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Switching from repressed to active status in chromatin regulation
is part of the critical responses that plants deploy to survive in an
ever-changing environment. We previously reported that HOS15,
a WD40-repeat protein, is involved in histone deacetylation and
cold tolerance in Arabidopsis. However, it remained unknown
how HOS15 regulates cold responsive genes to affect cold toler-
ance. Here, we show that HOS15 interacts with histone deacety-
lase 2C (HD2C) and both proteins together associate with the
promoters of cold-responsive COR genes, COR15A and COR47.
Cold induced HD2C degradation is mediated by the CULLIN4
(CUL4)-based E3 ubiquitin ligase complex in which HOS15 acts as
a substrate receptor. Interference with the association of HD2C
and the COR gene promoters by HOS15 correlates with increased
acetylation levels of histone H3. HOS15 also interacts with CBF
transcription factors to modulate cold-induced binding to the
COR gene promoters. Our results here demonstrate that cold in-
duces HOS15-mediated chromatin modifications by degrading
HD2C. This switches the chromatin structure status and facilitates
recruitment of CBFs to the COR gene promoters. This is an appar-
ent requirement to acquire cold tolerance.
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Frosts, particularly at critical stages such as the reproductive
development, drop crop yields by ∼25% (1, 2). A short expo-

sure to low but nonfreezing temperatures, the so-called cold acc-
limation, enables plants to tolerate freezing (3, 4). Acclimation
involves the stabilization of cellular membranes, enhancement of
antioxidative stress mechanisms, and accumulation of cryoprotec-
tants (5). Low temperature initiates signaling cascades regulating
expression of genes involved in cold stress response or tolerance (6,
7) and cold acclimation (1, 4, 8, 9). During the last decade, regu-
lators and effectors of cold signaling, and numerous output genes
have been identified (3, 10, 11). The best-characterized transcrip-
tion factors belong to the C-REPEAT (CRT) BINDING FAC-
TORS (CBFs)/DEHYDRATION RESPONSIVE ELEMENT
(DRE) BINDING FACTORS (DREBs) family. CBF/DREB
transcription factors control cold-dependent and ABA-independent
expression of COLD RESPONSIVE (COR)/RESPONSIVE TO
DESICCATION (RD)/LOW-TEMPERATURE–INDUCED (LTI)/
KIN (stress-induced) genes through association to CRT/DRE cis-ele-
ments that are also found in their own promoters (4, 12, 13). Over-
expression of CBF1, -2, or -3 induces the expression of CBF regulons
and enhances freezing tolerance (10, 14), whereas cbf1/2/3 triple
mutants exhibit extreme freezing sensitivity (15, 16), indicating that
CBFs have a critical role in freezing tolerance in Arabidopsis.
Regulation of gene expression in response to cold stress often

employs posttranslational histone modifications, including his-

tone acetylation, methylation, and phosphorylation (17, 18). Acet-
ylation and deacetylation of lysine residues at the N terminus of
histones, which are catalyzed by histone acetyltransferases (HATs)
and histone deacetylases (HDACs), respectively, have espe-
cially been extensively shown to be involved in abiotic stress re-
sponses (17–21). Acetylation of lysine residues of histones H2B, H3,
and H4 neutralize their positive charges, reducing the strength of the
interaction with DNA and inducing an “open” chromatin
configuration that correlates with transcriptional activation,
whereas histone deacetylation induces a “closed” compact
chromatin state and is linked with transcriptional repression
(18, 22, 23). HATs often interact with various chromatin
remodeling proteins to form transcriptional coactivator com-
plexes, which recognize histone marks and modify chromatin,
and recruit transcription factors to the target chromatin regions
for gene induction (24). Oppositely, many transcriptional core-
pressors are known to associate with HDAC (25–27). Despite
these insights, the contribution of histone modification and
epigenetic regulation to plant stress tolerance remains unclear.
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Posttranslational covalent modification of proteins causes rapid
and reversible/irreversible alterations in their function. For example,
conjugation of ubiquitin (Ub) to substrate proteins (ubiquitination)
generally implies that the target proteins are subjected to protea-
some degradation, which has substantial effects on regulatory pro-
cesses including transcription (28, 29). In the Ub–proteasome
system, Ub attachment to a target substrate involves sequential
steps referred to as activation (E1), conjugation (E2), and li-
gation (E3) (30). CULLIN RING ligases (CRLs) are the largest
family of E3 Ub-ligases in Arabidopsis. Among the CRLs, the
scaffold protein CULLIN4 (CUL4) assembles a small RING-box
domain protein (RBX1) on its C terminus and the DNA BINDING
PROTEIN 1 (DDB1) on its N terminus to interact with substrate
receptors, namely DCAFs (CUL4- and DDB1-associated factors),
that recognize their corresponding targets for ubiquitination. The
DCAFs usually possess the DDB1-binding WD40 protein (DWD)
domain, which consists of 16 amino acids within WD40 repeats and
are conserved in many eukaryotes (31–34). In Arabidopsis, 85 pro-
teins are found to contain the DWD motif and have diverse func-
tions in regulation of development and stress responses (33, 35, 36).
Previously, we reported that the WD40-repeat protein HOS15 is

involved in histone modification and cold tolerance in Arabidopsis
(37). However, few mechanistic links between the regulation of cold
stress response and chromatin dynamics have been identified in
plants, and how HOS15 is involved in gene expression through
chromatin remodeling to regulate cold adaptation remains un-
known. In this work, we demonstrate that HOS15 functions as a
DCAF protein and leads to the ubiquitination and degradation of
HISTONE DEACETYLASE 2C (HD2C), thereby modulating
chromatin status and gene expression of COR genes in response to
freezing stress in Arabidopsis. Our findings provide insights into how
chromatin remodeling is linked with cold stress responses in plants.

Results
HOS15 Interacts with HD2C in Nuclei. To identify interacting
proteins working together with HOS15, especially in gene-
expression control, we carried out a yeast two-hybrid screening.
The full-length cDNA of HOS15 and an Arabidopsis cDNA li-
brary obtained from the Arabidopsis Biological Resource Center
(The Ohio State University, Columbus) (38) were cloned into
bait and prey plasmids, respectively. Fifty-four clones survived on
the stringent media (-TLH) and seven putative HOS15-interacting
partners including HD2C were identified (Fig. 1A and SI Appendix,
Table S1). As we were more interested in how HOS15 is involved in
epigenetic regulation, the interaction of HOS15 and HD2C
(NM_120455.3, At5g03740) (39, 40) was confirmed using coimmu-
noprecipitation (co-IP) (Fig. 1B) (37). Total protein extracts from
tobacco plants transiently expressing HOS15-FLAG and HD2C-
GFP were pulled down with anti-FLAG and HD2C-GFP was de-
tected using anti-GFP (Fig. 1B). The interaction of HOS15 with
HD2C was further tested by using a split-luciferase (LUC) com-
plementation assay, which is based on the reconstituted LUC activity
when two proteins respectively fused with N- and C-terminal LUC
fragments (NLuc and CLuc) physically interact in vivo (41, 42).
Coexpression of CLuc-HOS15 and HD2C-NLuc in tobacco leaves
resulted in high luminance signals (Fig. 1C and SI Appendix, Fig.
S1), revealing physical interaction between HOS15 and HD2C.
Consistent with the known localization of HOS15 in nuclei (37),
YFPN-HOS15 expressed in Arabidopsis protoplasts interacted
with YFPC-HD2C in the nucleus as shown by biomolecular fluo-
rescence complementation (BiFC) assays (Fig. 1D).

HOS15 and HD2C Are Involved in Freezing Stress Responses. As the
hos15-1 allele is in the C24 ecotype background (37) and hos15-2
(GK_785B10) is in Col-0 background, the complementation
lines HOS15pro::HOS15-HA were generated in hos15-2 (SI
Appendix, Fig. S2 A‒E). We also obtained two mutant alleles of
HD2C, hd2c-1 (SALK_129799) and hd2c-3 (SALK_039784),
and transgenic plants overexpressing HD2C-GFP (HD2Cox)
(40, 43, 44) (SI Appendix, Fig. S3 A‒E). The hos15-2 loss-of-
function mutant exhibited cold sensitive phenotypes, with and
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Fig. 1. HOS15 directly interacts with HD2C. (A) HOS15 interacts with HD2C
by yeast two-hybrid assay with HOS15 and HD2C as bait and prey, re-
spectively. (B) HOS15 binds to HD2C in vivo. Tobacco plants were infiltrated
with Agrobacterium harboring 35S::HOS15-FLAG and 35S::HD2C-GFP for
transient expression. Protein extracts (input) were immunoprecipitated (IP)
with anti-FLAG, and resolved by SDS/PAGE. Immunoblots were developed
with anti-FLAG and anti-GFP to detect HOS15 and HD2C fusions, re-
spectively. (C) HOS15 interacts with HD2C in vivo. HOS15 and HD2C were
fused to C terminal of CLuc and N terminal of NLuc for split luciferase
complementation assays. Agrobacterium carrying 35S::CLuc-HOS15 and 35S::
HD2C-NLuc were infiltrated into tobacco leaves for transient expression.
After 2 to 3 d, the bottom side of the tobacco leaves were sprayed with
1 mM luciferin, and bioluminiscence was detected. Combination of CLuc-
RAR1 and SGT1a-NLuc is included as a positive control. Images shown are
representative of three biological replicates of three individual experiments.
(D) HOS15 interacts with HD2C in vivo. Shown are the results of BiFC analyses
performed with constructs of VYNE-HOS15 and VYCE-HD2C, which were
transiently expressed in Arabidopsis protoplasts. Nuclei were stained with
DAPI, and YFP fluorescence was detected under the confocal microscope.
(Scale bars, 10 μm.)
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without cold-acclimation (Fig. 2 A‒C and SI Appendix, Fig. S2
F‒I), as previously observed in the hos15-1 mutant (37). Both
visual assessment and an electrolyte leakage assay revealed that
freezing tolerance levels in hd2c mutants were comparable to
those in the wild-type without cold-acclimation and even better
than in the wild-type upon cold acclimation (Fig. 2 A–C and SI
Appendix, Fig. S3F). However, HD2Cox plants showed sensi-
tivity to freezing stress compared with the wild-type (Fig. 2 A–C
and SI Appendix, Fig. S3 G–I). These results suggest that HD2C,
a plant-specific histone H3 deacetylase (44), is negatively in-
volved in cold stress signaling.

As low temperatures transiently induce expression of CBF and
CBF-regulated COR genes (45, 46), transcript levels of CBFs and
CORs in wild-type, hos15-2, hd2c-1, and HD2Cox plants were
checked (Fig. 2D and SI Appendix, Fig. S4A). Consistent with
previous reports (47), transcripts of CORs, including COR15A,
COR47, and RD29A, began to accumulate in the wild-type after
6–12 h upon exposure to cold (Fig. 2D). Transcript levels were
significantly reduced in hos15-2 and HD2Cox, whereas they were
substantially higher in hd2c-1 than in the wild-type upon cold
treatment (Fig. 2D). However, cold-induced expression of CBF
genes and accumulation of their protein product were similar in wild-
type, hos15-2, hd2c-1, and HD2Cox plants (SI Appendix, Fig. S4),
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suggesting that HOS15 and HD2C influence the expression of COR
genes by another mechanism other than controls on CBF tran-
scription or CBF protein abundance.

HOS15 Is Part of CUL4-Based E3 Ub Ligase Complexes. Proteins
containing a DWD motif act as receptors for CUL4-based
E3 ligases (CRL4), where they help to recruit specific sub-
strates for degradation in both plant and animal systems (31–33,
48). HOS15 is predicted to contain a conserved DWD motif
within the third WD40 repeat, between amino acids 380 and 395
(33, 37). Indeed, HOS15 directly bound DDB1B, a component of
CRL4 complexes, in yeast two-hybrid assays (Fig. 3A). The in-
teraction of HOS15 and DDB1 was further confirmed in planta
by co-IP assays of HOS15-FLAG with DDB1A-HA or DDB1B-
HA transiently expressed in tobacco leaves. When HOS15-FLAG
from total protein extracts was pulled down, DDB1A-HA and
DDB1B-HA were detected to interact with HOS15-FLAG (Fig. 3
B and C). In addition, HOS15 associated with CUL4, the scaffold
component in CRL4 complexes (Fig. 3D), and such interaction
was enhanced upon cold treatment in Arabidopsis (Fig. 3E),
suggesting that HOS15 assembles into CRL4 E3 Ub ligase
complexes (henceforth CRL4HOS15).
Because HOS15 interacted with CRL4 components, we tested

whether HD2C also associates to CUL4 and DDB1B using co-IP
(SI Appendix, Fig. S6D). Total protein extracts from wild-type, hd2c-
1, FLAG-CUL4 overexpressor (FLAG-CUL4), and FLAG-DDB1B/
ddb1a (FLAG-DDB1B) plants were immunoprecipitated with anti-
HD2C antibody, and both DDB1B and CUL4 fusions were found
to coprecipitate with HD2C, suggesting that HD2C also associates
to CRL4HOS15 E3 ligase complexes, likely as a target.

HOS15 Is Required for Cold-Induced Ubiquitination and Degradation
of HD2C. DWD proteins act as substrate receptors within
CRL4 complexes, facilitating ubiquitination and subsequent
degradation of specific protein targets through the Ub–protea-
some system (33, 35). According to this notion, we tested whether
HD2C serves as a substrate of the CRL4HOS15 complex and is
subjected to ubiquitination and proteasome-mediated degrada-
tion. Indeed, the abundance of HD2C-GFP protein in HD2C
overexpressing plants (HD2Cox) and of the native HD2C protein
in wild-type plants gradually decreased upon cold treatment with
minor changes of HD2C mRNA abundance (Fig. 4 A and B and
SI Appendix, Fig. S5). Disappearance of GFP fluorescence from
HD2C-GFP overexpressing plants was also promoted by cold
treatment (Fig. 4C). Furthermore, treatment with the proteasome
inhibitor MG132 during cold treatment abolished the cold-
induced decrease in the steady-state levels of HD2C protein (Fig.
4D), suggesting that cold-induced degradation of HD2C proteins
is mediated by the proteasome complex. However, the cold-
induced degradation of HD2C was impaired in hos15-2 and
cul4-1 mutants (Fig. 4D and SI Appendix, Fig. S6E), and CUL4
defective plants were sensitive to freezing (SI Appendix, Fig. S6
A–C), strongly suggesting that cold-induced HD2C destabilization
is mediated by HOS15 and CUL4.
As the cold-induced reduction of HD2C protein abundance likely

results from Ub degradation, Ub-conjugated proteins were purified
from cold-treated HD2C-GFP overexpressing plants in wild-type
and hos15-2 backgrounds using commercially available p62 resin
that binds Ub noncovalently (Fig. 4E). The p62 affinity-purified
samples showed extensive ubiquitination, as detected in immuno-
blots with antiubiquitin antibody (Fig. 4E, Left). Immunoblots of the
affinity purified extracts from HD2C-GFP–overexpressing plants
(HD2Cox) using anti-GFP antibody showed the presence of HD2C-
GFP as multiple high molecular mass bands, while no signal
was detectable in the hos15-2 mutant. These results indicate that
HD2C-GFP is modified with poly-ubiquitin chains, that HOS15 is
required for cold-induced poly-ubiquitination of HD2C (Fig. 4E,
Right), and imply that cold sensitivity of hos15-2 results from the
failure of HOS15-mediated HD2C degradation. Indeed, hos15-
2 hd2c-1 double-mutant plants suppressed the cold-sensitive phe-
notypes of hos15-2 (SI Appendix, Fig. S7 A‒C). Furthermore, the
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reduced expression of COR genes in hos15-2 was also suppressed by
hd2c-1 (SI Appendix, Fig. S7D). Taken together, these observations
are evidence that HOS15-dependent ubiquitination and degrada-
tion of HD2C contributes to plant tolerance to cold.

Association of HOS15 and HD2C to Promoter Regions of COR Genes Is
Altered by Cold Stress. Next, to analyze whether the HOS15–
HD2C HDAC complex associates to chromatin at COR genes,
chromatin immunoprecipitation (ChIP) assays were performed.
Under ambient temperature, HOS15 and HD2C proteins were
found to bind the promoter of COR15A and COR47 genes,
mainly in regions containing a CRT/DRE element where CBF
proteins bind (Fig. 5 C‒F and SI Appendix, Fig. S8). The binding
of HOS15 to these regions was enhanced upon cold treatment
while association of HD2C to the identical regions of COR15A
and COR47 where HOS15 binds was dramatically decreased
(Fig. 5 E and F and SI Appendix, Fig. S8). Presumably, attenu-
ation of the association of HD2C to COR gene chromatin results
from cold-induced degradation of HD2C mediated by HOS15.
HD2C is known to bind to and deacetylate histone H3 (44,

49). Because HOS15 interacts with HD2C and regulates COR
gene expression (Figs. 1 and 2), we investigated how HOS15 is
functionally linked with HD2C in terms of chromatin regulation
of COR genes expression. In wild-type plants, H3 acetylation
(AcH3) level on COR15A promoter regions bound by CBF
proteins was significantly increased by cold treatment. However,
hd2c-1 plants displayed high accumulation of AcH3 on the
COR15A promoter with or without cold treatment (Fig. 5B). In
hos15-2 plants, cold treatment failed to induce the acetylation of
H3 on COR15A. The accumulation of AcH3 in hos15-2 hd2c-1
double mutants regardless of temperature supported that hd2c-1
is epistatic to hos15-2, and HOS15-mediated transcriptional
regulation of COR genes expression in response to cold stress is
at least partially mediated by HD2C. Furthermore, the associa-

tion of HD2C to the CRT/DRE regions of COR15A chromatin
was lost in hos15-2 at normal temperature (Fig. 5H) (22 °C), in-
dicating that HOS15 is required for the efficient binding of HD2C
to the promoter of COR genes. Upon cold stress, the amount of
HD2C in the COR15A chromatin in hos15-2 plants was still low
despite its greater stability in the absence of HOS15 (Fig. 5H)
(0 °C), and was reduced further in the wild-type, as expected from
the cold-induced HD2C degradation mediated by HOS15. On the
other hand, association of HOS15 to the CRT/DRE regions of
COR15A chromatin was the same in wild-type and hd2c-1 at normal
temperature (Fig. 5G) (22 °C). However, the increased binding of
HOS15 to COR15A chromatin upon cold stress was not observed in
the hd2c-1 mutant (Fig. 5G) (0 °C).

HOS15 Promotes the Binding of CBF Proteins to COR Promoter
Regions. We have shown that HOS15 and HD2C associate to
CRT/DRE regions of COR genes where CBF proteins bind to
enhance COR gene expression (Fig. 5 and SI Appendix, Fig. S8).
In fact, yeast two-hybrid, co-IP, and split-LUC complementation
assays showed that HOS15 interacted with all CBF isoforms (Fig.
6A and SI Appendix, Fig. S9 A and B). In contrast, HD2C failed
to interact with all CBFs (SI Appendix, Fig. S9C) Accordingly,
gel-filtration assays followed by western blotting showed that
CBF proteins from cold-stressed plants (0 °C, 24 h) were de-
tected in fractions corresponding to complexes ranging from
approximately 200–660 kDa, which overlaps with the molecular
mass range of HOS15 complexes (200–660 kDa) (Fig. 6B). Thus,
we examined whether HOS15 and HD2C affected the binding of
CBF proteins to CORs promoters in response to cold stress (Fig.
6 C and D and SI Appendix, Fig. S10). Cold (0 °C, 24 h) greatly
enhanced the binding of CBF proteins to the CRT/DRE regions
of COR15A and COR47 in the wild-type. However, CBF binding
induced by cold treatment was dramatically reduced in hos15-2
plants, indicating that HOS15 facilitates the binding of CBF
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Fig. 4. Cold-induced degradation of HD2C is medi-
ated by HOS15. (A) The protein abundance of HD2C
is reduced upon cold stress. Nuclear proteins extracted
from 12-d-old HD2C overexpressors treated with cold
stress (0 °C) for the indicated periods were applied to
immunoblots with anti-GFP. Hintone3 (H3) was used as
loading controls. (B) Relative HD2C mRNA levels in
HD2C overexpressors are not reduced upon cold. Total
RNA was extracted and gene expression of selected
genes was checked by qRT-PCR analysis. Results are
from three biological replicates and values represent
means ± SD (n= 9). (C) Cold reduces the biofluorescence
from 7-d-old HD2C-GFP overexpressing plants exposed
to cold (0 °C) for 6 h. (D) Cold-induced degradation of
HD2C is impaired in hos15-2. Ten-day-old wild-type and
hos15-2 plants were treated with cold (0 °C) for 15 h in
the presence of proteasome inhibitor MG132 (50 μM).
Nuclear proteins were applied to immunoblot with anti-
HD2C. (E) The poly-ubiquitination of HD2C is blocked in
hos15-2 mutant. Seven-day-old plants (HD2C-GFP and
hos15-2 HD2C-GFP) were treated with cold (4 °C) for
12 h in the presence of MG132. Total proteins were
incubated with Ub-binding p62 resin or with empty
agarose resin (negative control). Anti-Ub was used to
detect ubiquitinated proteins in input protein extracts
and pulled-down (PD) samples. Anti-GFP allowed the
detection of HD2C-GFP and its ubiquitinated forms Ub
(n)-HD2C-GFP.

E5404 | www.pnas.org/cgi/doi/10.1073/pnas.1721241115 Park et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721241115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721241115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721241115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721241115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721241115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721241115/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1721241115/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1721241115


proteins to the chromatin of CORs. Moreover, the association of
CBF proteins to COR promoters was significantly enhanced in
cold-treated hd2c-1 compared with wild-type, suggesting that
removal of HD2C by HOS15 is required for CBFs-binding to
CRT/DRE regions of the COR chromatin in response to cold
stress. These results indicate that HOS15 interacts with CBFs
during cold stress and that this complex positively regulates COR
gene expression in response to cold stress. Furthermore, we have
tested the association of HD2C and HOS15 to the CRT/DRE
element in the cbf1/2/3 triple mutant to analyze whether the
binding of HOS15 and HD2C is dependent on CBFs. As shown
in Fig. 6 E and F, the recruitment of HOS15 and HD2C was
greatly reduced in the cbf1/2/3 triple mutant, regardless of the
temperature. Of note is that CBFs have a low but detectable
level of expression at 22 °C (SI Appendix, Fig. S4) and that the
basal association of HOS15 to the COR15A promoter at 22 °C
disappeared in the cbf1/2/3 mutant. These results indicate that
CBFs are bound to CRT/DRE elements even at regular growth
temperature and that upon their own induction by cold stress
they help recruiting HOS15 to COR chromatin.

Discussion
HOS15 is a homolog of human TBL1X (transducin β-like 1 X-
linked) and TBL1XR1 (transducin β-like 1 X-linked receptor 1)
that are core components of nuclear receptor corepressor (N-
CoR), also known as SMRT (silencing mediator for retinoid and
thyroid hormone receptors) corepressor complex (50). This co-
repressor complex recruits HDAC3 to gene promoter regions
(51). The Arabidopsis N-CoR homolog PWR (powerdress) in-

teracts with HDA9 and promotes histone H3 deacetylation (52,
53), and we have shown that the corepressor complex in Arabidopsis
contains HOS15, which interacts with several histone deacetylases
including HDA9 (SI Appendix, Fig. S1). These data indicate that the
plant version of N-CoR/SMRT complex includes similar compo-
nents as in animals. Moreover, our split luciferase assay showed that
HOS15 makes a complex with class I type HDACs (HDA6, HDA9,
HDA19) and plant-specific HD2 type HDACs (HD2A, HD2B,
HD2C) (SI Appendix, Fig. S1), which expands further the structural
analogy to the animal system.
N-CoR/SMRT corepressor complexes have been well studied in

association with nuclear hormone receptors (54). For transcrip-
tional repression, N-CoR/SMRT repressor complexes are recruited
to ligand-unbound retinoic acid and thyroid hormone receptors that
bind to response elements in target genes (25). Upon ligand bind-
ing, TBL1X and TBL1XR1 are activated and serve as E3 Ub ligase
receptors for the recruitment of the ubiquitination machinery and,
eventually, for proteasome-dependent degradation of the N-CoR/
SMRT corepressor complexes. Our observations are aligned to this
general mechanism because HOS15 interacted with DDB1B and
CUL4 (Fig. 3), suggesting that HOS15 is a component of CUL4-
based Ub ligase complexes. Upon cold signaling, HOS15-containing
Ub ligase complex showed ubiquitination activity on HD2C (Fig. 4),
resulting in its proteasome-mediated degradation. How would the
cold signal be transmitted to HOS15 for COR genes regulation?
Our ChIP assays indicated that association of HOS15 to CRT/DRE
elements increased during cold stress. This could be achieved, at
least in part, through the interaction with cold-induced CBFs that
specifically bind to COR promoters. Still, the question remains
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Fig. 5. HD2C and HOS15 associate to the promoter
locus of COR15A. (A) Structure of the COR15A promoter
and amplicon regions (I to V) used for ChIP. The arrow in-
dicates the TSS. White boxes mean CBF binding cis ele-
ments, and gray box denotes 5′UTRs. (B) Cold-induced
H3 acetylation of the COR15A promoter locus is impaired
in hd2c mutants. Chromatin from wild-type, hd2c-1, hos15-
2, and hos15-2hd2c-1 plants treated with cold (0 °C) for 24 h
were immunoprecipitated with anti-H3Ac antibody. A
control reaction was processed in parallel with rabbit lgG.
ChIP and input-DNA were applied to real-time qPCR using
primers specifically targeting to the COR15A promoter
region, IV. Error bars indicate SE (n = 3). The experiments
were repeated two times with similar results. (C and D)
HOS15 and HD2C associates to regions IV and V of the
COR15A promoter, CBF cis element regions. Chromatin
complexes from wild-type plants were immunoprecipi-
tated with anti-HOS15 (C) or anti-HD2C (D). A control re-
action was processed in parallel with rabbit lgG. ChIP and
input-DNA samples were quantified by real-time qPCR
using primers specific to the different regions (I to V) of the
COR15A. (E and F) Cold enhances the binding of HOS15
protein to COR15A promoter but reduces that of HD2C
protein. ChIP assay was carried out using anti-HOS15 (E) and
anti-HD2C (F) with wild-type plants treated with cold (0 °C,
for 24 h). (G and H) HOS15 is required for HD2C association
to COR genes chromatin and vice versa. Four-week-old
seedling (22 °C) or 4-wk-old seeding after cold (0 °C) treat-
ment 1 d were used for isolating input chromatin. ChIP data
from wild-type and hos15-2 or hd2c-1 plants. Epitope-
tagged HD2C chromatin complex was immunoprecipi-
tated with anti-HD2C antibody or HOS15 chromatin com-
plex was immunoprecipitated with anti-HOS15. A control
reaction was processed in parallel with rabbit lgG. ChIP and
input-DNA samples were quantified by real-time qPCR using
promoter specific to the different region of the COR15A
genes. The structures of the COR15A gene as well as the
position of the primer used for qRT-PCR corresponding to
the distal promoter regions are marked on the diagram at
the top. The ChIP results are presented as fold-enrichment of
nontarget DNA. Error bars indicate SE (n = 3). The experi-
ments were repeated at least two times with similar results.
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whether a posttranslational modification (PTM) or intrinsic prop-
erty of HOS15 elicits ubiquitination of HD2C upon cold-sensing.
Many signal transduction pathways involve PTM on target proteins
(55). Indeed, TBL1X and TBL1XR1 (the HOS15 homologs) are
regulated by phosphorylation and sumoylation during nuclear re-
ceptor ligand and Wnt-protein signaling, respectively (50, 56).
HOS15 contains multiple putative phosphorylation and sumoy-
lation sites identified by NetPhos (www.cbs.dtu.dk/services/
NetPhos/) and SUMOplot (www.abgent.com/sumoplot). How-
ever, our immunoblot analyses of HOS15 did not show up-shifted
band patterns indicative of PTMs after cold treatment (Fig. 3).
However, protein homodimerization acts as an activator of poly-
ubiquitination of the target protein by the SCF complex (57).
Sequence analysis revealed that of HOS15 contains a LisH do-
main potentially involved in homodimerization. Together, these
results suggest that HOS15 could dimerize under cold stress and
activate CRL4 to degrade HD2C. Further studies are needed to
test our hypothesis.
HOS15 does not contain a DNA binding domain and N-CoR/

SMRT corepressor complexes also do not directly bind to the cis
element in the target gene promoters. However, HOS15 and
HD2C strongly associated to the CTR/DRE elements at COR
gene promoters, which are the binding element for CBF tran-
scription factors. Binding of human N-CoR/SMRT complexes to

their response elements is mediated by nuclear hormone re-
ceptors that stay bound in the presence and absence of ligands.
Thus, through ubiquitination and degradation of the complex,
TBL1X and TBL1XR1 facilitate a switching process between
coactivator and corepressor complexes on the target chromatin,
where TBL1X and TBL1XR1 serve as a platform for this exchange.
HOS15 interacts with CBFs, and these transcription factors have a
low but detectable expression level (SI Appendix, Fig. S4). Although
CBF genes are highly induced by low temperatures, the expression
of CBF genes appeared to oscillate at ambient temperature, fol-
lowing a circadian rhythm (58). Additionally, the cbf1/2/3 triple
knockout mutant was smaller in size than the controls (16), sug-
gesting a constitutive housekeeping role for CBF transcription
factors under normal conditions. Because the abundance of
HOS15 in COR15A chromatin was low in the cbf1/2/3 mutant re-
gardless of the temperature (Fig. 6 E and F), it is tempting to
speculate that CBF proteins could be already present on the COR
gene promoters even under ambient temperature conditions,
helping to recruit HOS15 and HD2C, and the rest of the co-
repressor complex, to the CBF binding element for COR gene
repression. Thus, similarly to TBL1X and TBL1XR1, HOS15 could
function as an exchange factor or a platform protein, as HOS15
appeared to stay very strongly associated to CBF-binding elements
in the COR gene promoters even after HD2C was mostly removed

A

B

C D

E F

Fig. 6. Cold-induced binding of CBF proteins to
COR15A promoter is affected by HOS15 and HD2C.
(A) HOS15 interacts with CBF proteins using yeast split
Ub assay. Yeast cells cotransformed with Nub (Vector)
or Cub-HOS15 and CBF1-Nub-RUra3P, CBF2-Nub-
RUra3P, or CBF3-Nub-RUra3P were spotted on selec-
tive media (–HTU and -HTU+5-FOA). Pictures were
taken after 4-d incubation at 30 °C. (B) HOS15 makes a
complex with CBF proteins upon cold treatment. Total
protein extracts from wild-type exposed to cold (0 °C)
for 24 h were subjected to gel-filtration, using a
Superdex 200 10/300 column. Each eluate [0.5 mL
50 mM Tris·Cl (pH7.5) and 100 mM NaCl] was TCA-
precipitated, and analyzed by immunoblots with
anti-CBFs and anti-HOS15 antibodies. (C and D) Cold-
induced binding of CBF proteins to cold-responsive
gene COR15A promoter regions, II (C), and IV (D) is
reduced and enhanced in hos15-2 and hd2c-1, re-
spectively. Chromatin from wild-type, hos15-2, and
hd2c-1 plants treated with cold (0 °C) for 24 h were
immunoprecipitated with anti-CBF antibody (***P <
0.001). Similar results were obtained from three in-
dependent experiments. (E and F) Binding of HOS15
and HD2C proteins to cold-responsive gene COR15A
promoter regions, II, and IV is reduced and in cbf1/2/3
mutant, respectively. Chromatin from wild-type and
cbf1/2/3 mutant plants treated with cold (0 °C) for 24 h
were immunoprecipitated with anti-HOS15 (E) or anti-
HD2C (F) antibodies. Similar results were obtained from
three independent experiments.
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(Fig. 5). We suggest that CBFs, expressed at basal levels, recruit
HOS15 to target COR genes and that upon cold signaling HOS15
tags HD2C for degradation, thereby initiating the transition of
chromatin to an open state that, in turn, facilitates the accessibility
of newly synthesized CBFs. The factors controlling how chromatin
remodeling enzymes are targeted to specific loci is an area of in-
tense research (59), and the extension of our model to other gene
regulons could explain in mechanistic terms how specific chromatin
sites are chosen to be remodeled for transcriptional regulation.
Identification of HOS15-interacting transcription factors and other
components of the HOS15-containing corepressor and coactivator
complexes will help to substantiate our propositions.
TBL1 acts as a bridge between the corepressor and coactivator

proteins by dismissal and subsequent degradation of the corepres-
sors N-CoR/SMRT, and for the subsequent recruitment of the
coactivator complexes. Our results suggest a possible role of
HOS15 as a corepressor/coactivator exchange factor in plants (Fig.
5). Signal-dependent modulation of gene transcription is a key step
in stress gene regulation. When overexpressed (i.e., deregulation of
the stress-induced gene expression), many stress-responsive genes
cause increased stress tolerance at the expense of retarded growth
(60, 61). Thus, a proper on–off regulation of the stress gene tran-
scription is necessarily required for the right balance between
growth and stress tolerance (47). Our data indicate that, when the
cold signal comes, HOS15 interacts with CUL4 and promotes
degradation of HD2C in the nucleus. Thus, it appears that
HOS15 follows a different mechanism in the corepressor/coac-
tivator exchange process, omitting the dismissal of corepressors that
is achieved by TBL1 in animals. These results seem to be related to
the rapid recruitment of CBFs to COR gene chromatin, as the main
coactivator function of HOS15. When cold stress began, CBFs were
immediately induced and then bound to COR promoters, which
increased COR gene expression. In this case, the corepressor dis-
missal step may be omitted because HOS15 rapidly induces deg-
radation of HD2C and recruitment of CBFs to COR promoters.
The cold acclimation process allows hardy plants to mount the

mechanisms needed for the acquisition of freezing tolerance. CBF-
mediated expression of COR genes is a key regulatory step of cold
acclimation. A dynamic balance between histone acetylation and
deacetylation determines the expression of COR genes, and thus
the cold-response status of the plant. Under ambient temperature,
HDACs target nucleosomes surrounding transcription start sites
(TSSs) of CBF genes and other positive effectors, restricting their
expression. Concomitantly, negative effectors are targeted by HATs
as to promote their expression. This results in the inhibition of COR
gene expression under normal ambient temperature. On perception
of the low‐temperature signal, HATs and HDACs shift roles to
target nucleosomes of positive and negative effectors, respectively.
Moreover, HATs directly acetylate nucleosomes surrounding the
TSSs of COR genes. Additional evidence suggests that the HAT
GCN5 is capable of clearing nucleosomes at the TSSs of COR
genes. GCN5 is recruited by the CBF1 transcription factor through
the transcriptional adaptor ADA2 to enhance the expression of
target COR genes (62). The overall effect is an induction of COR
gene expression at low temperature, leading to increased freezing
tolerance. Our data showed that the hos15 mutant has significantly
decreased freezing tolerance after cold acclimation (Fig. 2). These
results suggest that although expression of CBFs was increased, the
absence of HOS15 could impair CBF recruitment to COR gene
promoters. Of note, the original hos15-1 mutant (C24 background)
was identified in a forward screen as showing higher expression of
the RD29A:LUC reporter gene in response to cold, salt, and ABA,
although the hos15-1mutant was only sensitive to cold (37). Thus, it
was concluded that higher expression of COR genes in hos15-1
could result from an increased stress signal arising from the
hypersensitivity to cold. Here we show that the hos15-2mutant in
Col-0 background had lower expression of COR15A, COR47,
and RD29A compared with wild-type. Discrepancies could result
from the different alleles used or the differential sensitivity of
Col-0 and C24 to the cold treatment.

Epigenetic regulation plays important roles in many aspects of
abiotic stress processes. Our study suggest that epigenetic regulation
in the cold stress responses is an essential part of the COR gene
expression that is key to cold tolerance. We report here the mo-
lecular mechanism of HOS15-mediated chromatin remodeling in
response to cold stress. In normal conditions, HOS15 interacts with
HD2C and these are associates to CTR/DRE elements in COR
gene promoter regions. The HOS15–HD2C complex deacetylates
COR chromatin to repress gene expression. Under cold stress,
HOS15 induces ubiquitination and degradation of HD2C, which
correlates with increased levels of acetylated histones on the chro-
matin of COR genes, resulting in the promotion of gene tran-
scription in association with the CBF proteins binding to the “open”
COR gene chromatin for cold tolerance (Fig. 7).

Materials and Methods
Plant Materials and Growth Conditions. hos15-2 (GK_785B10) and hd2c-1
(SALK_129799) are in the Colombia (Col-0) background. Mutant cul4-1 and
transgenic lines of 35S::FLAG-DDB1B and 35S::FLAG-CUL4 are kind gifts
from Xing Wang Deng at Peking University, Beijing (33, 63). Genotypes
were determined by genomic DNA PCR. All seeds were sterilized with
70% ethanol and 2% bleach (sodium hypochlorite solution, NaOCl) and
stratified at 4 °C for 2–3 d. Plants were grown under long-day conditions
(16 h light/8 h dark, 80–100 μM m−2s−1) at 23 °C.
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Fig. 7. Model for the HOS15-mediated chromatin remodeling in response
to cold stress. In the absence of cold stress, HOS15 forms a complex with
HD2C to repress COR gene expression by hypoacetylation of COR chromatin.
Under cold stress conditions, HOS15 recruits CUL4 to form a CRL4HOS15

complex, resulting in degradation of HD2C via the Ub–proteasome system.
Dissociation of HD2C by CRL4HOS15 results in the hyperacetylation of H3 on
COR chromatin and induces the association of CBF transcription factors to
the COR promoters via HOS15, thereby increasing CORs expression and cold
tolerance. The unknown factor (question mark) recruiting HOS15 to COR
genes under temperate conditions might also be CBFs expressed at basal
levels (see Discussion for details).
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Freezing Tolerance and Electrolyte Leakage Measurements. The freezing tol-
erance assay was performed as previously described (64), with some modi-
fications. Briefly, 3-wk-old seedlings on the soil treated with or without
cold acclimation at 4 ± 1 °C for 7 d were moved to the freezing chamber
(RUMED, P350) in which temperatures went down every 2 °C for 0.5 h
(nonacclimated condition) and maintained for 1 h, and it dropped up to
the indicated temperatures. Then plants were covered with ice in the dark
for 24 h at 4 ± 1 °C, and transferred under the light at 23 °C. The survival
rate was determined in 5 d. For electrolyte leakage measurement, a ro-
sette leaflet from 3-wk-old plants was incubated in 200 μL deionized H2O
in a refrigerated circulator (freezing bath, model AP28R, Poly Science),
which temperature was programmed to decrease from 0 °C to −10 °C with
1 °C decrements every 30 min. The sample was then transferred to another
tube containing 25-mL deionized H2O and shaken overnight, and the
conductivity of the solution was measured using a 4-Electrode Cell
(013005MD; Thermo Scientific Orion). The tubes with the leaflets were
then autoclaved, and after cooling to room temperature, conductivities of
the solutions were measured again. Percent electrolyte leakage was cal-
culated as the conductivity before autoclaving as a percentage of that
after autoclaving.

Yeast Two-Hybrid Interaction Assays. For yeast two-hybrid assays, the bait
(pAS2-HOS15, Trp selection) and the prey (pACT2-HD2C or pACT2-
DDB1B, Leu selection) fusion constructs were cotransformed into
Saccharomyces cerevisiae strain PJ69-4A using PEG and heat shock
(Clontech protocol). Growth of transformants was observed on syn-
thetic complete medium lacking Trp, Leu, His, and supplemented with
20 mM 3-AT (3-amino-2,3,5-triazole). Plates were photographed after
incubation at 30 °C for 5 d. Assays were each performed three times,
and each experiment included three biological replicates. For split-
ubiquitin yeast two-hybrid assays (65), HOS15, and CBF proteins were
cloned into a bait vector, pMet (pMet-GWY-Cub-URA3p-CYC1) and
a prey vector, pNuI (pCup-NuI-GWY–CYC1), respectively, and were
transformed into S. cerevisiae strain JD53 by PEG-mediated heat shock.
Interactions were tested by the cell growth on selective medium containing
1 mg/mL 5-FOA (5-Fluoroorotic acid monohydrate; Zymo Research) and de-
ficient uracil medium. Plates photos were taken after 3- to 5-d incubation
at 30 °C.

Split Luciferase Complementation Assays. HOS15 cDNA was cloned into
pCambia1300-cLUC, and HD2C was into pCambia1300-nLUC plasmids, re-
spectively (41). Agrabacterium tumefaciens strain GV 3101 carrying HOS15-
CLuc and HD2C-NLuc (final OD = 0.5 at 600 nm) was infiltrated into tobacco
leaves. After 3 d, the abaxial side of the leaves was sprayed with 1 mM lu-
ciferin and applied to an EM CCD camera (iXon; Andor Technology). Bio-
luminescence was detected for 5 min after 5-min quenching in the dark.

Immunoprecipitation for Interactions Between HOS15 and HD2C or CUL4
Complex Proteins. Fusions corresponding to HOS15-FLAG together with
HD2C-GFP or DDB1A-HA or DDB1B-HA were transiently expressed in
tobacco. Total protein extracts were incubated with protein A agarose
fused to anti-FLAG or anti-HOS15 at 4 °C for 1 h. Complexes were separated by
SDS/PAGE and the immunoblot was incubated with the appropriate primary
antibody [anti-GFP (1:5,000; Albcam); anti-HA (1:2,000; Roche); and anti-HOS15
(66) (1:200)] overnight at 4 °C. Antigen protein was detected by chem-
iluminescence using an ECL-detecting reagent (Thermo Scientific).

BiFC Assay. pDEST-GWVYNE-HOS15 and pDEST-GWVYCE-HD2C constructs
were transformed into Arabidopsis protoplasts using PEG transfection (67)
and YFP fluoroscence was detected in 12-h cold treatment (4 °C) under a
confocal laser scanning microscope (Olympus FV1000). Nuclei were stained
by DAPI (6-diamidino-2-phenylindole, 1 μg mL−1; Sigma). YFP filter set up:
excitation 514 nm and captured at 560–610 nm.

RNA Extraction and Expression Analysis. Total RNA from 14-d-old plants was
extracted using the RNeasy plant Mini kit (Qiagen) and reverse-transcribed
using SuperScriptII reverse transcriptase (Invitrogen). Quantitative RT-PCR
was performed using SYBR Green PCR Master Mix kit (Bio-Rad SYBR Green
Supermix) with the CFX96 or CFX384 real-time PCR detection system (Bio-
Rad). The relative expression levels were calculated using the comparative
cycle threshold method. The primers used for qRT-PCR are listed in SI Ap-
pendix, Table S2.

Nuclei Isolation and Western Blot Analysis. Nuclei were extracted from 14-d-
old seedlings by using Honda’s buffer (2.5% Ficoll 400, 5% dextran T-40,
0.4 M sucrose, 25 mM Tris·HCl, pH 7.4, 10 mM MgCl2, 10 mM mercaptoe-
thenol, 100 mg/mL of phenylmethylsulfonyl fluoride, 0.5 mg/mL of antipain,
and 0.5 mg/mL of leupeptin) (68). Nuclear proteins were separated by SDS/
PAGE. Immunoblots were performed using appropriate antibodies, and
antigen proteins were visualized by chemiluminescence using ECL-detecting
reagent (Thermo Scientific).

Ubiquitination Assays. For in vivo detection of ubiquitinated HD2C-GFP in
GFP-HD2C and GFP-HD2C/hos15-2 plants, 7-d-old seedlings pretreated
with 50 μM proteasome inhibitor MG132 were incubated at 4 °C for
12 h. Total protein extracts were incubated with p62 resins (69) and
were separated by SDS/PAGE. The immunoblots were carried out with
anti-Ub (1:1,000; Boston Biochem) and anti-GFP (1:1,000; Miltenyi
Biotec).

ChIP Assay. For ChIP assays, 0.5 g of 2-wk-old plants treated with cold
(0 °C) for 24 h were treated with 1% formaldehyde for 15 min under
vacuum. Glycine was added to a final concentration of 0.1 M, and in-
cubation was continued for an additional 5 min. Plants were then
washed with H2O and ground in liquid N2. Approximately 0.3 g of the
ground sample was resuspended in 1 mL nuclei lysis buffer [50 mM
Hepes (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1%
deoxycholate, 0.1% SDS, 1 mM PMSF, 10 mM Na butyrate, 1 μg/mL
aprotinin, 1 μg/mL pepstatin A]. DNA was sheared by sonication (Bio-
ruptor) to ∼500- to 1,000-bp fragments. After centrifugation (10 min at
16,000 × g), the supernatants were precleared with 60 μL salmon sperm
(SS) DNA/Protein A agarose for 60 min at 4 °C. After 2 min of centrifu-
gation at 16,000 × g, the supernatant was transferred to a siliconized tube,
and 10 μL of the appropriate antibody was added. Antibodies used were anti-
AcH3 (Millipore), antiacetylated H3K9/K14 (Upstate Biotechnology), anti-
HOS15 (66), anti-CBFs (70), and anti-HD2C (Agrisera). After incubation
overnight with rotation at 4 °C, 60 μL SS DNA/Protein A agarose was added
and incubation continued for 2 h. The agarose beads were then washed
with 1 mL of each of the following: two times lysis buffer, one time LNDET
buffer [0.25 M LiCl, 1% Nonidet P-40, 1% deoxycholate, 1 mM EDTA,
10 mM Tris (pH 8)], and three times TE buffer [10 mM Tris·HCl (pH 8), 1 mM
EDTA]. The immunocomplexes were eluted from the beads with 300 μL
elution buffer (1% SDS, 0.1 M NaHCO3). A total of 12 μL 5 M NaCl was then
added to each tube, and cross-links were reversed by incubation at 65 °C
for 6 h. Residual protein was degraded by the addition of 20 μg Protease K
[in 10 mM EDTA and 40 mM Tris (pH 8)] at 45 °C for 1 h, followed by
phenol/chloroform/isoamyl alcohol extraction and ethanol precipitation.
Precipitated DNA was dissolved in 50 μL TE and 2 μL was used for PCR.
Quantitative PCR was used to determine the amounts of genomic DNA
immunoprecipitated in the ChIP experiments.

Size-Exclusion Chromatography. Size-exclusion chromatography (SEC) was
performed by using an ÄKTA fast-performance liquid chromatography
(FPLC) system with prepacked Superdex 200 10/300 GL column (GE
Healthcare). The total proteins extracted from Arabidopsis wild-type or
Flag-CUL4 overexpressing plants with extraction buffer [100 mM
Tris·HCl (pH 7.5), 150 mM NaCl, 0.5% Nonidet P-40, 1 mM EDTA] and
protease inhibitors (1 mM PMSF, 5 μg/mL leupeptin, 5 μg/mL aprotinin,
5 μg/mL pepstatin, 5 μg/mL antipain, 5 μg/mL chymostatin, 2 mM Na2VO3,
2 mM NaF and 50 μM MG132) were loaded onto columns and eluted
with elution buffer [50 mM Tris·HCl (pH 8.0), 100 mM NaCl and 0.02%
sodium azide] in a flow-rate of 0.5 mL/min at room temperature. The
eluted proteins were monitored at OD280. After SEC, each protein frac-
tions (500 μL) was precipitated by mixing with 12.5% trichloroacetic acid
(TCA). Precipitated protein pellets were dissolved in urea/SDS buffer and
separated in 6% SDS-gel.
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