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Background: Differential gene expression patterns are commonly used as biomarkers to predict treatment
responses among heterogeneous tumors. However, the link between response biomarkers and treatment-
targeting biological processes remain poorly understood. Here, we develop a prognosis-guided approach to
establish the determinants of treatment response.
Methods: The prognoses of biological processes were evaluated by integrating the transcriptomes and clinical
outcomes of ~26,000 cases across 39 malignancies. Gene-prognosis scores of 39 malignancies (GEO datasets)
were used for examining the prognoses, and TCGA datasets were selected for validation. The Oncomine and
GEO datasets were used to establish and validate transcriptional signatures for treatment responses.
Findings: The prognostic landscape of biological processes was established across 39 malignancies. Notably, the
prognoses of biological processes varied among cancer types, and transcriptional features underlying these prog-
nostic patterns distinguished response to treatment targeting specific biological process. Applying thismetric,we
found that low tumor proliferation rates predicted favorable prognosis, whereas elevated cellular stress response
signatures signified resistance to anti-proliferation treatment. Moreover, while high immune activities were as-
sociated with favorable prognosis, enhanced lipid metabolism signatures distinguished immunotherapy resis-
tant patients.
Interpretation: These findings between prognosis and treatment response provide further insights into patient
stratification for precision treatments, providing opportunities for further experimental and clinical validations.
Fund: National Natural Science Foundation, Innovative Research Team in University of Ministry of Education of
China, National Key Research and Development Program, Natural Science Foundation of Guangdong, Science
and Technology Planning Project of Guangzhou, MRC, CRUK, Breast Cancer Now, Imperial ECMC, NIHR Imperial
BRC and NIH.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
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1. Introduction

Heterogeneity among tumors, which leads to differential treatment
responses, remains the leading challenge for effective treatment [1]. Ex-
tensive efforts have been devoted to distinguish treatment responders
from non-responders. Individual genes or gene signatures are com-
monly used as the determinants of treatment response [2]. Yet, each
gene may be involved in many distinct biological processes, rendering
its biological function highly context-dependent [3,4]. Gene signatures
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

Differential gene expression patterns, defined by either experi-
mental or data-mining efforts, are commonly used as biomarkers
to predict responses in cancer patients. However, how these bio-
markers are linked to treatment targeting biological processes re-
mains poorly understood, limiting the identification of
determinants for effective treatment. Treatment response is cur-
rently evaluated by the clinical outcomes of patients, a parameter
that is also the primary readout for evaluating the potency of bio-
logical processes in cancer. Here we integrate the transcriptomic
and clinical profiles from a variety of databases to link biomarkers
and treatment targeting biological processes, thereby defining the
determinants of response.

Added value of this study

Based on the hypothesis that amolecular contextwhereby a treat-
ment targeting biological process correlatewith an adverse clinical
outcome informs features of treatment responders, we have de-
veloped an integrative strategy to establish the determinants of
treatment responses. The prognoses of biological processes are
defined based upon the transcriptome and clinical outcomes of
distinct human malignancies. Based on the prognosis-treatment
response link, we have identified principles of responses to treat-
ments targeting both cell-proliferation and immune processes. Al-
though high cell-proliferation rate of tumors predicted a poor
prognosis, we found a favorable cell-proliferation prognosiswithin
the context of a stress response signature, which indicates resis-
tance to anti-proliferation treatment. Moreover, while high im-
mune activity generally led to a favored prognosis, we showed
that a lipid metabolism signature for adverse immune prognoses
indicates immunotherapeutic resistance.

Implications of all the available evidence

Prognostic landscape of biological processes among cancer types
provides a unique opportunity to predict vulnerabilities of distinct
malignancies and to identify the molecular context responsible
for treatment responses. The finding that response to treatment
is dependent on the prognosis of the treatment targeting biological
process provides a link for identifying treatment biomarkers. Our
study proves the concept of using a prognoses guided approach
to define the contextual determinants of treatment responses in
cancer patients.
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that contain a group of genes are more informative since they represent
biological functions in defined contexts. Indeed, as genes in a signature
are not functionally equal, the biological processes underlying these sig-
natures make amajor contribution to determining treatment responses
[2]. Therefore, establishing gene signatures and the underlying biologi-
cal processes is key to determining treatment response. However, how
these response biomarkers are linked to treatment targeting biological
processes remains poorly understood, which impedes the process in
identifying determinants of effective treatment.

To link response biomarkers and treatment targeting biological pro-
cesses, gene set-based approaches can be used [3]. Gene sets according
to cellular response to chemical/genetic perturbations have previously
been developed in the Molecular Signatures Database (MSigDB) [5].
As treatments act by targeting specific biological process, biological pro-
cess gene sets (BPGSs) associatedwith particular clinical outcomesmay
reveal molecular features of treatment response. The prognoses of
BPGSs among distinct cancer cohorts provide an opportunity to identify
the underlying biological processes for treatment response. Prognostic
evaluation in cancer datasets has hitherto been achieved by single-
gene or signature-based approaches [2]. Recently, the PREdiction of
Clinical Outcomes from Genomic (PRECOG) [6] and the Human Pathol-
ogy Atlas [7] have provided a systematic approach to define the progno-
sis of individual genes, yet it is difficult to mine out the biological
insights. Gene set analysis of gene-prognosis profiles could be an effec-
tive way to systematically evaluate the prognoses of BPGSs. The prog-
nostic patterns of BPGSs among heterogeneous cancer types thus
provide an approach to learn the determinant of prognosis as well as
treatment response.

Here we report a gene-prognosis ranked Gene Set Enrichment Anal-
ysis (GSEA) [3] approach to evaluate the prognostic values of BPGSs in a
variety of cancers. Based on the gene-prognosis information established
from the tumor transcriptomes and clinical outcomes of ~26,000 pa-
tients, we systematically evaluated the prognostic values of BPGSs
across 39 distinct cancer types. We found the prognoses of BPGSs vary
among cancer types, and that the transcriptional contexts are responsi-
ble for the intertumor heterogeneity causedprognostic variations. Nota-
bly, we demonstrate that the transcriptional signatures and underlying
biological processes associated with prognoses of BPGSs can distinguish
treatment response for both anti-proliferation treatments and immuno-
therapy. The prognostic landscape of BPGSs reveals interactive biologi-
cal processes for treatment responses, providing a novel approach for
developing precision treatment strategies through available cancer
datasets.

2. Materials and methods

2.1. TCGA, PRECOG z-scores, pathology atlas and gene expression data

TCGA datasets for 36 malignancies were downloaded from the
BROAD GDAC Firehouse (https://gdac.broadinstitute.org/). Genome-
wide gene-prognosis data were organized according to the meta-z
score method [6]. Specifically, for each dataset, RNA-seq and clinical
data were downloaded and matched. The association of each gene
with survival outcomes was assessed via Cox proportional hazards re-
gression using the ‘coxph’ function of the R ‘survival’ package. P values,
z-score cox coefficients and hazard ratios with 95% confidence intervals
were obtained for each gene. P values for each gene were transformed
intometa-z scores.Weightedmeta-z-scoreswere collapsed into a global
meta-z-score for each gene as described (Table S1). In thismanner, each
gene is assigned a specific meta-z-score for each type of cancer, as well
as a global meta-z-score across all cancer types. The z-score represents
the capability of a gene to differentiate two subsets of patients with
distinct survival outcomes. The ‘meta-z-scores’ for prognostic outcome
of each gene in 39 malignancies were downloaded from the PRECOG
project (http://precog.stanford.edu) [6]. Survival analysis results for all
protein-coding genes in 17 TCGAmajor cancer types were downloaded
from the pathology atlas database (http://www.proteinatlas.org/
pathology) [7]. Gene expression values for patients with distinct sensi-
tivity to therapies were downloaded from the Gene Expression Omni-
bus (GEO) database (http://www.ncbi.nlm.nih.gov/geo). Gene
expression levels (mRNA Expression z-Scores (RNA Seq V2 RSEM)) in
the TCGA datasets were downloaded from the cBioPortal database
(http://www.cbioportal.org/) [8,9].

2.2. Gene set enrichment analysis and single sample GSEA

Genes were ordered in a decreasing fashion according to pan-cancer
(unweighted) or individual cancer prognostic z-scores. Pre-defined
gene sets (eight major collections, H and C1-C7) were obtained from
the Molecular Signatures Database (MSigDB) [5]. Chemical and genetic
perturbations (CGP) gene sets containing “target” or “response” as a
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keyword were selected to generate a “.gmt” gene set file for analysis. A
customized gene set was defined as a set of genes in specific gene signa-
ture. Ranked lists were submitted to GSEA using the ‘PreRanked’ tool of
GSEA software [3]. Interpretation of enrichment score (ES) to prognostic
value is similar to the gene expression based GSEA. For a randomly
distributed gene set, ESwill be relatively small, but if it is concentrated
at the top (adverse prognosis) or bottom (favorable prognosis) of the
list, or otherwise non-randomly distributed, then the ES will be corre-
spondingly high. For GSEA on CCLE, cell lines were grouped as sensitive
or resistant according to their sensitivity to cell-proliferation targeting
compounds. Enrichment of gene sets in both groups was determined.
For GSEA of GEO datasets, patients were grouped as sensitive or resis-
tant according to the authors' instructions, and then analyzed with can-
didate gene sets. Significantly enriched gene sets were defined using a
False Discovery Rate (FDR) q-value b0.25 and a nominal P value b.05.
All analyses were performed using GSEA v2.2.1 software with the pre-
ranked list and 1000 data permutations. Leading edge genes were de-
fined by GSEA as genes in the gene set that appear in the ranked list
at, or before the pointwhere the running sum reaches its maximumde-
viation from zero, interpreted as the core of a gene set that accounts for
the enrichment signal.

To perform single-sample gene set enrichment (ssGSEA), normal-
ized gene expression data (downloaded from the CCLE portal) were
submitted to the GenePattern platform. The ssGSEA Projection program
was used to calculate separate enrichment scores for each pairing of a
sample and gene set. Samples were normalized by rank, and the
weighting exponent was set as 0.75. Enrichment scores for c5.bp.v6.0
(MSigDB) gene sets were subjected to Cluster 3.0 software and both
gene sets and cell lines were clustered by average linkage. A clustered
heat map was analyzed and visualized by TreeView.

2.3. Biomarker validation by PROGgene and SurvExpress

Candidate gene sets were submitted to the PROGgeneV2 [10] and
SurvExpress online database [11]. Distinct types of cancer, including
glioblastoma multiforme (TCGA), breast cancer (TCGA), colon cancer
(GSE41258), lung adenocarcinoma (TCGA), and lung squamous cell car-
cinoma (TCGA) were analyzed using the SurvExpress. For the Cox Sur-
vival Analysis in the SurvExpress, two risk groups (high/low risk
group) were defined by the median of submitted gene set expression,
with patients categorized by survival time.

2.4. Hierarchical clustering

Normalized enrichment scores (NES) of each hallmark gene set for
individual cancers (Table S3) were subjected to Cluster 3.0 software
and both gene set and cancer type were clustered by average linkage.
A clustered heat map was analyzed and visualized by TreeView. For hi-
erarchical clustering of z-scores or gene expression values, the z-scores
or gene expression values of candidate genes were subjected to the
Cluster 3.0 software, clustered by average linkage according to their cor-
relation or the Euclidean distance, and visualized by TreeView. Cluster-
ing of gene expression values was conducted by centering genes
according to mean expression values (microarrays values or mRNA Ex-
pression z-Scores), clustered by average linkage and visualized by
TreeView.

2.5. Validation in the TCPA dataset

Markers for enriched processes, such as cell proliferation and the im-
mune system, were examined by the webpage survival analysis of The
Cancer Proteome Atlas project [12] (TCPA, http://app1.bioinformatics.
mdanderson.org/tcpa/_design/basic/index.html). Datasets of different
cancer types were examined as follows: bladder urothelial carcinoma
(TCGA), breast invasive carcinoma (TCGA), colon adenocarcinoma
(TCGA), glioblastoma multiforme (TCGA), head and heck squamous
cell carcinoma (TCGA), kidney renal clear cell carcinoma (TCGA), brain
lower grade glioma (TCGA), lung adenocarcinoma (TCGA), lung squa-
mous cell carcinoma (TCGA), endometrial carcinoma (MDACC), ovarian
carcinoma (Japan), stomach adenocarcinoma (TCGA), uterine corpus
endometrioid carcinoma (TCGA) and TCGA womens cancer (combined
breast, uterine and ovarian cancer). Survival plots and log-rank P-values
were downloaded for further analysis.

2.6. Oncomine based signature analysis

Differential expression analyses (Cancer vs Cancer Analysis) were
performed in the Oncomine database [13]. Datasets in this study in-
cluded: Astrocytoma (ASTR: Bredel Brain 2, Cancer Res, 2005; Freije
Brain, Cancer Res, 2004; Shai Brain, Oncogene, 2003; Sun Brain, Cancer
Cell, 2006; vandenBoom Brain, Am J Pathol, 2003; Yamanaka Brain, Onco-
gene, 2006), Glioblastoma multiforme (GBM: Bredel Brain 2, Cancer Res,
2005; Freije Brain, Cancer Res, 2004; Liang Brain, Proc Natl Acad Sci, 2005;
Nutt Brain, Cancer Res, 2003; RamaswamyMulticancer, Proc Natl Acad Sci,
2001; Shai Brain, Oncogene, 2003; Sun Brain, Cancer Cell, 2006;
vandenBoom Brain, Am J Pathol, 2003; Yamanaka Brain, Oncogene,
2006), Glioma (GLIO: Bredel Brain 2, Cancer Res, 2005; Freije Brain, Cancer
Res, 2004; French Brain, Cancer Res, 2006; Liang Brain, Proc Natl Acad Sci,
2005; vandenBoom Brain, Am J Pathol, 2003),Medulloblastoma (MEDU:
Fattet Brain, J Pathol, 2009; Kool Brain, Plos One, 2008; Northcott Brain 3,
Nature, 2012; Pomeroy Brain, Nature, 2002; Ramaswamy Multi-cancer,
Proc Natl Acad Sci, 2001), Neuroblastoma (NEUB: Ramcrswomy Muiti-
cancer, PNAS, 2001; Albino Brain, Cancer, 2003), lung adenocarcinoma
(LUAD, Bittner Lung, Not Published, 2005; Chen Lung 3, N Engl J Med,
2007; Ding Lung, Nature, 2008; Garber Lung, Proc Natl Acad Sci, 2001;
Hou Lung, Plos One 2010; Tomida Lung, Oncogene, 2004; Wigle Lung, Can-
cer Res, 2002; Yamagata Lung, Clin Cancer Res, 2003; Zhu Lung, J Clin Oncol,
2010), lung squamous cell carcinoma (LUSC, Bhattacharjee Lung, Proc
Nat Acad Sci, 2001; Bild Lung, Nature, 2006; Bittner Lung, Not Published,
2005; Chen Lung 3, N Engl J Med, 2007; Garber Lung, Proc Natl Acad Sci,
2001; Hou Lung, Plos One, 2010; Kuner Lung, Lung Cancer, 2009; Lee
Lung Clin Cancer Res, 2006; Rohrbeck Lung, J Transl Med, 2008; Tomida
Lung, Oncogene, 2004; Wigle Lung, Cancer Res, 2002; Yamagata Lung,
Clin Cancer Res, 2003; Zhu Lung, J Clin Oncol, 2010) and small cell lung
carcinoma (SCLC, Chen Lung 3, N Engl J Med, 2007; Rohrbeck Lung, J Transl
Med, 2008; Garber Lung, Proc Natl Acad Sci, 2001; Bhattacharjee Lung, Proc
Natl Acad Sci,2001).

Eight signatures for distinct types of cancers defined as the top high
and low expressed genes for each cancer (comparedwith the other can-
cers of the same dataset) were downloaded for signature analysis. Cell-
cycle Con signature (CycleC) was defined by overlapping up-regulated
genes in GLIO, ASTR, MEDU and down-regulated genes in GBM; and
up-regulated genes in LUSC overlapping down-regulated genes in
SCLC, respectively. Cell-cycle Rev signature (CycleR) was defined by
overlapping down-regulated genes in GLIO, ASTR, MEDU and up-
regulated genes in GBM; and down-regulated genes in LUSC overlap-
ping up-regulated genes in SCLC, respectively (illustrated in Fig. S3e,
gene lists in Table S4). Immune Con signature (ImmuC) was defined by
overlapping up-regulated genes in NEUB, LUSC and down-regulated
genes in MEDU, LUAD, respectively. Immune Rev signature (ImmuR)
was defined by overlapping down-regulated genes in NEUB, LUSC and
up-regulated genes in MEDU and LUAD, respectively (illustrated in
Fig. S5f, gene lists in Table S6).

2.7. Gene ontology annotation

Gene lists of interest were submitted to the MSigDB database [5].
The overlaps between gene list and pre-defined gene sets (BP: GO bio-
logical process) were computed. P value from the hypergeometric dis-
tribution for (k-1, K, N - K, n), where k is the number of genes in the
intersection of the query set with a set from MSigDB, K is the number
of genes in the set fromMSigDB, N is the total number of gene universe
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(all known human gene symbols) and n is the number of genes in the
query set. FDR q-value is the false discovery rate analog of
hypergeometric P-value after correction for multiple hypothesis testing
according to Benjamini and Hochberg, and those gene sets with FDR
q b .05 were selected.

2.8. Prognostic analysis of gene signatures

To assess the prognostic values of signatures, the normalized counts
were scaled to a to z-score for each signature-gene, using the following
function: z-score= ((normalized counts−mean counts across all sam-
ples)/(standard deviation of counts across all samples)). Subsequently,
we used the average z-scores of all signature-genes to define a signature
score for each single sample. Finally, Kaplan-Meier analysis was per-
formed in all cases with stratification of risk sub-groups based on the
median value of signature scores.

2.9. Immunet analysis

For gene set analysis, the top 200 favorable prognostic genes were
analyzed using Immunet [14] gene set analysis (http://immunet.
princeton.edu/geneset/). The immune networks of ImmuNet were
used as features in a SVM classifier to generate gene predictions for
the genes that were investigated. The resulting gene predictions and
their probabilities are provided as Table S5. The proportion of genes in
the submitted gene set (GS = 1) those not in the set (GS = 0) and
the randomly selected negative set (GS = −1) with SVM-Prob N0.9
were analyzed.

2.10. Expression profile analysis in CCLE

Candidate genes were analyzed using the GENE-E tool of the CCLE
database [15] (http://www.broadinstitute.org/ccle/data/browse-
Analyses). To identify lymphocyte specific genes, expression data in
the CCLE were downloaded from the cBioPortal [8,9] database. Unsu-
pervised consensus clustering was performed with nonnegative matrix
factorization [16] (NMF, v 0.20.6, default Brunet algorithm, 50 and 100
iterations for the rank survey and clustering runs, respectively). A
preferred cluster result was selected by considering profiles of the
cophenetic score for clustering solutions between 2 and 5 clusters.
Profiles of genes or samples were generated by reordering with silhou-
ette widths in the consensus clusters.

2.11. Functional immune genes

Genes in functional immune processes were identified using the
Gene Expression Commons database (https://gexc.stanford.edu). Gene
sets of themouse hematopoiesis model were selected by functional im-
mune key words (e.g., dendritic, T cell, NK cell, etc.) inquiries.

2.12. Vector constructions, lentivirus production and transfection

To knockdown PLAT, PLAU and SERPINE1 in human cancer cell lines,
we constructed shRNA or scramble (shGFP) in pLKO-Tet-On vector
(addgene #21915, RRID: Addgene_21915). Briefly, vector was digested
by AgeI and EcoRI (Thermo Scientific) for 15min at 37 °C and recovered
from agarose gel by DNA recovery kit (Tiangen). Annealed oligoes were
ligated with digested vector with T4 DNA ligase (Thermo Scientific) for
2 h at room temperature. Competent Stbl3 E. coli cells were transformed
with the constructs, selected and identified by Sanger sequencing. The
lentiviral vector (10 μg) and the two packaging viral vectors, pMD.2G
(3.3 μg) and pspPax2 (6.7 μg), were co-transfected into 293 T (RRID:
CVCL_0045) cells using Lipo 2000 (ThermoFisher, #11668019, 1 μg/
μL). The virus supernatant was collected at 48 h. MDA-MB-231 (bought
from ATCC, RRID: CVCL_0062) cells were transfected with virus and se-
lected with puromycin (Sigma-Aldrich, #P8833, 2 μg/ml) for six days.
2.13. Reverse transcription PCR (RT-PCR)

Cells were treated with doxycycline (Sigma-Aldrich, #D9891,
200 ng/ml) for 72 h. Total RNA was isolated using SuperPrep Cell Lysis
kit (TOYOBO, #SCQ-101) as described by manufacturer and reverse
transcribed with SuperPrep RT kit for qPCR (TOYOBO, #SCQ-101) for
cDNA synthesis. Target genes were detected by real time PCR in
CFX96 Touch™ according to manufacturer's protocol. Transcripts were
quantified relative to the housekeeping gene, GAPDH. The probes used
for this study were listed in Table S7.

2.14. Cell viability assay

Cells were maintained with doxycycline (200 ng/ml) for 72 h before
vehicle (DMSO), MLN8237 (Selleckchem, #S1133, 200 nM) or
Palbociclib (Sigma-Aldrich, #PZ0199-PD0332991, 500 nM) treatment.
Cells were seeded in 96-well plates at a density of 3 × 103 cells/well,
allowed to adhere overnight, and treated with vehicle (DMSO) or drug
for 72 h, after which they were processed for cell viability using Cell
Counting Kit-8 reagent (Dojindo Molecular Technologies, #CK04).
Each condition was performed in replicates of eight wells.

2.15. Statistical analysis

Statistical analyses were performed using SPSS version 13.0 (SPSS
Inc.). Kaplan–Meier statistic and log-rank tests were performed to esti-
mate the relevance of candidate markers in overall and disease-free
survival of patients. Multivariate analysis was performed using the
Cox proportional hazards model. Other P values were determined
using the two-tailed Student's t-test. Significant results were defined
as P b .05.

3. Results

3.1. A prognosis-ranked GSEA for evaluating biological processes

To identify the interactive pattern of treatment targeting biological
processes, we used cancer datasets to develop a stepwise bioinformatic
approach (Fig. 1a). In this model, we proposed that response to a treat-
ment in heterogeneous patients depends on two factors: 1) inactivation
of the target and 2) prognostic contribution of the targeting biological
process. An alternative treatment that successfully inactivate the target
rescues type II, but not type I resistance. The mechanisms for type I re-
sistance is key to stratifying patients and effective treatment. To this
end, the prognostic values of BPGSs were used to define patient cohorts
where BPGSs indicate favorable (BPGS-Fav) or adverse prognosis
(BPGS-Adv). A comparative analysis between BPGS-Fav and BPGS-Adv
patients was followed to establish gene signatures that distinguish
BPGS-Fav from BPGS-Adv patients. Gene signatures and interacting
biological processes were tested in treatment response datasets to
determine their capacity to distinguish responding patients (Fig. 1b).
The prognoses for individual genes (gene-prognosis scores)were exam-
ined by integrating gene expression patterns and clinical outcomes of
cancer patients [6]. The 39 cancer types whose gene-prognosis scores
generated by PRECOG from microarray gene expression data (Fig. 1b,
Methods) were used for examining the prognoses of gene sets. In addi-
tion, 19 TCGA datasets (PRECOGmatched cancer types, in-house gener-
ated gene-prognosis scores) were selected for validation (Table S1). To
evaluate the prognostic values of gene sets, we performed an enrich-
ment analysis of genes sets in the gene list decreasingly ranked by
gene-prognosis scores, termed prognosis-ranked GSEA here. This
prognosis-ranked GSEA defined two distinct prognostic classes indicat-
ing favorable and adverse prognosis, respectively (Fig. 1b) [3,4]. Pan-
cancer gene-prognosis scores showed a high concordance between
the TCGA and PRECOG datasets (Figs. S1a and S1b). Consistently, nor-
malized enrichment score (NES) of the gene sets (hallmark in MSigDB
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[5]) were highly correlated between matched TCGA and PRECOG
datasets (Pearson r N 0.35, P b .05 in 13/19 cancer types, Fig. S1c).
These results indicate the reproducibility between PRECOG and TCGA
cancer datasets and the consistency of our evaluation approach.

To examine whether prognosis-ranked GSEA is capable of identify-
ing biologically relevant gene sets, a pan-cancer prognosis-ranked
GSEA was carried out in gene sets that were up- or down-regulated by
specific chemical and genetic perturbations (CGP, Table S2). Notably,
we found the opposite enrichment scores of -up/−down gene set
pairs within either favorable or adverse prognoses (Fig. 1c). For in-
stance, the prognostic NES for gene sets that were up- and down-
regulated by serum in “CHANG_SERUM_RESP” were 2.798 and
− 2.331, respectively. The oppositeNES values that definedistinct prog-
nostic associationwere prevalent among CGP gene sets. Among the 148
gene set pairs enriched in either the adverse phenotype (AdvP) or favor-
able phenotype (FavP), 83 (56%) exhibited the opposite NES for up- and
down-regulated genes (gene setswith P b .05, FDR q b 0.25 in prognosis-
ranked GSEA, Fig. 1d and Table S2). This finding is consistent with the
notion that genes with opposing biological roles exhibit distinct prog-
nostic contributions. Specifically, gene sets that were up-regulated by
oncogenes such as MYC and TERT were enriched in AdvP, whereas the
tumor suppressor TP53 and TFRC up-regulated gene sets were enriched
in FavP (Fig. 1d). Based upon thesefindings,we next explored the oppo-
site enrichment of CGP gene set pairs in cancer type specific gene-
prognosis scores by prognosis-ranked GSEA. Consistently, clear exam-
ples of opposite enrichments included Aplidin (−1.860 for up genes,
2.536 for down genes), CDK4i (−1.643 for up genes, 2.674 for down
genes) and Cisplatin (2.004 for up genes, −1.456 for down genes) in
Ewing sarcoma, as well as MYC (2.595 for up genes, −3.316 for down
genes) and KDM1A (−1.660 for up genes, 1.407 for down genes) in
melanoma (Fig. S1d). Enrichment patterns of paired gene sets that
were up- or down-regulated by specific perturbations further con-
firmed the consistency and reproducibility of our approach.

To confirm the validity of prognostically enriched gene sets, we
performed gene signature-based survival analyses in the PROGgeneV2
cancer datasets as previously reported [10]. In agreementwith our find-
ings that MYC up-regulated genes were enriched in AdvP (Fig.1d), MYC
up-regulated genes were associated with poor survival outcomes in
multiple tumor cohorts (Fig. S1e). Similar findings were obtained for
EZH2 up-regulated genes and TFRC down-regulated genes (Figs. S1f
and S1g). As shown in Fig.1d, genes down-regulated by Rapamycin,
APLIDIN and GSK3 inhibitor SB216763 (GSK3i) were enriched in AdvP.
Consistently, “Rapamycin response DN”, “Response to APLIDIN DN”
and “Response to GSK3 inhibitor SB216763 DN” were associated with
adverse prognoses in the majority of tumor cohorts (log-rank P b .05,
41/42 datasets for Rapamycin, 43/46 datasets for GSK3i, Figs. 1e, 1f
and S1h). In summary, prognostic enrichment of gene sets was consis-
tent with their biological functions and prognostic associations, further
confirming the capacity of our approach to evaluate the prognoses of bi-
ological processes.

3.2. Prognoses of biological processes vary across cancer types

To assess the prognoses of key biological processes in cancer, we
performed pan-cancer prognosis-ranked GSEA in 50 hallmark gene
sets (MSigDB). Consistent with previous reports [6,7], cell-
proliferation programs represented by cell-cycle related gene sets
were found to be associated with adverse prognoses and enriched in
AdvP, as 6 of the top 10 AdvP-enriched gene sets were cell-
proliferation programs (gene sets with P b .05, FDR q b 0.25, Figs. 2a,
left, S2a). In contrast, immune processes represented by immune-
related gene sets were associated with favorable prognoses and
enriched in FavP, as 6 of the top 10 FavP-enriched gene sets were im-
mune processes (gene sets with P b .05, FDR q b 0.25, Figs. 2a, right,
S2a). Next, the prognostic association of these processes was validated
by a gene signature-based survival analysis in the PROGgeneV2 cancer
datasets. Consistent with prognosis-ranked GSEA, leading edge genes
of cell-proliferation programs (49 genes combining leading edge
genes of E2F_TARGETS and MYC_TARGETS_V1 gene sets) were associ-
ated with adverse prognoses in 43 of 47 datasets (log-rank P b .05,
Figs. 2b and 2d). In contrast, leading edge genes of immune processes
(46 leading edge genes from INTERFERON_GAMMA_RESPONSE and
INTERFERON_ALPHA_RESPONSE gene sets) forecasted favorable prog-
noses in 13 of 15 datasets (log-rank P b .05, Figs. 2c and 2d). In addition,
“E2F targets” associated gene signature was coupledwith adverse prog-
noses (Fig. S2b), while “IFNG response” and “IFNA response” gene sig-
natures defined favorable prognoses (Fig. S2c). Collectively, these data
demonstrate that cell-proliferation programs and immune processes
are core processes of prognostic significance in cancer.

To characterize cancer type specific prognoses of key biological pro-
cesses, we assessed the hallmark biological processes in 39 distinct
PRECOG malignancies. Hierarchical clustering of prognostic NES
revealed a prognostic landscape of 50 core biological processes in 39
malignancies (Fig. 2e and Table S3). The prognoses of individual biolog-
ical processes exhibited considerable cancer type-dependent variations
(Fig. S2d). Notably, in contrast to their AdvP enrichment inmajor cancer
types, cell-proliferation programs were enriched in FavP in colon
cancer, small cell lung carcinoma and glioblastoma (cancer types
labeled in blue, Fig. 2e). Similarly, immune processes were classified
as favorable processes in most cancer types, but were enriched in
AdvP in bladder, pancreatic and brain cancers (cancer types labeled in
red, Fig. 2e). Prognostic enrichments of the top biological processes
were validated inmatched TCGA datasets (lower panel, Fig. 2e). To con-
firm these findings, we assessed the prognoses of biological processes
from the Gene Ontology Biological Process (GOBP gene sets from
MSigDB) in 39 PRECOG malignancies (Table S3). We found that for
the majority of cancer types, immune-associated GOBP were enriched
in FavP, while those cell-proliferation related GOBP were enriched in
AdvP (Figs. 2f and 2g). Consistently, cancer type dependent prognostic
variations were observed in these gene sets (Figs. 2f and 2g). Indeed,
≤ 3 of 39 malignancies were significantly enriched in AdvP for
immune-associated GOBPs (gene sets with P b .05, FDR q b 0.25,
Fig. S2e) and ≤ 1 of 39 malignancies was significantly enriched in FavP
for cell-proliferation associated GOBPs (P b .05, FDR q b 0.25, Fig. S2f).
In addition, cancer type dependent prognostic variations were
confirmed in the combined prognostic scores of core CGP gene sets
(combined scores of CGP_UP and CGP_DN gene sets, Fig. S2g).
Collectively, these findings establish the prognostic landscape of key
biological processes and a distinct cancer type dependent property of
prognostic association across a variety of malignancies (Fig. S2h).

3.3. Cell-proliferation prognoses point to treatment response

The cancer-type dependent prognostic variations provide an oppor-
tunity to examine whether transcriptional context of BPGS prognosis
could distinguish treatment response. To determine the representative
cancer types, we defined malignancies that displayed the consistent
prognoses with pan-cancer NES as Con cancers, and those that showed
reversing trends as Rev cancers. The analysis was focused on the prog-
nostic pattern of the cell-proliferation program, which is a principal
treatment target in a variety of cancers. Using data from the Human
Pathology Atlas [7], we found that cancer-type dependent prognostic
variations in the cell-proliferation program were consistent with
prognostic NES (Fig. 2e). Specifically, the prognoses of individual
cell-proliferation leading edge genes were adverse in 11/17 cancer
types, while favorable prognoses were observed in malignancies such
as glioma and colon cancer (Fig. 3a). These prognostic patterns were
also validated in TCPA datasets [12], where cell-cycle markers (cyclin
B1/E) showed adverse prognoses in several cancers, but favorable in
colon cancer (Figs. S3a and S3b). Similarly, cell-proliferation leading
edge genes displayed elevated expression in “high risk” in breast cancer
(Cell-cycle Con cancer, Fig. S3c), but displayed lower expression in “high
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risk” colon cancer compared with the “low risk” subgroups (Cell-cycle
Rev cancer, Fig. S3d). Therefore, colon and brain cancers are representa-
tive Rev cancers for the cell-proliferation program.

To characterize contextual determinants of this variation, we
established the Prognosis Variation Signature (PVS) according to the
six representative cancer types (GLIO, GBM, ASTR, MEDU, SCLC and
LUSC). These four pairs of cell-proliferation representative cancer
types (GLIO-GBM, ASTR-GBM, MEDU-GBM and SCLC-LUSC) shared
similar prognostic patterns for 50 hallmark gene sets except
cell-proliferation programs (Fig. 2e). The top 200 up-regulated and
down-regulated genes within each cancer type were analyzed in the
Oncomine database [13] to establish the PVS (see Methods, Fig. S3e
and Table S4). Genes thatwere up-regulated in cancer typeswith favor-
able cell-proliferation prognoses were defined as Cell-cycle Rev signa-
ture (CycleR), and genes up-regulated in cancer types with adverse
cell-proliferation prognoses were defined as Cell-cycle Con signature
(CycleC). GO annotation indicated a significant enrichment of stress re-
sponse, angiogenesis and regeneration processes in CycleR, whereas
synapse development was prominent in CycleC (Fig. S3f). To test
whether CycleR stratified patients displayed distinct cell-proliferation
prognoses, survival analyses of cell cycle genes (GO) were performed
in lung adenocarcinoma subsets classified by CycleR. In agreement
with our previous results, the cell-proliferation programs were associ-
ated with a favorable prognosis in CycleRhigh, but not in the CycleRlow

patients (log-rank P = .000935, Fig. 3b).
Next, we tested whether the PVS and underlying biological pro-

cesses for the cell-proliferation program indicate response to cell-
proliferation targeting perturbations. To this end, cancer cell lines
that were sensitive (15/823 cell lines) or resistant (15/823 cell lines)
to cell-proliferation targeted reagents were defined according to treat-
ment sensitivity data in the Cancer Therapeutics Response Portal
[17,18]. GSEA in the transcriptomic profiles (Cancer Cell Line Encyclo-
pedia, CCLE) of representative cell lines uncovered a significant en-
richment of CycleR and epithelial mesenchymal transition (EMT)
gene sets in the treatment resistant phenotype (Fig. S3g). Using single
sample GSEA (ssGSEA) [19] of GOBP gene sets (MsigDB) in these cell
lines, we found that enrichment scores of GOBP gene sets distin-
guished sensitive from resistant cells. Consistently, stress response,
angiogenesis and regeneration processes were significantly enriched
in the resistant phenotype (Fig. 3c). To confirm the functional roles
of stress response genes in treatment resistance, we validated three
of these genes (PLAT, PLAU and SERPINE1) in MDA-MB-231 cells in re-
sponse to MLN8237 (AURKA inhibitor) and Palbociclib (CDK4/6 inhib-
itor). Consistently, cells were more sensitive to both inhibitors after
knocking-down PLAT, PLAU or SERPINE1 by conditional shRNA
(Figs. 3d and S3h). These findings suggest that PVS for the cell-
proliferation program indicate response to cell-proliferation targeting
treatments.
Fig. 1. GSEA defines the prognoses of biological processes (a) Overview of theworkingmodel. R
treatment-response model: 1) inactivation of the target and 2) prognostic contribution of the t
and the mechanisms for type I resistance is key to stratifying patients and effective treatmen
evaluated by integrating transcriptomic and clinical outcomes in datasets. Gene signatures
response were established to distinguish treatment responses. PrognosisTarget, the prognostic
by specific treatment. (b) A detailed analysis workflow. Black boxes indicate input or outp
processes and treatment interventions available in the MSigDB database, a method was
microarray datasets) or TCGA (in-house generated RNA-seq datasets) gene-prognosis data) a
values of biological gene sets. Metagene signatures were developed according to cancer t
bioinformatic resources. (c) Representative enrichment plots for chemical and genetic pertur
perturbation) in prognosis-ranked GSEA (pan-cancer prognostic z-score). NES, normalize
Phenotype. FDR, false discovery rate. FDR and Nominal P values were defined by GSEA softw
(pan-cancer prognostic z-score). Gene sets of known oncogenes or treatment perturbations a
blue bars indicate “DN” (downregulated by perturbation) gene sets. (e) Plots indicating –Log
and GEO datasets. Leading edge genes were defined by GSEA, which was determine as genes
sum reaches its maximum deviation from zero, interpreted as the core of a gene set that accou
the two patient groups stratified by median level of expression of leading edge genes using Ka
dots indicate adverse and favorable prognosis, respectively. (f) Representative curves for
RapaDNLead (right) expression (stratified by median expression, n = 249/249 for GSE625
datasets. P values were determined using the log-rank test.
To determine whether PVS distinguish responders from non-
responders in patients, we inspected the transcriptional profiles of
pretreated patients in eight anti-proliferation treatment-response can-
cer datasets (GSE106977, GSE19697, GSE41998, GSE50948, GSE5820,
GSE6667, GSE66999, GSE76360) [20] [21]. GSEA in the transcriptional
profiles confirmed that gene sets including CycleR, EMT, hypoxia and
angiogenesis were enriched in the non-responders (Fig. 3e). Indeed, Cy-
cleR was upregulated in non-responders (NES b 0, Fig. 3f), and was sig-
nificantly enriched in non-responders in three of them (GSEA nominal P
b .05 in GSE5820, GSE76360 and GSE106977, Fig. 3f). In addition, stress
response CycleR genes distinguished resistant patients from sensitive
ones in the treatment-response dataset [22] (GSE5820 and GSE32962,
Fig. S3i). Therefore, transcriptional signatures that were defined by
prognostic variation could distinguish response to anti-proliferation
treatments.

Co-enriched transcriptional signatures of tumors that distinguish
tumor subsets have been proposed to facilitate patient stratification
[23]. To determine whether the cell-proliferation PVS is co-enriched in
tumors, we explored the gene expression patterns in other cancer
datasets [8,9] and found that PVS were co-enriched in tumor subsets
inmultiplemalignancies (Figs. 3g and 3h). Consistentwith the prognos-
tic NES patterns, themajority of glioblastoma (Cell-cycle Rev cancer) pa-
tients expressed low levels of CycleC genes, and a larger proportion of
pancreatic cancer (Cell-cycle Con cancer) patients were found to be in
the CycleChigh group (Fig. 3g). Subsets of CycleR co-enriched tumors
were observed in glioblastoma, pancreatic cancer and additional
tumor cohorts (Figs. 3h and S3j). To determine whether CycleC and Cy-
cleR are associatedwith establishedmolecular subtyping, we examined
the correlation of CycleC and CycleR with molecular subtypes and IDH1
mutation in the TCGA glioblastoma dataset [24]. Interestingly, CycleC
and CycleR showed a reverse pattern of correlation with glioblastoma
subtypes. CycleCwas expressed at higher levels in neural and proneural
and lower in mesenchymal subtype, whereas CycleR was enriched in
mesenchymal and lower in neural and proneural subtypes (Figs. 3i
and S3k). These results are consistent with previous findings that mes-
enchymal subtype is associated with treatment resistance and relapse
in glioblastoma [25]. In addition, CycleCwas enriched IDH1mutant sub-
set, while CycleR was enriched in IDH1 wild-type subtype (Figs. 3j and
S3l), consistent with previous report that IDH1mutant glioblastoma pa-
tients were more sensitive to radiochemotherapy [26]. Thus, transcrip-
tional signatures that were associated with both cell-proliferation
prognosis and treatment response stratified patient subsets in multiple
tumors.

3.4. Immune prognoses exhibit intrinsic intertumor variation

We next examined this prognosis-guided strategy in immunother-
apy, which is at present hampered by their low response rates and a
esponse to a treatment in heterogeneous patients depends on two factors according to the
arget. An alternative target inactivating treatment rescues type II, but not type I resistance,
t. The prognoses of treatment targeting biological process in distinct cancer types were
and interacting biological processes that determine prognostic variation and treatment
score of treatment targeting processes. InactivationTarget, the ratio of inactivated target
ut data and blue boxes analysis method. Based on the gene sets defined by biological
developed that relied on the genome-wide gene-prognosis metadata (PRECOG (GEO
nd GSEA algorithm. This prognosis-ranked GSEA provided an estimate of the prognostic
ype dependent prognostic and transcriptional features, and validated by a variety of
bations (CGP) gene set pairs (_UP: upregulated by perturbation, _DN: downregulated by
d enrichment score. AdvP, Adverse Prognostic Phenotype; FavP, Favorable Prognostic
are. (d) Prognostic NES of 57 paired CGP gene sets in PRECOG prognosis-ranked GSEA
re labeled in red. Orange bars indicate “UP” (upregulated by perturbation) gene sets and
10HR (Hazard Ratio) and –Log10P of GSK3iDNLead and RapaDNLead genes in the TCGA
in the gene set that appear in the ranked list at, or before the point where the running
nts for the enrichment signal. P values (log-rank test) and HR were determined between
plan Meier survival analysis. Each point stands for an independent dataset. Red and blue
Kaplan Meier analyses of patients with low (green) or high (red) GSK3iDNLead (left)
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lack of treatment biomarkers. We found that immune processes were
the highest ranked biological processes associated with favorable prog-
noses (higher gene expression in patients with better survival out-
comes). Core immune gene sets, such as antigen presentation,
lymphocyte development and activation, T cell response and natural
killer (NK) cell-mediated cytotoxicity were enriched in the FavP (P b

.05 in GSEA, Fig. S4a). In addition, Gene Ontology (GO) annotation of
the top 200 favorable genes (PRECOG pan-cancer) demonstrated that
immune processes were highly enriched (Fig. S4b). These top favorable
genes were found to be involved in well-defined immune networks
(determined by ImmuNet [14]), such as those involved in antigen pre-
sentation, lymphocyte activation and NK cell mediated killing pathways
(Fig. S4c and Table S5). Pan-cancer prognosis-ranked GSEA for gene sets
representing 28 immune cell subpopulations and 10 immune cell pro-
cesses indicated that the prognostic NES between TCGA and PRECOG
were positively correlated (Pearson r = 0.7295, P b .0001, Figs. S4d
and S4e). Specifically, dendritic cells, CD8 T cells, B cells and NK cells
were associated with favorable prognoses, whereas macrophage and
regulatory T cells indicated adverse prognoses (Fig. S4d).

We then assessed the cancer type specific prognoses of these im-
mune processes by prognosis-ranked GSEA in cancer type specific
gene-prognosis scores. Hierarchical clustering of prognostic NES for in-
dividual cancer types confirmed that dendritic cells, CD8 T cells, B cells
and NK cells were associated with favorable prognoses in the majority
of the 39malignancies (Fig. S4f). However, adverse prognoses were ob-
served in a subset of cancers, including pancreatic cancer, glioma and
glioblastoma (red labels, Fig. S4f). TCGA datasets confirmed the favor-
able prognosis of immune processes in the majority of cancers, as well
as the variations across different types of cancers (Fig. S4g). These re-
sults reveal the overall favorable prognoses of core immune processes
and cancer-type dependent variations.

As inflammatory signaling in cancer cells promotes cancer progres-
sion [27], inflammatory genes from immune gene sets that are
expressed in cancer cells might confer an adverse immune prognosis.
To inspect this possibility, we defined lymphocyte specific genes by
expression-based non-negative matrix factorization (NMF) clustering
of immune leading edge genes in the CCLE dataset (Cluster 2, left
panel, Fig. S5a). A notable portion of lymphocyte-specific leading edge
genes exhibited favorable prognoses in malignancies with adverse im-
mune prognostic NES, including breast cancer and lung adenocarci-
noma, but not in cancers such as glioma (right panel, Fig. S5a). We
examined the Gene Enrichment Profiler database, performed NMF clus-
tering and collected a subset of 32 Lymphocyte Specific Functional
genes (LSF genes, Fig. S5b). Similar to the prognoses of immune cell
gene sets (Figs. S4f and S4g), the prognoses of favorable LSF gene sets
again varied among cancer types (Fig. 4a). The prognostic patterns of
immune process were substantiated in representative cancer datasets
from the SurvExpress [11], with immune leading edge genes indicating
“low risk” in lung squamous cell carcinoma patients (Immune Con can-
cer, Fig. S5c), but “high risk” in glioblastoma (Immune Rev cancer,
Fig. S5d). Moreover, survival outcomes of individual immune leading
edge genes were favorable in 13/17 cancer types whereas adverse
Fig. 2. The prognostic landscape of biological processes in cancer (a) The NES of hallmark biolog
generated for all of the 50 GSEA hallmark processes using the decreasingly ranked pan-cancer
right) prognoses were ranked by NES. Red: cell-proliferation related gene sets. Blue: immune
indicating –Log10HR and –Log10P of the cell-proliferation programs (b) and immune process
from the E2F_TARGETS and MYC_TARGET_V1 whereas the ImmuneLead here includes 46 le
values and hazard ratios were determined by Kaplan Meier survival analyses of leading edg
independent dataset. Red and blue dots indicate adverse and favorable prognoses, respective
high (red) CycleLead (upper) or ImmuneLead (lower) expression in the GEO datasets (patie
148/147 for NKI-BRC, n = 253/253 for TCGA-KIRC, n = 82/81 for TCGA-SKCM and n = 40/40
Hierarchical clustering of prognostic NES for 50 hallmark gene sets in 39 malignancies. Abbr
calculated in the GSEA software according to the prognostic z-scores of each cancer type th
conferring a favorable prognosis were marked in blue whereas those with immune processe
NES for 6 representative gene sets in 19 TCGA datasets whose prognostic z-scores were gen
(green) prognoses. (f) and (g) Plots depicting prognostic NES of immune (f) and cell-pro
enrichments (P b.05, FDR q b0.25) for each gene set is labeled in red (AdvP) and blue (FavP), r
prognoses were observed in malignancies such as glioma and pancre-
atic cancer according to datasets from the Human Pathology Atlas [7]
(Fig. S5e). Therefore, non-hematopoietic specific gene sets partially con-
tribute to adverse immune prognoses in certain situations, but not in
malignancies such as brain cancers.

3.5. Immune interactive processes for treatment response

To uncover key factors thatwere responsible for immune prognostic
variations, we established the immune PVS by combining transcrip-
tional signatures of tumors from representative cancer types (MEDU,
NEUB, LUSC and LUAD) in the Oncomine database [13]. These two
pairs of immune representative cancer types (MEDU-NEUB and LUSC-
LUAD) exhibited similar prognostic patterns for the 50 hallmark gene
sets, with the exception of immune processes (Fig. 2e). The top 300
up-regulated and down-regulated genes of representative cancer
types were combined to generate the gene signatures associated with
prognoses (Fig. S5f and Table S6). Genes up-regulated in malignancies
with adverse immune prognoses were defined as Immune Rev signature
(ImmuR), and genes up-regulated in malignancies with favorable im-
mune prognoses as Immune Con signature (ImmuC). GO annotation of
these signatures indicated a significant enrichment of lipid metabolism,
regulatory T cell (Treg) andmacrophage processes in the ImmuR, while
T-cell activation process was in the ImmuC (Fig. S5g). To test whether
patients stratified by PVS displayed distinct prognoses of immune pro-
cesses, we performed survival analysis of immune genes (GO) in patient
subsets classified by the ImmuC and ImmuR signatures, respectively.
Consistently, the immuneprocesseswere associatedwith adverse prog-
noses in the ImmuRhigh patients (Fig. 4b), whereas the immune pro-
cesses were correlated with favorable prognoses in the ImmuChigh

patients (Fig. 4c).
Encouraged by results from the cell-proliferation program, we spec-

ulated that immune PVS may inform treatment response in immuno-
therapies. To test this possibility, we performed ssGSEA on
transcriptional profiles of individual patients treatedwith anti-PD-1 im-
munotherapy (GSE78220 [23], GSE67501 [28], GSE91061 and Aa5951
[29]). In agreement with our hypothesis, enrichment scores for
ImmuC/ImmuR (combined ssGSEA score for ImmuC and ImmuR)
were significantly higher in responders than non-responders (Student's
t-test, P = .097, 0.040, 0.008 and 0.0201, respectively, Fig. 4d). We car-
ried out GSEA of ImmuC, ImmuR and hallmark gene sets in grouped pa-
tients (responders vs non-responders) in each dataset. Consistent with
the report that EMT is associated with immunotherapy resistance, EMT
was found to be enriched in the immunotherapy non-responder pheno-
type (GSE78220, P = .004 in GSEA, Fig. S5h) [23]. The ImmuR leading
edge genes, especiallyMGLL that is involved in membrane lipid metab-
olism processes, were up-regulated in immunotherapy-resistant pa-
tients (Fig. 4e). Notably, ImmuR was enriched in the immunotherapy
non-responder phenotype (P = .040, 0.046 and 0.081 in GSEA, upper
panel, Fig. 4f), whereas ImmuC was enriched in the responder popula-
tion (P = .108, 0.053 and 0.155 in GSEA, lower panel, Fig. 4f). Indeed,
among hallmark gene sets, ImmuC, ImmuR and lipid metabolic
ical processes in prognosis-ranked GSEA (pan-cancer prognostic z-score). NES valueswere
prognostic z-scores. Gene sets enriched in adverse (NES N 0, left) and favorable (NES b 0,
gene sets. FDR and Nominal P values were defined by GSEA software. (b) and (c) Plots
es (c) in the TCGA and GEO datasets. CycleLead here includes the 49 leading edge genes
ading edge genes from the INTERFERON_GAMMA and INTERFERON_ALPHA gene sets. P
e genes (patients were stratified by median gene expression). Each point stands for an
ly. (d) Representative curves for Kaplan Meier analyses of patients with low (green) or
nts were stratified by median gene expression, n = 249/249 for GSE62564-NEUB, n =
for GSE10141-LIHC). P values were determined using the log-rank test. (e) Upper panel:
eviations for cancer types are listed in Table S1. NES for the 50 hallmark gene sets were
at were download from the PRECOG website. Cancers with cell-proliferation programs
s indicating poor prognosis were marked in red. Lower panel: Hierarchical clustering of
erated in this study (See Methods). Sidebar, NES index for adverse (red) and favorable
liferation (g) related GO processes assessed in 39 individual cancer types. Significant
espectively.
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signatures were consistently enriched in these datasets (Fig. 4g). These
results led us to propose that transcriptional signatures and the under-
lying biological processes that define immune prognostic variations are
associated with clinical response to immunotherapies.

To test whether these immune PVS distinguish patient subsets in a
general fashion, we explored expression of ImmuC and ImmuR signa-
tures in a panel of TCGA datasets. Indeed, ImmuC genes were
co-expressed and classified into distinct transcriptional subsets in
multiple types of cancer (Figs. 4h and S5i). The ImmuR signature,
which was expressed at low levels in melanoma patients (Fig. S5j),
defined an ImmuRhigh (high expression of ImmuR signature) subset in
lung cancers (Fig. 4i). Notably, the proportions of ImmuChigh, ImmuClow,
ImmuRhigh, and ImmuRlow patient subsets were consistent with the
prognoses of immune processes in those cancer types. For instance,
the Immune Rev cancers (e.g., glioblastoma) consisted of a small
ImmuChigh subset and a large ImmuRhigh subset, whereas the majority
of Immune Con cancers (e.g., lung squamous cell carcinoma) were com-
posed of the ImmuRlow subset (Figs. 4h and 4i). These findings
established that the prognoses of immune processes are dependent on
specific transcriptional contexts of tumors that are applicable to distin-
guish immunotherapy response. In summary, these conglomerate anal-
yses reinforce the concept that prognosis of treatment targeting
biological process is an indicator for treatment response. By integrating
transcriptomic profiles and clinical parameters, this study presents an
approach to establish transcriptional signatures and underlying biolog-
ical processes as determinants that distinguish treatment responders
across multiple cancers (Fig. 4j).

4. Discussion

Distinguishing treatment responders from non-responders is the
leading challenge to effective treatment of cancer patients. Intensive
experimental and data-mining efforts has been devoted to establish
differentially expressed gene patterns to distinguish responsive
patients. However, how this response biomarkers are linked to treat-
ment targeting biological processes remains poorly understood.
Inspired by the fact that clinical outcomes are the primary readout for
the evaluation treatment efficacy, we have developed a prognosis
based strategy to define treatment biomarkers. Current approaches for
prognoses of gene sets can be affected by the absolute level of gene
expression, leading to biased results that are dominated by genes that
are abundantly expressed in the gene set [4]. Here we linked gene-
prognosis profiles to biological processes through prognosis-ranked
GSEA. The prognosis-ranked GSEA approach is validated by the finding
that biologically paired gene sets are consistently enriched, both in
pan-cancer and cancer specific gene-prognosis profiles. This systematic
approach establishes a prognostic landscape of biological processes that
uncovers both general and cancer type specific prognostic patterns
across 39 distinct malignancies. Based on the prognostic patterns, a
Fig. 3.Cell-proliferation PVS links prognosis to treatment response (a) Clustering of prognostic v
Log10PLogRank values were calculated (negative values for favorable prognosis, and positive v
with favorable prognoses in cell-proliferation associated leading edge genes are labeled in red
patients classified by their CycleR signature expression in the TCGA lung adenocarcinoma. Ex
set expression of the cohort (n = 129/129/129/128 for four groups in TCGA-LUAD). P values w
scores of GOBP gene sets (MSigDB) that were differentially enriched between sensitive and r
defined by the AUC values in the Cancer Therapeutics Response Portal database. Transcripto
GOBP gene sets were analyzed by ssGSEAProjection in the GenePattern. (d) Independent shRN
by lentivirus (pLKOTeton). Cells were selected for six days by puromycin (2 mg/ml) two days
subjected to cell proliferation assay. For proliferation assay, cells were maintained in Dox
inhibitor, 500 nM). Cell viability was determined by CCK-8 kit, and quantified compared to c
NES of CycleR and top enriched Hallmark gene sets in eight treatment response GEO datasets
and non-responders according to their response to treatments (including glucocorticoids, p
GSEA was performed in transcriptomes of responders and non-responders in each dataset. (g)
(upper) and pancreatic cancer (lower) cohorts. Yellow boxes indicate transcriptomic subse
(i) Expression of CycleC (left) and CycleR (right) in TCGA glioblastoma subtypes. Glioblastom
defined as the mean value of all genes in the signature. *, P b.05; **, P b.01; ****, P b.0001 (Du
and CycleR (right) in TCGA glioblastoma. Glioblastoma were pre-classified according to their I
signature. ****, P b.0001 (two-tailed Student’s t-test).
comparative analysis of patient cohorts with distinct prognostic
patterns establishes transcriptional signatures that distinguish patients
cohorts. Notably, transcriptional signatures that define intertumor
prognostic variations of treatment targeting biological processes
distinguish treatment response, a concept that is proved in both cell-
proliferation and immune processes.

The prognoses of biological processes showed both general and
cancer-type specific patterns that are consistent with the oncogenic or
tumor suppressive roles of these processes. Biological processes, such
as cell-proliferation programs, mTORC1 signaling, the unfolded protein
response and glycolysis, are frequently associatedwith adverse progno-
ses. By contrast, immune processes, TP53 pathway and apoptosis pro-
cess are linked to favorable prognoses. Notably, the prognoses of all
gene sets are context dependent among different cancer types.
Cell-proliferation programs, which are the primary targets for current
anti-cancer therapeutics, generally confer poor outcomes but signify
favorable prognoses in glioblastoma and colon cancer. Similarly, im-
mune processes indicate favorable outcomes in cancers, such as mela-
noma and lung cancer, yet the same immune processes suggest poor
prognoses in pancreatic and a number of brain cancers. These prognos-
tic variations may result from differences in cell-of-origin, oncogenic
drivers andmicroenvironment among different cancer types [1]. For in-
stance, enriched cancer stem-like cells may contribute to favorable
prognoses of cell-proliferation markers in brain cancer types, as stem-
like cells are slow-cycling (low cell-proliferating activity) and responsi-
ble for treatment resistance and relapse [30]. Both tumor intrinsic and
microenvironmental heterogeneity may contribute to the prognostic
variations of immune processes. Pancreatic cancer and glioblastoma
are characterized by infiltrating immune suppressive cells, which may
contribute to adverse prognoses of immune processes in these cancer
types [31–33]. The prognostic variations not only strengthen the impor-
tance of our cancer type-specific prognostic resource, but also provide
an opportunity to establish the determinants for prognosis and treat-
ment response.

Tumor heterogeneity presents daunting challenges to the develop-
ment of biomarkers and treatments for cancer [1]. To examine the
potential of our approach in identifying treatment biomarkers, we
focused on the cell-proliferation program, the primary target of cancer
treatment [34]. Enrichment of stress response processes in CycleR is in
accordance with the concept that cell-cycle activation in the context of
stress impairs cell survival [35,36]. The enrichment of CycleR and stress
response processes in the anti-proliferation non-responder phenotype
in multiple datasets demonstrates the consistency of our approach. A
consistent correlation with molecular subtypes of glioblastoma further
confirms the clinical significance of these signatures [24]. In addition,
co-enrichment of PVS in patients indicates that transcriptional pro-
grams distinguishing prognostic patterns and treatment response
exist across multiple cancers. As anti-proliferative treatments are the
primary anti-cancer strategies [37–39], these transcriptional signatures
alues for individual CycleLead genes (Fig. 2b) determined by theHuman Pathology Atlas. –
alues for unfavorable prognoses) and clustered by average linkage clustering. Cancer types
. Sidebar, prognostic score index. (b) Kaplan Meier analysis of “GO cell cycle” gene set in
pression levels (low, L; high, H) were defined according to the median value of the gene
ere determined using the log-rank test. (c) Hierarchical clustering of ssGSEA enrichment

esistant cell lines. Sensitivity to 22 compounds targeting cell-proliferation program were
mic profiles for cell lines were downloaded from the CCLE database. The enrichment of
A targeting PLAT, PLAU, SERPINE1 control (shGFP) were delivered to MDA-MB-231 cells
after transfection. After four days of doxycycline (Dox, 200 ng/ml) treatment, cells were
and treated with DMSO, MLN8237 (AURKA inhibitor, 200 nM) or Palbociclib (CDK4/6
ontrol cells (shGFP, Dox + DMSO). *, P b.01 (two-tailed Student’s t-test, n = 4). (e) The
. GSEA were performed in pre-treated transcriptomes of patients classified as responders
latinum, taxanes and doxorubicin). (f) Enrichment plots for CycleR in six GEO datasets.
and (h) Hierarchical clustering of CycleC (g) and CycleR (h) genes in TCGA glioblastoma
ts with high gene expression. Sidebars in (g) and (h) show the gene expression index.
a were pre-classified according to their transcriptional features. Signature expression is
nnett multiple comparisons following One-Way ANOVA). (j) Expression of CycleC (left)
DH mutation status. Signature expression is defined as the mean value of all genes in the
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and underlying biological processes have significant implications for
patient stratification and effective treatment. The concept that PVS dis-
tinguishes treatment response has nowbeen proven, and this is not lim-
ited to cell-proliferation program. This approach may also be applicable
to treatments targeting other biological processes, especially treatments
that are newly approvedor under preclinical development, thereby pro-
viding a strategy for patient stratification based on existing cancer
datasets.

Immunotherapy is now being evaluated in a wide range of cancers
[38,39], yet the predictors and mechanisms of response remains poorly
understood. For example, mutational loads have been demonstrated to
benefit anti-CTLA4 responses in melanoma [40] and anti-PD1 response
in lung cancer [41,42], while another study reports that mutational
loads benefit survival, but not anti-PD-1 response [23]. The limited
patient numbers may contribute to the substantial inconsistencies
between these studies [43–52]. In contrast, our approach establishes
transcriptional signatures and the underlying biological processes
based on the molecular profiles of ~26,000 cases, and are applicable in
multiple independent datasets. This high levels of consistency indicates
a general mechanism of immunotherapy responses. Specifically, the T
cell activation processes that are critical for successful immunotherapy
[53], are enriched in ImmuC. Similarly, enrichment of Treg and lipidme-
tabolism processes in ImmuR is consistent with the immunosuppres-
sive function of Treg [54] and requirement for lipid uptake and
metabolism for survival of tissue-resident memory T cells [55]. Indeed,
lipid metabolism controls the functional switch between immune pro-
tection and disease state in T cells [56]. Interestingly, cancer types
with favorable immune prognoses, such as melanoma and lung cancer,
are responsive to immunotherapies [38,39,57], whereas cancer types
with adverse immune prognoses, such as pancreatic and several brain
cancers, show a poor response to immunotherapy [58]. These findings
further confirm a link between prognosis of treatment targeting process
and treatment response.

The findings that prognoses are linked to treatment responses for
specific biological processes may be useful for repurposing currently
available targets and treatments based on the prognoses of related bio-
logical processes. The prognosis-repurposed vulnerabilities provide a
resource of both therapeutic targets (e.g., MYC, EZH2, CDK4) and inter-
ventions (e.g., Rapamycin, Aplidin, Darapladib) thatwill facilitate devel-
opment of novel therapeutic approaches across 39 human
malignancies. This cancer type-dependent property of treatment re-
sponse establishes resources that repurpose established treatments in
specific cancer types. Identifying therapeutic vulnerabilities for cancers,
especially those malignancies for which there are currently no effective
treatments, is urgently needed. Therefore, our analysis also has the im-
portant advantage of presenting valuable resources indicative of poten-
tial treatment approaches for distinct malignancies. Although we have
tried our best to optimize these analyses by keeping the versions of
data consistent among different online tools and databases, there're
still several limitations in this study. Firstly, the prognostic analyses
Fig. 4. Immune interactive processes indicate immunotherapy response (a) The prognostic NE
exhibited favorable prognostic z-scores in N 60% (24/39) PRECOG cancer datasets) in 19 mat
analysis of the “GO immune response” gene set in patient subsets classified by ImmuR (b) or
cell carcinoma (LUSC, c) datasets. Expression level (low, L; high, H) was defined according t
groups in SKCM, and n = 125/125/125/125 for four groups in LUSC). P values were determin
gene sets (score ImmuC-score ImmuR) in individual patients from four independent dataset
(Res, black dots) and non-responders (NoR, red dots) to immunotherapy according to their c
test. (e) Expression of MGLL in individual patients from four independent datasets (GSE67501
in black) or non-responders (NoR, labeled in red) to immunotherapy according to their clinic
ImmuR (upper panel) and ImmuC (lower panel) in three independent GEO datasets. GSEA w
according to their response to immunotherapy. (g) The NES of ImmuR, ImmuC and Hallmark
Aa5951). GSEA were performed in transcriptomes of patients classified as responders and non
of ImmuC (h) and ImmuR (i) genes in three TCGA datasets, including glioblastoma (upper p
panel). Yellow boxes indicate distinct clustered subsets with high gene expression. Sidebars
processes for treatment responses and to stratify treatment responders from non-respon
Differentially expressed genes between BPGS-favorable and BPGS-adverse patients were defin
The concept has now been proven in treatments targeting both tumor (anti-proliferation treat
here are based on overall survival because the lack of recurrence-free
survival information, which is more relevant to treatment response in
cancer datasets. Secondly, the prognostic landscape built by GSEA is
more exploratory and less accurate as predictive biomarkers here, and
more efforts are needed before their clinical application [4]. Thirdly,
although several findings from our analyses are consistent with previ-
ous experimental publications, we provided only cell-based experimen-
tal validations of CycleR signature. Since both tumor-specific and
immune cell-specific factors should be considered in responses to
immunotherapy [43–52], immune signatures are not experimentally
validated because responses to immunotherapy are not well recapitu-
lated in cell based experiments in vitro. Future in vivo studies will be
considered for cell-proliferation, immuneprocesses and other biological
processes of potential interest.

Collectively, by integrating transcriptomic profiles, clinical outcomes
and biological processes, we have now characterized the prognostic
landscape of biological processes for a variety of cancers. These progno-
ses show intertumor variation patterns, which is a valuable property
needed to define representative cancer types and transcriptional deter-
minants of prognostic variation. This link between prognosis and treat-
ment response establishes a strategy to stratify sensitive and resistant
patients using transcriptional signatures that define prognostic varia-
tions. The concept that prognosis of target distinguishes treatment
response may be applicable to a variaty of treatments, providing poten-
tial biomarkers for further experimental and clinical validations. These
findings highlight the utility of bioinformatic resources to develop bio-
markers and treatment strategies that will allow more precisely
targeted and immune therapies for cancer patients.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.01.064.
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