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Abstract

It has been reported that donor age affects patient outcomes after liver transplantation, and

that telomere length is associated with age. However, to our knowledge, the impact of donor

age and donor liver telomere length in liver transplantation has not been well investigated.

This study aimed to clarify the influence of the length of telomere and G-tail from donor livers

on the outcomes of living donors and recipients after living donor liver transplantation. The

length of telomere and G-tail derived from blood samples and liver tissues of 55 living

donors, measured using the hybridization protection assay. The length of telomeres from

blood samples was inversely correlated with ages, whereas G-tail length from blood sam-

ples and telomere and G-tail lengths from liver tissues were not correlated with ages. Age,

telomere, and G-tail length from blood did not affect postoperative liver failure and early liver

regeneration of donors. On the other hand, the longer the liver telomere, the poorer the liver

regeneration tended to be, especially with significant difference in donor who underwent

right hemihepatectomy. We found that the survival rate of recipients who received liver graft

with longer telomeres was inferior to that of those who received liver graft with shorter ones.

An elderly donor, longer liver telomere, and higher Model for End-Stage Liver Disease score

were identified as independent risk factors for recipient survival after transplantation. In con-

clusion, telomere shortening in healthy liver does not correlate with age, whereas longer

liver telomeres negatively influence donor liver regeneration and recipient survival after liv-

ing donor liver transplantation. These results can direct future studies and investigations on

telomere shortening in the clinical and experimental transplant setting.

Introduction

Liver transplantation (LT) is a standard treatment for end-stage liver disease and liver malig-

nancies. In a globally aging society, a declining pool for living donor liver transplantation

(LDLT) and cadaver LT has become a critical issue. The possibility and safety of donations
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from marginal donors should be considered, particularly those of elderly and obese donors. It

remains controversial whether donor age impairs recipient outcomes after LDLT [1]. How-

ever, the impact of donor age on the outcome of both donors and recipients after LDLT has

not been studied.

For a long time, the liver was recognized as an organ that could regenerate; yet, the mecha-

nism of liver regeneration is remains unclear. Eukaryotic organisms senesce as they get older,

and organ function and regeneration ability decline. It has been reported that liver regenera-

tion in elderly people and rats after hepatectomy slows down [2]. The residual capacity of

hepatic function is thought to be correlated with liver regeneration. However, only a few stud-

ies have focused on the effects of aging liver tissues on liver regeneration and postoperative

outcomes. Thus, it is necessary to clarify the relationship between liver regeneration and age.

Telomeres, double-stranded DNA containing repeat sequences of 5'-TTAGGG-3' at the

ends of chromosomes, appear to be deeply involved in tissue regeneration, lifespan, and cell

division [3, 4]. It has been reported that telomere length decreases as the time of cell division

increases [3, 4]. According to the general theory, telomere length is inversely correlated with

age. In addition, it has been reported that the telomeric 3’-overhang (G-tail) length is associ-

ated with a risk of cardiovascular events [5, 6]. However, the significance of telomere/G-tail

length in LT has not been well studied.

We investigated the influence of telomere and G-tail length from donor blood and liver tis-

sues on donor liver regeneration and recipient outcome after LDLT.

Materials and methods

Donors and recipients

Overall, 223 patients underwent LDLTs at Hiroshima University Hospital between 1991 and

2015. Blood and liver samples from 55 donors were collected at LDLT between 2010 and 2015.

Written informed consent was obtained from all participants before surgery, in accordance

with the Declaration of Helsinki. This study was approved by the Hiroshima University Insti-

tutional Review Board (HiM129-28). The procedure to protect the identity of the patients was

subject to approval by the institutional review committee and met the guidelines of the respon-

sible governmental authority.

LDLTs were performed at Hiroshima University Hospital, following the Japanese Liver

Transplant Society guidelines. Donors were healthy adults who voluntarily applied to donate

their liver. The size of the graft had to be more than 0.8% of the recipient’s body weight [7].

Our donor/graft selection criteria, surgical procedures and immunosuppressant regimen are

described in detail elsewhere [8]. Donors could not have malignant or infectious diseases, and

the donor organs were limited to those from relatives whose relation to the recipient was

within the third degree of consanguinity. Liver biopsies were performed in cases where an

abnormality was found on computed tomography (CT). A less than mild fatty liver (< 10% of

fat storage) was considered acceptable for transplantation [9].

Perioperative measurements of hepatic morphology

Perioperative volumetric measurements of hepatic morphology were performed as previously

described [7, 9]. Resection rates were used with the expected volume of the liver calculated on

three-dimensional CT (3D-CT, version 3.1, GE Medical Systems, Milwaukee, WI, USA) and

Zio 900 M (Zio Software, Tokyo, Japan) before surgery. We measured total liver volume, the

future liver remnant (FLR) volume preoperatively, and liver remnant (LR) volume on day 7.

The morphological regeneration rate of the liver on day 7 after liver resection (abbreviated as

Donor liver telomere and G-tail in living donor liver transplantation
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the early regeneration index: ERI) was calculated as [(VLR—VFLR)/VFLR] � 100, where VLR

is the volume of the LR and VFLR is the volume of the FLR [2, 10].

Postoperative outcomes

Donor outcomes included morbidity, post-hepatectomy-liver-failure (PHLF), and ERI. Recipi-

ent outcomes included morbidity and survival. The definition of PHLF was based on the Inter-

national-Study-Group-of-Liver-Surgery (ISGLS), included the following: decrease in liver

synthesis excretion, detoxification function, or symptoms of elevation of high bilirubin value;

and international normalized ratio of prothrombin (PT-INR) value on day 5 (PT-INR-5), or

later compared with the previous one if there was a high preoperative value, or a normal value

that required “artificial supplements from the outside to maintain” [11, 12]. The standard

value of each blood test refers to the reference value of each facility and laboratory.

Quantification of telomere and G-tail length

Quantification of relative telomere length (RTL) and relative G-tail length (RGL), double-

stranded and single-stranded, was performed using the telomere hybridization protection

assay (HPA) method, as described previously [13, 14]. The HPA method represents telomere

and G-tail length as luminescence signals (in relative light units [rlu]). DNA from whole blood

and liver tissues were extracted using the phenol-chloroform method. For the telomere G-tail

assay, 1 μg of non-denatured DNA was used to measure the G-tail, and 0.2 μg of denatured

DNA (99˚C for 10min) was used to measure the total telomere length. We also used control

genomic DNA isolated from the HeLa cell line to normalize the luminescence. We took 1 μL

from each sample tube and measured the DNA amount using NanoDrop (ND-2000; Thermo

Fisher Scientific Inc., Waltham, MA, USA) to normalize the luminescence of each sample.

Probes for acridinium ester (AE)-labeling of telomeres were supplied by Fujirebio (Tokyo,

Japan). DNA was incubated with HPA probes for hybridization at 60˚C for 20min, after then

underwent hydrolysis at 60˚C for 10min. The luminescence of AE relative to telomere length

and G-tail length were measured using an EnVision multilabel reader (Perkin Elmer Japan Co

Ltd).

Statistical analysis

All statistical analyses were conducted using JMP 13 (SAS Institute Inc., Cary, NC, USA). The

univariate analysis for continuous variables with normal distribution was compared using the

Student’s t-test. Continuous variables without a normal distribution were compared with

Mann-Whitney’s U test. A descriptive comparison was performed with the chi-squared test.

Correlations between the presence of PHLF and continuous variables were expressed using

Pearson’s correlation coefficient. The area under the curve was calculated using the receiver

operating characteristic (ROC) curve for the sensitivity and specificity of the value of the limit

of telomere length. The difference between the two sides was considered statistically significant

when the p-value was 0.05 or less. All relevant data are shown within Supporting Information

files (S1 Table).

Results

Correlations between length of telomere and G-tail

Clinical characteristics of donors and recipients are shown in Table 1. First, we investigated

the correlation between telomere and G-tail length from donor blood and liver tissue. Consis-

tent with previous reports, relative telomere length from the blood samples (B-RTL) was

Donor liver telomere and G-tail in living donor liver transplantation
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significantly correlated with relative G-tail length from the blood samples (B-RGL) (Fig 1A).

Additionally, relative telomere length from liver tissues (L-RTL) was also significantly corre-

lated with relative G-tail length from liver tissues (L-RGL) (Fig 1B). Therefore, length of telo-

mere was correlated with G-tail length in both blood and liver tissue.

Differences of telomere/G-tail length between blood and liver

Next, we investigated the correlation between B-RTL and L-RTL, as well as that between

B-RGL and L-RGL. L-RTL was not associated with B-RTL (Fig 2A), and B-RGL was not asso-

ciated with L-RGL (Fig 2B). Consequently, length of telomere and G-tail was not correlated

between blood and liver tissue.

Table 1. Clinical characteristics of patients.

Characteristics

Donors n = 55

Age, years 38.6 ± 12.4

Gender, Male 37 (67.3%)

Body mass index, kg/m2 22.2 ± 2.5

Type of Procedures

Right hemihepatectomy 24 (43.6%)

Left hemihepatectomy 30 (54.5%)

Right posterior sectionectomy 1 (1.8%)

FLR, % 52.6 ± 12.1

FLR/SLV, % 54.3 ± 17.5

Operation time, min 452 ± 68

Blood loss, g 472 ± 279

Autologous transfusion 5 (9.1%)

PHLF 5 (9.1%)

ERI, % 36.7 ± 27.2

Hospital stay, days 14 ± 7

B-RTL, x105 rfu 4.6 ± 1.4

L-RTL, x105 rfu 2.5 ± 0.5

B-RGL, x104 rfu 2.8 ± 1.2

L-RGL, x104 rfu 1.7 ± 0.7

Recipients n = 55

Age, years 57.4 ± 10.2

Gender, Male 27 (49.1%)

Body mass index, kg/m2 23.0 ± 3.5

Blood incompatibility 4 (7.3%)

hepatitis C virus infection 26 (47.3%)

MELD score 17.9 ± 7.7

Child-Pugh score 9.8 ± 1.9

GRWR 89.2 ± 16.3

Operation time, min 781 ± 146

Blood loss, g 4896 ± 3794

FLR; future liver remnant, SLV; standard liver volume, PHLF; posthepatectomy liver failure, ERI; early regeneration

index, RTL; relative telomere length, RGL; relative G-tail length, MELD; Model for End-Stage Liver Disease, GRWR;

graft-to-recipient weight ratio

https://doi.org/10.1371/journal.pone.0213462.t001
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Correlation between telomere/G-tail length and age

We investigated the correlation between telomere and G-tail length from blood and liver tis-

sues and donor age. As shown in Fig 3, B-RTL was inversely correlated with age (Fig 3A);
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Fig 1. Correlation between telomere and G-tail length. (A) Correlation between B-RTL and B-RGL (y = 0.67 x—0.26, r2 = 0.622, p< 0.001). (B) Correlation between

L-RTL and L-RGL (y = 0.58 x + 0.21, r2 = 0.175, p = 0.002). B-RTL; relative telomere length from blood, B-RGL; relative G-tail length from blood, L-RTL; relative

telomere length from liver, L-RGL; relative G-tail length from liver.

https://doi.org/10.1371/journal.pone.0213462.g001
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Fig 2. Correlation between telomere/G-tail length from blood and liver. (A) Correlation between B-RTL and L-RTL (y = 0.03 x + 2.35, r2 = 0.007, p = 0.552). (B)

Correlation between B-RGL and L-RGL (y = 0.05 x + 1.54, r2 = 0.006, p = 0.583). B-RTL; relative telomere length from blood, L-RTL; relative telomere length from liver,

B-RGL; relative G-tail length from blood, L-RGL; relative G-tail length from liver.

https://doi.org/10.1371/journal.pone.0213462.g002

Donor liver telomere and G-tail in living donor liver transplantation

PLOS ONE | https://doi.org/10.1371/journal.pone.0213462 March 7, 2019 5 / 19

https://doi.org/10.1371/journal.pone.0213462.g001
https://doi.org/10.1371/journal.pone.0213462.g002
https://doi.org/10.1371/journal.pone.0213462


which is consistent with previous reports. B-RGL, L-RTL and L-RGL, however, were not cor-

related with age (Fig 3B–3D).

Risk factors affecting donor PHLF

We reviewed preoperative characteristics of LDLT donors. Among 55 donors, 5 donors had

PHLF, according to the ISGLS criteria. We were unable to identify any significant preoperative

factors which affected PHLF (Table 2). Niether the future liver remnant nor the future liver

remnant/standard liver volume were significant risk factors for PHLF. In addition, there was

no significant difference between B-RTL, B-RGL, L-RTL, and L-RGL with and without PHLF.
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Fig 3. Correlation between telomere/G-tail length and age. (A) Correlation between B-RTL and age (y = -0.03 x + 5.87, r2 = 0.096, p = 0.021). (B) Correlation

between B-RGL and age (y = -0.01 x + 3.17, r2 = 0.011, p = 0.437). (C) Correlation between L-RTL and age (y = -0.002 x + 2.58, r2 = 0.003, p = 0.679). (D)

Correlation between L-RGL and age (y = -0.006 x + 1.89, r2 = 0.010, p = 0.468). B-RTL; relative telomere length from blood, B-RGL; relative G-tail length from

blood, L-RTL; relative telomere length from liver, L-RGL; relative G-tail length from liver.

https://doi.org/10.1371/journal.pone.0213462.g003

Donor liver telomere and G-tail in living donor liver transplantation

PLOS ONE | https://doi.org/10.1371/journal.pone.0213462 March 7, 2019 6 / 19

https://doi.org/10.1371/journal.pone.0213462.g003
https://doi.org/10.1371/journal.pone.0213462


Risk factors that affect liver regeneration of donor livers

We assessed the factors which may affect postoperative liver regeneration. To investigate the

differences between the regeneration rates after left and right hemihepatectomy, we examined

ERI separately for left and right hemihepatectomy. Donor age was not correlated with ERI in

any donor, regardless of the procedure they underwent (Fig 4A–4C). ERI was not associated

with the B-RTL and B-RGL of the donor who underwent left or right hemihepatectomy (Fig

5A–5F). These results indicated that donor age and RTL/RGL from blood did not affect liver

regeneration. On the other hand, the longer the L-RTL, the smaller the ERI tended to be, espe-

cially with significant difference in donor who underwent right hemihepatectomy (Fig 6A, 6C,

and 6E). Similarly, the longer the L-RGL, the smaller the ERI tended to be (Fig 6B, 6D, and

6F). These results suggested that longer telomere of the liver tissue may have a negative influ-

ence on liver regeneration.

Table 2. Clinical characteristics of liver donors according to PHLF.

Univariate analysis

non-PHLF PHLF p value

Cases n = 50 n = 5

Age, years 39.4 ± 12.6 30.0 ± 6.7 1.107

<45 36 5

�45 14 0

Gender 0.160

Male 32 5

Female 18 0

Total bilirubin level, mg/dl 0.92 ± 0.35 0.76 ± 0.32 0.324

aspartate aminotransferase, IU/l 19.8 ± 4.8 19.0 ± 2.1 0.705

alanine aminotransferase, IU/l 21.2 ± 9.3 21.0 ± 8.0 0.955

Albumin level, g/dl 4.7 ± 0.3 4.9 ± 0.3 0.360

ICG-R, % 7.3 ± 2.7 7.4 ± 3.3 0.979

PT-INR 1.03 ± 0.08 1.01 ± 0.10 0.605

Body mass index, kg/m2 22.1 ± 2.5 23.0 ± 2.6 0.483

Type of Procedures 0.236

Right hemihepatectomy 20 4

Others 30 1

FLR, % 53.3 ± 11.9 43.5 ± 10.7 0.084

FLR/SLV, % 54.8 ± 17.4 47.4 ± 20.2 0.376

Operation time, min 452 ± 71 476 ± 51 0.514

Blood loss, g 466 ± 276 575 ± 448 0.478

Autologous transfusion 5 0 1.000

Morbidity, Grade III or more 4 0 1.000

ERI, % 35.8 ± 27.6 45.1 ± 23.7 0.474

Hospital stay, days 14.1 ± 7.6 13.0 ± 4.4 0.753

B-RTL, x105 rfu 4.5 ± 1.3 5.2 ± 1.7 0.321

L-RTL, x105 rfu 2.5 ± 0.5 2.5 ± 0.6 0.847

B-RGL, x104 rfu 2.7 ± 1.1 3.6 ± 1.6 0.095

L-RGL, x104 rfu 1.7 ± 0.7 1.5 ± 0.6 0.602

ICG-R15; indocyanine green retention rate at 15 min, PT-INR; prothrombin time-international normalized ratio, FLR; future liver remnant, SLV; standard liver

volume, ERI; early regeneration index, RTL; relative telomere length, RGL; relative G-tail length

https://doi.org/10.1371/journal.pone.0213462.t002
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Risk factors affecting recipient outcomes after LT

We reviewed the postoperative outcomes of recipients after LDLT (Table 3). While the survival

of patients was similar between patients with shorter and longer B-RTL (p = 0.389, Fig 7A),

the survival of patients with longer L-RTL was significantly inferior to that of patients with a

shorter one (p = 0.007, Fig 7B). Furthermore, the survival rate of patients with older donors

was significantly inferior to that of patients with younger ones (p = 0.013, Fig 7C), and the sur-

vival of patients with higher MELD scores was significantly inferior to that of patients with

lower scores (p = 0.008, Fig 7D). Longer L-RTL, older donors and higher MELD scores were

the independent factors affecting recipient survival after LDLT (Table 3).

Discussion

Age and LT

The impact of donor age on LT has been analyzed in several studies [1, 15]. Several reports on

deceased donor liver transplantation have shown that LT performed with grafts from elderly

donors had a significantly poorer graft survival than that performed with grafts from younger

donors [16, 17]. Although some reports showed contradictory results, several mathematical

formulas designed to predict graft outcomes, such as the donor risk index and survival out-

comes following liver transplantation score, include donor age [18, 19]. Reports on LDLT have

demonstrated poorer survival rates with elderly donors [20, 21]. Elderly donors have also been

linked to an increased rate of biliary complications, small-for-size graft syndrome, and hepati-

tis C virus-related graft failure [21, 22]. In our study, donor age was identified as one of the

independent factors for recipient survival after LDLT.

Age and liver regeneration

Liver regeneration rate after hepatectomy has been shown to be inversely correlated with age

[2, 23, 24]. A significant decrease in the regenerative capacity of the liver with increasing age

has been reported in an animal model [25]. It is generally considered that aging negatively

affects liver regeneration. However, it remains controversial whether age affects liver regenera-

tion after hepatectomy [26]. Russolillo et al. reported that liver regeneration after portal vein

occlusion was not impaired by age [27]. In our study, donor age was not correlated with early

liver regeneration of donors after hepatectomy, and the mechanisms that affect liver regenera-

tion after hepatectomy remain unclear. We hypothesized that the difference in telomere and

G-tail length, which is reportedly shortened with age, impacts liver regeneration.

Length of liver telomere/G-tail and age

Telomeres appear to be deeply involved in tissue regeneration, lifespan, and cell division [3].

They are made of double-stranded DNA containing repeat sequences of 5'-TTAGGG-3' at

the ends of chromosomes. Those repeat sequences (TTAGGG) are single strands of approxi-

mately 50 to 300 bases at the furthest 3’ ends (G-overhangs), called G-tails. These G-tails are

normally protected by forming a loop, except when telomerase, a telomere extension enzyme,

interacts with the telomere, for instance, during DNA replication [28]. Telomere length

Fig 4. The correlation between age and liver regeneration. (A) Age and ERI in all donors (y = 0.342 x + 25.0, r2 =

0.025, p = 0.246). (B) Age and ERI in donors who underwent left hemihepatectomy (y = -0.091 x + 27.7, r2 = 0.006,

p = 0.690). (C) Age and ERI in donors who underwent right hemihepatectomy (y = 0.853 x + 23.5, r2 = 0.159,

p = 0.054). ERI; early regeneration index.

https://doi.org/10.1371/journal.pone.0213462.g004
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decreases as the time for cell divisions increases [3], thus according to the general theory, telo-

mere length is inversely correlated with age [29].

In the present study, B-RTL was inversely correlated with age, consistent with previous

studies. However, B-RGL, L-RTL, and L-RGL were not correlated with donor age, and L-RTL

was not correlated with B-RTL. Telomere shortening in liver tissues during aging has been

reported in some studies [30–32]: for example, Aikata et al. showed that telomere repeats were

reduced in people with normal liver tissues by approximately 120 bp annually [30]. Takubo

et al. studied telomere length in the normal liver tissue of 94 human subjects aged between 0

and 101 years old, and showed that telomere length demonstrated accelerated shortening, with

a reduction of 55 bp per year [31]. Wiemann et al. showed telomere shortening in cirrhosis

compared with noncirrhotic samples, independent of patients age [32]. However, it remains

unclear whether L-RTL is correlated with B-RTL. The liver tissues show very little mitotic

activity, indicating that there must be factors other than cell division modulating the attrition

of telomeres during the aging process [3]. The kinetics of telomere shortening during aging

are not linear: telomere shortening is accelerated in peripheral blood cells in young infants,

reaches a plateau in older children, and slowly decreases in adulthood [3]. In addition, hepato-

cytes are known to stay in the G0 phase under normal conditions, retaining a very high ability

of regeneration. Additionally, it has been reported that the expression and function of telome-

rase increase in cells when the cell cycle transitions from the S-phase to the G2-phase [33].

These reports may explain why telomere length in liver tissues is not correlated with age. In

previous in vitro and in vivo experiments, the exact causal relationship between telomeres and

cell aging could not be demonstrated. Specifically, it remains unclear whether the loss of cell

division ability is caused by a shortening of the telomeres, or whether stress to the cells causes

an apoptotic signal, such as telomere shortening [34–37]. Unlike the shortening of telomeres

in somatic cells, which results in chromosome instability, shortening of the G-tail is transient

depending on factors such as oxidative stress, which can be restored by environmental

improvement. Thus, it is difficult to argue the relationship between telomeres and aging and

life expectancy without these changing factors. Therefore, the lack of correlation between age

and telomere shortening in liver tissues might open the future possibility of organ donations

from elderly subjects.

Length of liver telomere/G-tail and liver regeneration

This is the first study investigating the length of liver telomere/G-tail and liver regeneration

after hepatectomy in LDLT. Several reports have investigated telomere length and telomerase

activity in patients with liver disease. Aikata et al. reported that telomere repeats were shorter

in the liver of patients with chronic diseases than in normal age-matched livers [30], and Hart-

mann et al. showed that telomerase gene mutations were present in patients with cirrhosis

[38]. Telomere shortening might impair liver regeneration and accelerate cirrhosis formation

[38]. Wang et al. showed in vivo accumulation of c-H2AX foci in hepatocytes in aged mice

[39]. Wiemann et al. reported that telomeres were significantly shorter in cirrhosis samples

than in noncirrhotic samples, independent of primary etiology and patient age [32]. Andert

et al. reported that telomere length in rat hepatocytes depends on age, and animals with long

telomeres had earlier and better regeneration of healthy liver tissues than rats with shorter telo-

meres [40]. According to these reports, longer telomere length in the donor organ tissues

(y = 0.71 x + 20.9, r2 = 0.005, p = 0.697). (D) B-RGL and ERI in donors who underwent left hemihepatectomy (y = - 0.15 x + 24.6, r2 < 0.001, p = 0.952). (E)

B-RTL and ERI in donors who underwent right hemihepatectomy (y = - 5.98 x + 83.0, r2 = 0.064, p = 0.232). (F) B-RGL and ERI in donors who underwent

right hemihepatectomy (y = - 8.50 x + 81.2, r2 = 0.138, p = 0.074). ERI; early regeneration index.

https://doi.org/10.1371/journal.pone.0213462.g005
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Fig 6. Correlation between telomere/G-tail length from liver tissue and liver regeneration. (A) L-RTL and ERI in all donors (y = - 12.0 x + 68.1, r2 = 0.052,

p = 0.094). (B) L-RGL and ERI in all donors (y = - 9.34 x + 53.8, r2 = 0.062, p = 0.068). (C) L-RTL and ERI in donors who underwent left hemihepatectomy (y =

- 2.66 x + 30.9, r2 = 0.012, p = 0.558). (D) L-RGL and ERI in donors who underwent left hemihepatectomy (y = - 3.94 x + 31.0, r2 = 0.022, p = 0.424). (E) L-RTL

and ERI in donors who underwent right hemihepatectomy (y = - 34.9 x + 141.2, r2 = 0.183, p = 0.037). (F) L-RGL and ERI in donors who underwent right

hemihepatectomy (y = - 8.82 x + 70.3, r2 = 0.076, p = 0.193). ERI; early regeneration index.

https://doi.org/10.1371/journal.pone.0213462.g006

Table 3. Prognostic factors of recipients after liver transplantation.

univariate analysis multivariate analysis

1-year survival (%) 3-year survival (%) p value Relative risk p value 95% confidence interval

Donor factors

Age, years 0.013 3.61 0.045 1.03–12.63

<45 (n = 41) 90.2 84.1

�45 (n = 14) 57.1 57.1

Gender 0.955

Male (n = 37) 81.1 81.1

Female (n = 18) 83.3 76.4

Type of Grafts 0.775

Right lobe (n = 24) 83.3 78.7

Others (n = 31) 80.7 75.6

Diet 0.691

Required (n = 15) 86.7 69.3

Not required (n = 40) 80.0 80.0

B-RTL, rfu 0.389

<4.6 x105 (n = 31) 80.7 76.4

�4.6 x105 (n = 24) 83.1 83.1

L-RTL, rfu 0.007 5.82 0.007 1.64–22.60

<2.7 x105 (n = 38) 92.1 89.0

�2.7 x105 (n = 17) 58.2 58.2

B-RGL, rfu 0.836

<2.5 x104 (n = 23) 78.3 78.3

�2.5 x104 (n = 32) 84.2 77.0

L-RGL, rfu 0.782

<2.0 x104 (n = 43) 83.7 80.8

�2.0 x104 (n = 12) 75.0 75.0

Recipient factors

Age, years 0.328

<60 (n = 25) 79.8 74.5

�60 (n = 30) 83.3 83.3

Gender 0.491

Male (n = 27) 77.8 72.9

Female (n = 28) 85.7 85.7

MELD score 0.008 7.52 0.016 1.44–46.90

<18 (n = 38) 92.0 85.0

�18 (n = 17) 58.8 58.8

Child-Pugh score 0.091 0.58 0.537 0.10–3.15

<10 (n = 33) 90.9 87.3

�10 (n = 22) 67.9 67.9

HCV infection 0.408

(Continued)
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might provide increased liver regeneration. However, these reports showed a parallel—but not

direct—association between telomere length and liver regeneration, and our results also

showed no correlation between liver regeneration and telomere/G-tail length from blood. On

the other hand, the longer telomere from liver tissue negatively affected liver regeneration in

donor who underwent right hemihepatectomy. These results suggested that longer liver telo-

mere may have a negative influence on liver regeneration.

Cellular senescence is considered to be a stress-response limiting the proliferation of dam-

aged cells and leading to permanent cell-cycle arrest [41]. The telomere and telomerase sys-

tems are representative of a mediator of replicative capacity [42]. Accelerated telomere

shortening has been shown to occur in conditions associated with inflammation and acceler-

ated cell turnover [3]. A previous report showed that forced telomere elongation in cancer

cells promotes their differentiation in vivo [43]. It has been reported that hepatocytes account

for 64% of normal liver cells [44]. L-telomeres, which represent the telomere length of liver tis-

sues, are clusters consisting of various cell types. Stem cells, bone marrow-derived cells, biliary

duct cells, and vascular endothelial cells all have long telomeres, which are the niche of stem

cells for liver regeneration [45, 46]. Conversely, in the absence of some special drugs or cir-

cumstances, the source of liver stem cells are hepatocytes, and the involvement of non-hepato-

cytes sources is considered to be almost negligible [47, 48]. The ploidy of eukaryotic genes can

be different during the life cycle and has been reported to be dynamic[49]; therefore, hepato-

cytes could undergo hypertrophy and mitosis during liver regeneration. The DNA ploidy of

Table 3. (Continued)

univariate analysis multivariate analysis

1-year survival (%) 3-year survival (%) p value Relative risk p value 95% confidence interval

positive (n = 26) 76.6 71.1

negative (n = 29) 86.2 82.1

ABO compatibility 0.905

identical/compatible (n = 51) 82.3 79.8

incompatible (n = 4) 75.0 75.0

GRWR, % 0.961

<80 (n = 18) 83.3 76.4

�80 (n = 37) 81.0 77.6

GW/SLV, % 0.384

<40 (n = 13) 76.9 67.3

�40 (n = 42) 83.2 80.3

Operation time, min 0.853

<720 (n = 17) 76.5 76.5

�720 (n = 38) 84.1 80.8

Blood loss, g 0.509

<5000 (n = 36) 80.5 77.4

�5000 (n = 19) 84.2 84.2

Ischemic time, min 0.548

<120 (n = 27) 85.2 80.9

�120 (n = 28) 78.6 74.0

Portal pressure, mmHg 0.258

<15 (n = 34) 88.1 84.7

�15 (n = 21) 71.4 71.4

MELD; Model for End-Stage Liver Disease, HCV; hepatitis C virus, GRWR; graft-to-recipient weight ratio, GW; graft weight, SLV; standard liver volume

https://doi.org/10.1371/journal.pone.0213462.t003
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liver cells has been reported to increase conversely (into tetraploid form) after regeneration

[50]. These facts reflect that even if some hepatocytes undergo chromosome damage, some of

the other cell populations can maintain the proliferative capacity by endo-replication [51].

Length of donor liver telomere/G-tail and transplant recipient outcome

To our knowledge, this is the first study investigating the association between telomere length

of donor tissues and recipient outcome in LDLT. In organ transplantation, it remains unclear

whether donor tissue telomere length is associated with recipient survival. A previous study

showed that longer donor telomere length is associated with improved recipient survival

among hematopoietic cell transplant recipients with aplastic anemia [52]. In contrast, Court-

wright et al. reported that neither donor or recipient telomere length were significantly
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Fig 7. Survival curves of recipients after LDLT. (A) Comparison of the cumulative survival curves stratified with B-RTL (< 4.6 x 105 rfu, red line, and� 4.6 x 105 rfu,
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https://doi.org/10.1371/journal.pone.0213462.g007
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associated with survival after lung transplantation [53]. Our study showed that longer telomere

length of donor liver tissues was associated with lower recipient survival. A previous study

examined telomere length in tumor and adjacent non-tumor tissues from 126 US patients

with hepatocellular carcinoma, and showed no correlation between survival and telomere

length in both tumor and adjacent non-tumor tissues [54]. Therefore, the question of whether

telomere length in liver tissues is associated with patient survival remains controversial.

This study has several limitations. First, although this is the first study to investigate specifi-

cally on telomere and G-tail length from healthy donor liver tissue, we had a relatively small

cohort with a limited follow-up period, and the age of donors included was limited to less than

65 years only. Second, a cell cluster of whole liver tissue used in our study included not only

hepatocytes, but also other cells including cholangiocytes, and sinusoidal cells. Third, we did

not assess telomerase activity or the telomere/G-tail in transplant recipients. Fourth, we

assessed telomere length by HPA assay, as a flow-based assay. Telomere length is measured as

fluorescence intensity relative to internal control, not as an absolute length [4].

Conclusion

Telomere shortening in healthy liver tissue was not correlated with age, whereas longer liver

telomeres negatively impact donor liver regeneration and recipient survival after LDLT. These

results can direct future studies and investigations on telomere shortening in the clinical and

experimental transplant setting.
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