene dozen’
(translation: ‘Tom counted six green boxes’, see Figure 8).
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FIGURE 1 | Example stimulus. (A) Temporal waveform of the auditory speech signal “Tom telde zes groene dozen” (translation: Tom counted six green boxes.)
(B) Waveform of the auditory noise. (C) Spectrogram of the recorded sentence. (D) Five videos frames around the onset of the word. Dark blue lines denote the
approximate onset of each individual word. Written informed consent for the publication of this image was obtained from the individual shown.

all subjects (e.g., ’Mark’), while others were near-never identified
(’telde’) by anyone. Similarly, some subjects were perfect lip-
readers with correct scores for all words near 1.0 (e.g., subject
S14), while subject S13, as an extreme case, could hardly identify
any words via lipreading.

As the realizations of the visual correct scores were quite noisy
(as apparent in the jittery pattern in Figure 2A), the estimates
for the proportion of correct scores for each word and subject
separately were quite uncertain (average 95%-highest density
interval [95%-HDI] was 0.29 [0.14–0.42] across all 900 estimates
from 18 subjects and 50 words). We therefore determined the
visual lipreading recognition rates for words, ρV,w, and for each
subject, ρV,s by fitting the following function:

FV
(
ρV,w, ρV,s

)
= ρV,w × ρV,s (1)

to the responses from the V-only trials, which are taken to be
binomially distributed (see Materials and Methods for details on
the fitting procedure). This yields 18 visual recognition rates for
subjects, ρV,s, and 50 visual recognition rates for words, ρV,w.
Multiplication of these rates assumes that they were independent,
and thus separable from each other. This assumption seems to
hold, at least qualitatively, when looking at the correct scores
for each word and subject (cf. Figures 2A,B, see also section
Materials and Methods for a more quantitative approach). This
procedure smoothened the recognition rate matrix (Figure 2B),
and decreased variability in the estimates (as expressed by the
small 95%-HDI in Figures 2C,D; average 95%-HDI = 0.09 [0.04–
0.14] across 68 parameters). This function also reduced the
number of variables from 900 (number of subjects multiplied

by number of words) to 68 (number of subjects plus number
of words). These features enable a more practical comparison
to the other, A-only and AV conditions, to be introduced later
on. The model described by equation 1 is also preferred by
having a lower Bayesian Information Criterion (BIC, see section
Materials and Methods) compared to the model that determines
recognition rates independently for all subjects and words (5.5 k
vs. 9.0 k, respectively).

Moreover, the recognition estimates are in line with the
correct-score data (correlation r = 0.84, with limited to no
discernible bias). Words were generally easily recognized through
lipreading (Figure 2D, mean ρV,w = 0.77), but there was
considerable variability in visual recognizability across words:
many words were identified easily (e.g., mean ρV,boten = 0.99),
while others were barely recognizable (e.g., mean ρV,telde = 0.03).
Also the ability of subjects to lipread was relatively high on
average (Figure 2C, mean ρV,s = 0.78). However, there was
a considerable range in lipreading ability. The best lip-readers
could recognize ∼100% of the easily-identified words (mean
ρV,S14 = 1.00), while the worst performer could at best recognize
∼15% correctly (mean ρV,S13 = 0.15). The large variability in
visual recognition rates across words and subjects provides a
potential way to determine how speech-reading performance
affects speech listening, when both auditory and visual speech-
recognition cues are presented synchronously.

Speech Listening
In the A-only block, subjects identified words by listening to
the audio recordings of sentences (e.g., Figure 1A, without
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FIGURE 2 | Lipreading. (A) Visual recognition scores. The correct score (number of correct responses divided by the number of presentations) is shown separately
for every word and subject (900 entries) for the V-only condition. The correct scores and rates have been ordered by the recognition rates of subjects on the
abscissa, and of words on the ordinate from low-left to high-right. (B) The average estimated visual recognition rates (Equation 1). Same layout as in (A). V-only
speech recognition rates for (C) subjects and (D) words. Rates were ordered from low-left to high-right. Open circles indicate the mean of the estimated rate,
colored patch indicates the 95% Highest Density Interval (HDI). Reddish colors denote visual conditions.

visual feedback from the lips). A stationary masking noise (e.g.,
Figure 1B) was played at a constant level of 65 dB SPL, while
the sentences were played at an SNR of −21, −16, −13, −10, or
−5 dB. In total, the data comprised 4482 different combinations
of subject, word, and SNR (not all 250 potential combinations of
SNR and word were presented to every one of the 18 subjects).
The average word recognition rate was ∼50% across all SNRs
and subjects (Figures 3A–E). Overall listening performance for
SNRs lower than−10 dB was worse than lipreading performance
(cf. amount of white in Figure 2A vs. Figures 3A–E). In contrast
to lipreading, listening performance was quite similar across
subjects (Figures 3A–E). This small variability across listeners
might be expected, as all listeners were normal-hearing, and were
therefore likely to understand the speech equally well.

Typically, SNR had a strong influence on the ability to
recognize the words through listening (Figures 3A–E, from low
to high SNR, the correct scores improve from almost 0 to near
perfect). To quantify this, we estimated the SNR for which the

recognition rate was 50%, i.e., the auditory speech-recognition
threshold, θA, by fitting the parameters of a logistic psychometric
function FA for every word (with a parametrization as mentioned
in Kuss et al., 2005):

FA (SNR, θA,ωA) = (1+ e−
2 ln 9
ωA

(SNR−θA))−1 (2)

with ωA the auditory recognition width from 10 to 90%
performance (in dB). The width (conversely, the slope) of the
psychometric curve, ωA, did not vary substantially across words
or subjects. Therefore, only one value was estimated, which
was on average 7.1 dB, 95% HDI: 6.8 – 7.4 dB. As the correct
scores did not vary appreciably across subjects, we pooled over
subjects, to obtain 50 auditory recognition thresholds, one for
each word. To exemplify this, we take a look at the word ‘Pieter’
(Figure 3K). This word was easily recognized by all subjects
at the SNR of −5 dB, leading to a 100% recognition score. In
contrast, “Pieter” was almost impossible to identify at the lowest
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FIGURE 3 | Speech listening. Auditory word-recognition scores. (A–E) The correct score (number of correct responses divided by the number of presentations) is
shown separately for every word and subject (900 entries) for each of the SNRs of −21, −16, −13, −10, and −5 dB. The correct scores have been ordered by the
average V-only rates of subjects on the abscissa, and A-only thresholds on the ordinate. (F–J) The average estimated auditory recognition rates. (K) Correct scores
and psychometric fit for the word ‘Pieter’ as a function of SNR, averaged across all subjects. Open squares indicate the measured correct scores. Blue shading
denotes credible fits (see Materials and Methods). Vertical bold gray line indicates the average of likely recognition thresholds. (L) A-only speech recognition
thresholds, ordered from high-left to low-right. Note that a lower threshold indicates better performance. Open circles indicate means of the estimated thresholds,
colored patch indicates the 95% HDI. Blueish colors denote auditory conditions.

SNR of −21 dB, when subjects identified the word presented in
10% of the cases (chance-level). By fitting a psychometric curve
through the data, we obtained a speech listening threshold for
this word at −11.5 dB (Figure 3K). Similar to the V-only model
(equation 1), this modeling smoothened the A-only estimates
(Figures 3F–J), reduced uncertainty in the parameter estimates
(average 95%-HDI from 0.54 [0.35–0.77] to 0.07 [0.00–0.18]),
and reduced the number of parameters (from 4482 to 51). The
model is (therefore) also favored by the BIC (8.0 k vs. 45.3 k
of a fully independent model; a model that included a logistic
dependence on SNR but allowed for subject and word variability
in both the threshold and width had a BIC of 21.2 k with 1800
free parameters).

Importantly, auditory speech-recognition thresholds for each
word (Figure 3L) varied over a considerable 10-dB range, from
the best-recognizable word (mean θA,zware = −16.7 dB) to the
hardest-to-recognize word (mean θA,goede = −6.6 dB), with an
average threshold of−12.1 dB.

Audiovisual Speech Recognition
In the AV-condition, subjects identified words by listening to,
and by lipreading, the audiovisual recordings of sentences in the
presence of acoustic noise (65 dB SPL, SNR: [−21, −16, −13,
−10, −5] dB). The presentation of congruent visual feedback

clearly aided recognition performance, as the correct scores
(Figures 4A–E) were higher than for the A-only condition (cf.
Figures 3A–E). Also, in contrast to the speech listening scores
(cf. Figures 3A–E) and more in line with lipreading performance
(Figure 2A), the AV scores not only varied over words, but
also across subjects (which is visible in the pattern of correct
scores in Figure 4A).

We quantified AV performance by fitting a function FAV
that combines the characteristics of Equations 1 and 2 for the
unimodal performances:

FAV
(
SNR, θAV ,ωAV , ρAV,w, ρAV,s

)
=

(
1− ρAV,w × ρAV,s

)
×

(
1+ e−

2 ln 9
ωAV

(SNR−θAV )
)−1
+ ρAV,w × ρAV,s (3)

with the audiovisual recognition threshold, θAV describing the
logistic SNR dependence, and two audiovisual recognition rates
ρAV,w and ρAV,s, defining the minimum performance level in
the AV condition (i.e., for SNR = −∞) for words and subjects,
respectively. Again, the word ‘Pieter’ is taken as an example to
illustrate the fit (Figure 4K, cf. Figure 3K). In contrast to A-only
recognition, even at the lowest SNR (−21 dB), this word was
easily recognized by all subjects in 75% of the time.
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FIGURE 4 | Audiovisual speech recognition. (A–E) The audiovisual correct scores are shown separately for every word and subject (900 entries) for each of the
SNRs of (A) −21, (B) −16, (C) −13, (D) −10, and (E) −5 dB. The correct scores have been ordered by the average AV recognition rates of subjects on the
abscissa, and of words on the ordinate. (F–J) The average estimated audiovisual recognition rates. (K) Audiovisual correct scores and psychometric fit for the word
‘Pieter’ as a function of SNR, averaged across all subjects. Open squares indicate the measured correct scores. Green shading denotes credible fits (see Materials
and Methods). Vertical bold gray line indicates the average of likely recognition thresholds. (L) AV speech-recognition thresholds, (M,N) AV recognition rates for
words and subjects, ordered from low-left to high-right. Note that a lower threshold indicates better performance. Open circles indicate means of the estimated
thresholds, colored patch indicates the 95% HDI. Greenish colors denote audio-visual conditions.

Similar to the V-only and A-only models (equations 1 and 2),
this modeling smoothened the AV-only estimates (Figures 4F–J),
reduced uncertainty in the parameter estimates (average 95%-
HDI from 0.55 [0.35–0.77] to 0.10 [0.00–0.22]), and reduced the
number of parameters (from 4482 to 119). Again, the model is
favored by the BIC (7.7 k vs. 45.2 k of a fully independent model;
a model that included a logistic dependence on SNR but allowed
for subject and word variability in both the threshold and width
had a BIC of 33.1 k with 1868 free parameters).

Like for the A-only condition, one value of the width was
estimated for all subjects and words (this width was on average
10.5 dB, 95% HDI: 9.5 – 11.4 dB). The audiovisual speech
thresholds were determined for words alone (Figure 4L), in line
with the auditory speech thresholds (Figure 3L). The thresholds
varied over a ∼21 dB range (from mean θA,Tom = −27.6 dB
to mean θA,goede = −6.4 dB), with an average threshold of
−14.7 dB. The subjects’ AV recognition rates (Figure 4N) varied
from almost negligible (chance) to near-perfect (from mean
ρAV,S13 = 0.07 to mean ρAV,S14 = 0.99), with an average rate
around 0.63. The AV recognition rates for words (Figure 4M)
varied over a similar range (from mean ρAV,tekent = 0.09 to mean
ρAV,Anneke = 0.98), with an average rate around 0.71. There was
considerable uncertainty in the estimation of the word AV rates

(e.g., the widest 95%-HDI = 0.02–0.95 for the word ‘Tom’), but
in general the 95% HDIs for all other parameters were narrow.

Audiovisual Enhancement
The audiovisual parameters from equation 3 are basic descriptors
for the audiovisual performance, from which we can derive
the audiovisual enhancement by comparing the results to
the unimodal parameters from equations 1 and 2. For the
audiovisual threshold, the comparison to the auditory threshold
indicates how much the SNR can decrease when the visual
modality is added, without affecting performance. The change
in threshold,1θAV , relative to the auditory threshold, was thus
estimated by rewriting θAV in equation 3 as:

θAV = θA +1θAV (4)

Typically, the audiovisual recognition thresholds were lower (i.e.,
better) than the auditory recognition thresholds (Figure 5A), by
on average −1.3 dB. This means that the threshold is typically
reached at lower SNRs when people speech-read at the same time.
The threshold for 35 words improved in the AV condition (95%-
HDI lay below 0 dB), while for 15 words there was no difference
(95%-HDI included 0 dB).
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FIGURE 5 | Comparison between audiovisual and unimodal conditions. Change in threshold and rates of AV speech recognition in comparison to unimodal listening
conditions. (A) The change in threshold for each word (equation 4). Note that a negative change in threshold denotes better performance in AV conditions. (B) The
change in recognition rate for each word (equation 5). (C) The change in recognition rate for each subject. For rates, a change larger than 0 denotes better AV
performance. Open circles denote the mean of the parameter estimate, colored patches indicate 95% HDI.

Similarly, the minimum performance level in the AV
condition is given by multiplying the recognition rates for
words and subjects:ρAV,w × ρAV,s. This measure quantifies the
performance level in the absence of an auditory signal (i.e.,
when the SNR approaches −∞). In case there really is no
auditory signal, one might expect that the minimum audiovisual
performance level, given by the rates, would equal the visual
performance rate. This, of course, only holds if the stimulus
parameters fully determine the subject’s performance levels, and if
non-stimulus factors, such as task or block design, are irrelevant.
We tested this prediction by determining the difference in
audiovisual and visual rates for words and subjects:

{
ρAV,w = ρV,w +1ρAV,w

ρAV,s =V,s +1ρAV,s
(5)

On average, there was no difference in recognition rates for
words (Figure 5B), as the difference values scattered around 0
for most words. In contrast, the subjects’ ability to lipread in
the AV condition (as reflected by the subjects’ recognition rate)
was poorer than in the V-only condition (Figure 5C). The rates
for all subjects dropped (mean 1ρ = −0.2, all 95% HDI < 0).
This indicates that, on average, audiovisual performance dropped
below the V-only performance scores, when poor auditory SNRs
caused speech listening to deteriorate completely.

As these last points are important, we will restate them.
First, the AV threshold is lowered, making it easier to recognize
words at a given SNR. This effectively yields an audiovisual
enhancement to speech listening (Figure 5A). Second, words
are recognized through lipreading at equal levels in both V-only
and AV conditions (Figure 5B). Third, somewhat surprisingly,
the lipreading ability of subjects is impoverished in the AV
condition (Figure 5C). This suggests that task constraints (i.e.,
being in an AV condition vs. in a V-only condition) have a
significant influence on speech recognition performance, even
when stimulus parameters are equivalent (i.e., only a visual, no
auditory signal).

Probability Summation
Next, we qualitatively compared the AV condition with a model
in which audiovisual integration is merely a result of statistical
summation rather than of true neural integration. Finding an
improved performance (i.e., better speech recognition) in the
AV condition is not automatic evidence that the brain integrates
the auditory and visual inputs. Indeed, having both modalities
available, rather than one, automatically increases the probability
of stimulus recognition. In a model of probability summation,
participants recognize a word from either the A-only or the
V-only condition, which are considered independent processing
channels. The probability of word recognition in the presence of
the two independent, non-interacting, modalities is given by:

Psum = 1− Pfail = PA + PV − PA × PV (6)

where Psum is the probability to successfully recognize a word
according to the summation model, PA is the probability to
recognize a word in the A-only condition, and PV is the
probability of recognizing a word in the V-only condition. Both
PA and PV were estimated according to equations 1 and 2, but
there were no additional free parameters to fit for the probability
summation model. In order to demonstrate how well this model
performs for various unimodal stimulus strengths, we split the
data in four groups (Figure 6), as a first, simple approximation,
consisting of poor or good V-only lipreading or average A-only
listening accuracy (estimated recognition rate below or above
0.55, respectively; for A-only, recognition rates are averaged
across SNR; as shown in Figures 2B, 3F–J). Note that there is a
weak, negative correlation between the speech listening threshold
and lipreading recognition rate at the word level; r =−0.39, 95%-
HDI = −0.63 to −0.15, so that each group contains a slightly
different number of subject-word combinations.

Despite the differences in unimodal performance, the best-
fit performance curves (according to equations 1–3) for each of
those groups followed a similar pattern. Auditory performance
(Figure 6 – blue) degrades as the signal-to-noise ratio decreases;
degradation is worse for words with poor auditory thresholds
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FIGURE 6 | Audiovisual speech recognition varies with unimodal information. Psychometric curves were determined (equation 1–3) from all data divided across 4
groups differing in unimodal performances: visual recognition rate (A,B) larger and (C,D) smaller than 0.55; and an auditory recognition rate (A,C) larger than and
(B,D) smaller than 0.55. Curves indicate the average model estimate, circles denote the average correct score. N is the number of subject-word-SNR combinations
for each group.

(Figures 6A,C). Visual performance (Figure 6 – red) is better
than auditory performance for a larger range of SNRs if the
visual word recognition rate is better (Figures 6A,B). Notably,
for all groups, audiovisual performance (Figure 6 – green) is
never worse than auditory performance; a clear audiovisual
enhancement relative to auditory performance alone is present
for a large range of SNRs. While audiovisual performance is
typically also better than visual performance, at very low acoustic
SNRs, the multisensory performance tends to be worse than
lipreading performance (Figure 6, the green curves and circles
drop below the red lines and circles). Overall, the fits to equations
1–3 followed the average correct scores nicely, although the
AV fit (green) slightly under- and overshot the correct score at
the lowest SNR for the high-accuracy and low-accuracy V-only
data, respectively. The V-only fit (red) indicated slightly better
performance than the average correct score for low-accuracy
V-only data (Figures 6C,D).

Notably, the benchmark probability summation model can
describe the audiovisual data quite well, at least qualitatively

(Figure 6 – black). This model exhibits unimodal-like
performance whenever either unimodal recognition abilities
vastly outperforms the other, and shows maximum enhancement
when the visual and auditory performances are equal.

We also fitted two other models that can exhibit (supra-
additive) enhancements in audiovisual speech perception
(Rouger et al., 2007; Ma et al., 2009). While qualitatively similar,
our version of these models (that also include word and subject
variability in the model parameters) performed worse than the
probability-summation model (both in terms of how well the
fit curves approximated the correct scores, and in terms of the
BIC). We will not elaborate on these models here, but would
like to note that neither these two models nor the probability-
summation model allow for audiovisual performance to drop
below visual performance.

Inverse Effectiveness – Noise Level
To test whether the multisensory data adhered to the principle
of inverse effectiveness, we first determined the influence of
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FIGURE 7 | Audiovisual enhancement as a function of SNR. (A–D) The average audiovisual enhancement, expressed as proportion correct, as a function of SNR,
compared to speech listening only (blue) and the proportion summation model (black). Curves (circles) indicate the enhancement calculated from the average model
estimate (average correct score).

SNR, as a measure of auditory stimulus intensity, on the
magnitude of the audiovisual enhancement. For this purpose,
we determined the audiovisual enhancement as the difference
between the average audiovisual and auditory model fits and
correct scores (Figure 6, green and blue, curves and circles).
The shape of audiovisual enhancement is largely similar
across the four groups (Figure 7, blue), and indicates (1)
that auditory recognition performance improves by adding
the visual information especially for low SNRs, and (2) the
highest enhancement occurs at high to intermediate noise levels
(SNR between −13 and −20 dB). For the lowest SNR of
−21 dB, enhancement saturates or decreases slightly (for the
correct scores only when A-only and V-only accuracy is low in
Figure 7C). So, the principle of inverse effectiveness seems to
apply to a large extent, when auditory SNR is considered as the
measure of unimodal reliability.

We can also express the audiovisual enhancement relative
to the benchmark model of statistical summation. For all
4 groups, the probability-summation model resembles AV speech
recognition quite well (Figure 7; black lines close to 0). However,
there is a slight deterioration at the lowest SNRs (maximum
deterioration of−0.04 to−0.10 at an SNR of−21 dB).

Inverse Effectiveness – Word and
Subject Accuracy
Finally, we tested whether multisensory enhancement
correlates negatively with unisensory responsiveness (i.e.,
A-only thresholds, V-only word and subject recognition rates;
rather than stimulus intensity, i.e., SNR), as predicted by the
principle of inverse effectiveness. To that end, we determined
the multisensory enhancement as the difference in correct scores
between the audiovisual and either the auditory, EAV−A, or visual,
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EAV−V , stimulus, for every word, subject and SNR combination.
The slope of the relationship between multisensory enhancement
and auditory thresholds or visual recognition rates, respectively,
was determined through multiple linear regression analysis:{

EAV−A = β0 − β1θA + β2ρV,w + β3ρV,s
EAV−V = β4 − β5θA + β6ρV,w + β7ρV,s

(7)

with β1 the parameter of interest to infer effectiveness of the
auditory response, and β6 and β7 of the visual response for
words and subjects. The other parameters are included to account
for confounds such as the effect of the other modality (e.g.,
the audiovisual enhancement over the auditory response will be
negligible if the visual response is minimal). These parameters
are an offset to the intercept and reflect the type of integration
as shown by the audiovisual data (i.e., super-additive, additive,
sub-additive). Note that for the auditory thresholds, the signs
are inverted. This ensures that a negative slope would actually
indicate inverse effectiveness, even though higher thresholds
indicate a worse response.

The audiovisual enhancement over the auditory response
(EAV−A, Figure 8A) is larger for words with higher auditory
thresholds, with an effectiveness slope β1 = −0.031 (95%-HDI:
−0.035 to −0.027). The negative slope suggests that the auditory
response to each word is inversely effective in driving the
multisensory response. The magnitude of the enhancement over
the auditory response increases when a word can be more easily
recognized through lip-reading (i.e., high visual word recognition
rate, dark filled dots). This is in line with the observation
that the multisensory data follow probability summation quite
well, reflecting an additive type of integration (Figures 6, 7).
Importantly, the observed inverse effectiveness is not an artifact
due to a ceiling effect, as the auditory response allowed for a larger
performance benefit (Figure 8A, dotted line).

Multisensory enhancement over the visual response follows
the same principles. Words with a low visual recognition rate
were more effective at improving the AV response (Figure 8B),
with an effectiveness slope β6 = −0.33 (95%-HDI: −0.38 to
−0.29). Notably, even across subjects, the poorer lipreaders
benefit more from audiovisual presentation than excellent
lipreaders (Figure 8C), with an effectiveness slope β7 = −0.42
(95%-HDI:−0.46 to−0.38).

DISCUSSION

Overview
This paper reports the occurrence of inverse effectiveness on
the recognizability – visually or auditory - of individual words.
We determined how well words presented in sentences can be
recognized by normal-hearing subjects through listening and/or
lipreading under noisy listening conditions. In line with previous
research (Helfer, 1997; Grant and Seitz, 2000; Bernstein et al.,
2004; Winn et al., 2013), we found that lipreading improves
speech recognition by listening alone (Figures 5A, 6). However,
we also observed that audiovisual performance levels fall below
lipreading performance for the lowest SNR (Figures 5C, 6).

FIGURE 8 | Inverse effectiveness. The audiovisual enhancement over
unisensory responses (as defined in the text) as a function of the independent
variables (A) auditory threshold, (B) visual word recognition rate, (C) visual
subject recognition rate. Note that the x-axis is inverted in (A). Black dots
indicate the enhancement in correct score for every subject-word-SNR
combination. To visualize the effects of the three independent variables on the
dependent variable, we binned the variables as follows. The two-dimensional
bins were centered on rounded threshold values and for five visual word
recognition rates (from the minimum to the maximum rates in equidistant
steps) in (A), and on five auditory thresholds (from the minimum to the
maximum thresholds in equidistant steps) and all visual word recognition rate
values in (B) and visual subject recognition rates in (C). Circles denote binned
average correct scores. Lines indicate the best-fit multiple regression lines for
the independent variable of interest (on the abscissa), with intercepts
determined by the second, binned variable (indicated by the color bar) and the
mean of the third variable (indicated by text). Dot size (color) denotes the
cross-sensory performance level (as indicated by the color bars).
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Furthermore, we found that the improvements typically saturated
at intermediate SNRs, which is largely in line with the principle
of inverse effectiveness. We also observed inverse effectiveness
across individual words and subjects (Figure 8): the data show
that the benefit of adding cross-modal information increased
when a word was poorly heard (Figure 8A), when a word
was poorly seen (Figure 8B), or when the subject was a poor
lipreader (Figure 8C).

Performance in Lipreading
Our data demonstrate considerable variability in lipreading
performance (Figure 2), which has been reported and discussed
earlier in the literature (Bernstein et al., 2000). The average
performance levels from the current study are relatively high,
especially considering that the normal-hearing subjects were not
specifically trained to lipread. This is consistent with earlier
findings on word and sentence recognition tasks (Bernstein et al.,
2000), although more recent papers have reported lower values
(Rouger et al., 2007; Ross et al., 2007; Ma et al., 2009). One
possible explanation for the high lipreading performance might
be the use of the closed-set speech-recognition task (i.e., a limited
set of words used in a forced-choice behavioral task).

Performance in Speech Listening
The auditory scores varied mainly across words; subjects
could all recognize words through listening at an almost
equal performance level (Figure 3). Since all participants had
normal hearing, and could therefore be expected to understand
speech equally well, the limited variability between subjects
corroborated that expectation. The analysis of speech recognition
performance in the auditory-only condition revealed speech
reception thresholds of −12.1 dB, which is lower than the
threshold of −8.4 dB obtained from the original version of the
Dutch Matrix test (Houben et al., 2014).

Models for Audiovisual Enhancement
The behavioral improvement of audiovisual speech perception
can be modeled in various ways. Typically, AV data are compared
to the benchmark probability-summation model, in which
the auditory and visual channels are considered independent,
without true multisensory neural interactions. This model
(Equation 6) matched the data closely (Figures 5, 6).

Rouger et al. (2007) found that an alternative, optimal-
integration model could better describe their data. In their model,
spectral-temporal audiovisual cues merge across modalities
to optimize the amount of information required for word
recognition. Our audiovisual data in poor lipreading conditions
(i.e., visual recognition rate for a word is lower than 0.55)
compares quite well to the speech-recognition abilities of the
normal-hearing subjects of Rouger et al. (2007 – their Figure 3D)
in the presence of a masking noise.

A third model was proposed by Ma et al. (2009), in which
words were regarded as points in a multidimensional space,
and word recognition becomes a probabilistic inference process.
This Bayesian model assumes that certain words occur more
frequently than other words (and are more easily recognized),

and it uses this pre-knowledge (i.e., priors) to explain the
recognition scores for all words.

It is hard to reconcile any of the three models with our
observation that in low-SNR conditions, multisensory speech
recognition is actually degraded compared to unimodal
lipreading without accounting for non-stimulus factors
affecting audiovisual speech recognition (Figures 4C, 5).
The aforementioned models do not include a mechanism for
divided attention between the two modalities (Bonnel and
Hafter, 1998; Alsius et al., 2005). In such a scheme, the two
separate information streams could actually lead to impaired
performance in conditions in which either of the two signals
may be ambiguous or weak. Thus, even though lipreading
might provide sufficient information to recognize words,
people are not able to divert their attention away from the
auditory stream, despite the absence of a potential signal in that
information stream.

Inverse Effectiveness
We tested whether the principle of inverse effectiveness also holds
in audiovisual speech recognition by: (i) modulating the acoustic
signals re background noise, (ii) by investigating each subject’s
lipreading ability, and (iii) by comparing to auditory and/or
visual recognizability of words.

First, in line with several laboratory studies of multisensory
integration using simple sensory stimuli (e.g., white noise bursts
and LED flashes) (Meredith and Stein, 1986; Frens et al., 1995;
Wallace et al., 1998; Corneil et al., 2002; Alais and Burr, 2004;
Wallace et al., 2004; Bell et al., 2005; Körding et al., 2007; van
Wanrooij et al., 2009; van Barneveld and van Wanrooij, 2013),
a lower auditory SNR typically induced stronger multisensory
enhancement. However, here we report that for the lowest SNRs
(−21 dB) the enhancement saturated, or even slightly dropped
(Figure 7C). This differs quantitatively with the data from Ma
et al. (2009), who found a significant enhancement drop for
low SNRs. Notably, however, Bayesian modeling of audiovisual
enhancement in the study by Ma et al. (2009) suggested that
the largest enhancement shifted to lower SNRs with decreasing
vocabulary size. As the vocabulary size in the current experiment
was limited to only 50 words (with only 10 possible choices per
word category), the model by Ma et al. (2009) would also predict
the largest enhancement at the lowest SNRs.

Secondly, evidence for inverse effectiveness can be found for
individual lipreading abilities; worse lipreaders benefited more
from the additional auditory information for the audiovisually
presented sentences (Figure 8C). Finally, inverse effectiveness
also plays a role at word-level performance, both for vision
and for hearing: the hardest to-recognize words exhibited the
strongest audiovisual enhancements relative to the unimodal
condition (Figure 8). As such, this type of inverse effectiveness
found is in line with basic multisensory integration results
from earlier studies using stimuli with low-level features (simple
noise bursts and LED flashes) and for studies using slightly
more complex, spectro-temporally modulating stimuli (Bremen
et al., 2017), but likely also involves a wide network of high-
level feature processing (features such as word frequency,
familiarity, audiovisual co-occurrence, task constraints; see also
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the limitation of this study in determining these effects in the
following section).

Matrix Test
The audiovisual speech material is based on an existing
auditory-only matrix sentence test for Dutch native speakers
(Houben et al., 2014; Houben and Dreschler, 2015). It is
not immediately clear whether the observed results hold
specifically for the Dutch language, or whether it is immaterial
for which language this test has been developed. Numerous
audiovisual speech recognition tests have been developed for
the English language (Sumby and Pollack, 1954; MacLeod and
Summerfield, 1990; Bernstein et al., 2004; Ross et al., 2007;
Ma et al., 2009; Stevenson et al., 2015), with exceptions for
native French (Rouger et al., 2007; Anderson Gosselin and
Gagné, 2011) and Dutch speakers (Middelweerd and Plomp,
1987). Detailed comparisons are difficult also because the
stimuli (monosyllables vs. words vs. sentences) and the subject
populations (normal-hearing vs. hearing-impaired) differ. The
use of a standardized test, such as the Matrix test, might facilitate
comparisons, especially between normal-hearing and hearing-
impaired listeners, since the Matrix test is also well-suited to
test the hearing-impaired. Comparisons across languages might
still be difficult, as, even though an auditory Matrix test is
available in many languages (Hagerman, 1982; Ozimek et al.,
2010; Hochmuth et al., 2012; Houben et al., 2014), the words
may vary in their spectro-temporal properties and thresholds
between languages.

Note that the use of this standardized Matrix test, that
was constructed with the intention to evaluate hearing-
impaired, includes words that are quite common and that are
familiar to the subjects. The dependence of word recognition
on higher-level factors beyond the low-level processing of
spectro-temporal or articulatory stimulus representation is
therefore hard – if not impossible – to determine with these
speech materials.

CONCLUSION

To conclude, lipreading enhances speech recognition (in line
with earlier studies); this visual enhancement, however, is
affected by the acoustic properties of the audiovisual scene.
Visual enhancement for words that are easily recognized
by vision alone is impoverished in high acoustic noise
conditions. Audiovisual enhancements were highest for
intermediate signal-to-noise ratios. Inverse effectiveness
holds for words and subjects, for which the poorest
visually/auditory-recognizable words underwent the strongest
cross-modal enhancements.

MATERIALS AND METHODS

Participants
Eighteen native Dutch-speaking adults (mean age = 26 years,
range = 21–40) participated in this study. All gave their informed

consent. They were screened for normal-hearing (within 20 dB
HL range 0.5 – 8 kHz), and had normal or corrected-to-normal
vision (see also Holmes, 2009; Stein et al., 2009 for a discussion
on quantifying inverse effectiveness).

Audiovisual Material
The speech material was based on the Dutch version of the
speech-in-noise matrix test developed by Houben et al. (2014)
in analogy to a Swedish test (Hagerman, 1982). In general, a
matrix test uses complete sentences that are composed from a
fixed matrix of words (Table 1). All created sentences shared
the same grammatical structure (name, verb, numeral, adjective,
object), but were semantically unpredictable. In principle, a
set of 105 different sentences could be created. Therefore,
the test suffered little from potential training confounds when
participants were tested multiple times. Houben et al. (2014)
ensured that the occurrence of phonemes in their test was
similar to standard Dutch. For the audiovisual version of the
test reported here, we selected a subset of 180 (155 unique)
sentences that were grouped into 9 lists of 20 sentences each.
In every list, each of the 50 words from the matrix occurred
twice, once in the first ten sentences and once in the second
ten sentences.

The audio-video material was recorded in a sound-
attenuated, semi-anechoic room, using an Olympus LS-5
audio recorder (24-bit/44.1 kHz sampling rate), and a Canon
60D video camera (1280 × 720, 720 p HD at 50 frames per
second), respectively. All sentences were spoken by a Dutch
female speech therapist. If a sentence was not articulated
clearly, or if there was a sudden movement of the face or
eyes, the sentence was re-recorded. The audio and video
recordings were combined off-line using Final Cut Pro X
(Mac App OS X Yosemite), and saved in MPEG-4 format,
in H.264 codec.

Experimental Setup
Audiovisual testing was carried out in the same room in
which the material had been recorded. Stimulus presentation
was controlled by a Dell PC (Dell Inc., Round Rock, TX,
United States) running Matlab version 2014b (The Mathworks,
Natick, MA, United States). Participants were seated at a
table, 1.0 m in front of a PC screen (Dell LCD monitor,
model: E2314Hf, Dell Inc., Round Rock, TX, United States).
Sounds were played through an external PC sound card
(Babyface, RME, Germany) and presented over one speaker
(Control Model Series, model number: Control One, JBL,
Los Angeles, CA, United States) placed 1.0 m in front of
the participant, immediately above the screen (30◦ above
the interaural plane). Speaker output was calibrated with an
ISO-TECH Sound Level Meter (type SLM 1352P) at the
position of the listener’s head, on the basis of the stationary
masking noise.

Stimuli
The stimuli contained digital video recordings of a female
speaker reading aloud the sentences in Dutch (Figure 1). In
the auditory-only presentation (A-only), the voice was presented
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without visual input (i.e., black screen, Figures 1A,C) with
added background acoustic noise (Figure 1B). In the visual-only
presentation (V-only) the video fragments of the female speaker
were shown on the screen without an auditory speech signal
and noise (Figure 1D). In the audiovisual presentation (AV), the
video was presented with the corresponding auditory signal and
the masking noise.

The masking noise was created following the procedure
reported by Wagener et al. (2003). To that end, the 180 sentences
were overlaid by applying a random circular shift. Repeating
that procedure five times resulted in a stationary masking
noise with the same spectral characteristics as the original
speech material.

Paradigm
All participants were tested in a closed-set speech-recognition
test in A-only, V-only and AV conditions. Prior to the
experiment, all participants familiarized themselves with
the matrix of 50 words (10 words for each of the 5
categories, Table 1) and by practicing the task on 10
randomly selected AV sentences. No improvement in
speech recognition was observed during the experimental
sessions, which indicates that there was no recognition effect of
procedural learning.

The masking noise started and ended 500 ms before
and after the sentence presentation. The noise onset and
offset included 250 ms (sin2, cos2) ramps. In the A-only
and AV conditions, the masking noise was fixed at 65 dB
SPL (A-weighted), with the speech sound presented at 44,
49, 52, 55, or 60 dB SPL (A-weighted) to obtain signal-to-
noise ratios (SNRs) of −21, −16, −13, −10, and −5 dB,
respectively. After presentation of the sentence and the end
of the noise, the matrix of 50 words was shown on the
screen (Table 1). Participants were instructed to choose one
word from each of the 5 categories (10-alternative forced-
choice task). Participants initiated the next trial by pressing
the mouse-button.

For each of the sensory modalities (A-only, V-only, and
AV), participants were tested in separate sessions on different
days. In this way, fatigue and repetitive stimulus presentation
were avoided. In each session, the nine lists of 20 sentences
were presented. In the A-only and AV sessions, each sentence
was assigned one of the five SNRs pseudo-randomly (each
SNR was presented equally often as the others, i.e., 36 times
in each session).

Data Analysis
For every word (w = 1:50), subject (s = 1:18), SNR (n = 1:5) and
sensory modality (m = 1:3), we determined the correct score,
defined as the number of correct responses, z, divided by the
number of presentations, N. The correct score, P(correct), is
binomially distributed, in which the probability of a success is
given by:

P (correct) ∼ Binomial((1− γ) × F (ψ)+ γ,N) (8)

where F(ψ) is a function that characterizes the recognition
performance for the particular stimulus and subject parameters
(subject parameters such as SNR and visual recognition rate),
described by ψ; γ is the probability that the subject gives the
correct answer, irrespective of the stimulus (the ’guess rate’);
(1-γ)F(ψ) + γ is the probability of success; N is the number
of trials; and Binomial denotes the binomial distribution. Here,
γ was set to 10% (0.1), as there were ten word alternatives
per category. We estimated model parameters ψ, e.g., the
recognition rates, ρ (i.e., how often words were recognized
correctly at a given SNR) and the recognition thresholds,
θ (i.e., the SNR at which words were recognized in 50%
of the presentations), as described in the section “Results”
(equations 1–3).

Statistical Analysis
Parameter estimation of Equations 1–8 was performed using
a Bayesian statistical analysis. This analysis requires the
definition of priors over the parameters. As a prior for
the auditory thresholds, we chose the Gaussian distribution
with mean 0 and standard deviation 100, and for the visual
recognition rates we took a positive-only beta distribution, for
which both shape parameters were set to 1. The audiovisual
rate differences (Equation 5) were modeled as Gaussian
distributions with the rates transformed to probit scale (see
e.g., Lee and Wagenmakers, 2014, Chapter 9.3). For the
multiple linear regression (equation 7; Kruschke, 2015), the
data was modeled according to a t-distribution. For the
priors on the parameters, Gaussian distributions with a mean
of 0 and a standard deviation of 2 were chosen, after
normalization of the data.

The estimation procedure relied on Markov Chain Monte
Carlo (MCMC) techniques. The estimation algorithms were
implemented in JAGS (Plummer, 2003) through matJAGS
(Turner et al., 2013). Three MCMC chains of 10,000 samples were
generated. The first 10,000 samples were discarded as burn-in.
Convergence of the chains was determined visually, by checking
that the shrink factor �R< 1.1 (Brooks and Gelman, 1998; Gelman
et al., 2013), and by checking that the effective sample size> 1000
(Kass et al., 1998).

From these samples of the posterior distributions, we
determined the mean and the 95% highest density interval
(95%-HDI) as a centroid and uncertainty estimate of the
parameters, respectively.

Model Selection
To test for the appropriateness of the models in equations 1–
3, we compared them against less-restrictive models, including
fully independent models. To that end, we determined the BIC
for the models:

BIC = ln (n) k− 2 ln
(
L̂
)

(9)

where k denotes the number of parameters of the model (e.g., 68
for equation 1 and 900 for a fully independent V-only model),
n the number of samples (e.g., 900 for the V-only data), and L̂
the maximized value of the binomial likelihood function (e.g.,
for those ρV,w, and ρV,s that maximize the likelihood function
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for the V-only data at hand). The model with the
lowest BIC is the preferred model. An alternative
model-selection criterion, the Akaike Information
Criterion (which contains a smaller penalty term
for the number of parameters) yielded the same
model selections.
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