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Abstract — Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious acute
vesicular disease affecting cloven-hoofed animals, including cattle, sheep and pigs. The current vaccine
induces a rapid humoral response, but the duration of the protective antibody response is variable, possibly
associated with a variable specific CD4" T cell response. We investigated the use of heat shock protein 70
(Hsp70) as a molecular chaperone to target viral antigen to the Major Histocompatibility Complex (MHC)
class II pathway of antigen presenting cells and generate enhanced MHC Il-restricted CD4" T cell responses
in cattle. Monocytes and CD4" T cells from FMDV vaccinated cattle were stimulated in vitro with
complexes of Hsp70 and FMDV peptide, or peptide alone. Hsp70 was found to consistently improve the
presentation of a 25-mer FMDV peptide to CD4" T cells, as measured by T cell proliferation. Complex
formation was required for the enhanced effects and Hsp70 alone did not stimulate proliferation. This study
provides further evidence that Hsp70:peptide complexes can enhance antigen-specific CD4" T cell
responses in vitro for an important pathogen of livestock.

heat shock protein / MHC 11 / vaccine / cattle immunology / foot-and-mouth disease

1. INTRODUCTION

Foot-and-mouth disease virus (FMDV)
causes a highly contagious, clinically acute
vesicular disease, affecting cloven-hoofed ani-
mals, including the economically important cat-
tle, sheep and pigs. Infection of susceptible
animals with FMDV results in a rapid neutralis-
ing antibody response that becomes detectable
as early as 3-4 days post-infection. Isotype
switching typically occurs between 4 and 7
days, and results predominantly in production
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of IgGl1, but with detectable levels of IgG2.
The onset of the IgG1 response coincides with
clinical resolution and viral clearance, with
serum levels of IgG peaking at approximately
14-28 days [2, 30]. The early antibody response
has recently been demonstrated to be T-indepen-
dent. Selective depletion of CD4" T cells from
cattle during the acute phase of infection had
no effect on the magnitude or duration of
clinical signs or clearance of virus from the
circulation [21]. The CD4" T cell depleted ani-
mals generated a similar neutralising antibody
response to the control animals and rapid class
switching to IgG antibody still occurred.
Following infection with FMDYV, protective
immune responses in cattle can be maintained
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for several years. Memory CD4" T cell responses
are usually weak and not easily detectable and
therefore are unlikely to significantly contribute
to the observed memory response. Instead, viral
persistence is thought to form a major contribu-
tion to the extended duration of immunity after
natural infection [20]. Currently the most effec-
tive vaccine against FMDYV is a chemically-inac-
tivated whole virus preparation with adjuvant.
This vaccine, like natural infection, induces a
rapid neutralising antibody response, but it
remains to be determined whether this is also
T-independent [10]. The vaccine is usually suffi-
cient to protect against clinical disease, but not
infection. Although vaccinated cattle may only
become sub-clinically infected, they are just as
likely to become carriers following virus expo-
sure as non-vaccinated animals, which is a major
concern for international trade [1]. Vaccine-
induced immunity is short-lived and repeat vac-
cinations maybe required every 6 months.

While the T cell response is not known to
directly affect the outcome of infection, more
effective CD4" T cell responses might support
the induction of sterile immunity and extend
the duration of the protective immune response.
In support of this hypothesis, high levels of
interferon-gamma (IFN-y) detected in vacci-
nated cattle in in vitro restimulation assays prior
to challenge with FMDV correlated with the
animals’ ability to control viral replication, sug-
gesting that cell-mediated immunity, as well as
humoral immunity, is important for vaccine-
induced immunity [27].

Targeting antigen to the MHC class II path-
way of antigen presenting cells, particularly
dendritic cells, may improve CD4" T cell acti-
vation. Various methods are currently being
studied to improve antigen delivery, including
the use of heat shock proteins as antigen chap-
erones. The ability of heat shock protein 70
(Hsp70) to enhance cross-presentation of anti-
gen to CDS8" T cells via the MHC class I path-
way has been demonstrated for a number of
viral antigens [6-8, 23, 25, 28, 31, 33, 34]
and clinical trials in phases I-III are on-going
[5, 22, 32].

However, the ability of Hsp70 to enhance
presentation of antigen to CD4" T cells via
the MHC class II pathway is less well estab-
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lished. The possible role of Hsp70 related chap-
erones in peptide transport and loading onto
MHC 1I was first noted by DeNagel and Pierce
[9] who hypothesised that chaperones may
improve the efficiency of loading. The over
expression of Hsc73, a constitutively expressed
member of the Hsp70 family, was also shown
to enhance the processing and presentation of
exogenous antigen in macrophages by binding
the antigen following its internalisation, and
transporting it to MHC II molecules [26]. This
is supported by in vitro quantitative binding
assays, which demonstrated that Hsp70 can
interact directly with peptides destined for
MHC II loading, as well as whole proteins [17].

A series of studies conducted in mice or with
human T cell clones showed that the presenta-
tion of MHC Il-restricted epitopes could be
improved by the exogenous delivery of peptides
chaperoned by heat shock proteins Hsp70 and
Gp96 [11, 31, 35, 37]. In addition, enhanced
antigen-specific proliferation of CD4" T cells
from immunised human donors, to peptides rep-
resenting MHC Il-restricted epitopes from teta-
nus toxoid and influenza haemagglutinin, was
also observed using exogenously added human
Hsp70 complexes [16]. This effect was most
pronounced at low doses of antigen and decreas-
ing APC:T cell ratios, particularly relevant in the
context of vaccination.

Here we describe the capacity of bovine
Hsp70 to enhance recognition of FMDV pep-
tide by bovine memory CD4" T cells in vitro
and show this enhanced recognition is depen-
dent on internal processing of the antigen com-
plex. This study provides further evidence of
the potential use of Hsp70 as an antigen deliv-
ery vehicle for FMDV vaccines.

2. MATERIALS AND METHODS
2.1. Recombinant Hsp70 purification

The expression vector pQE9 carrying the
bovine cardiac Hsp70 gene (GenBank accession
number AY662497) with an N-terminal histidine
tag was kindly provided by Dr Lakshmikuttyamma
(University of Saskatchewan, Canada). Protein was
expressed in Escherichia coli M15 (pREP4) cells
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and purified using His-Select Nickel Affinity
Gel (Sigma, Poole, UK) as described in
Lakshmikuttyamma et al. [24]. Buffer was
exchanged by dialysis against PBS in Slide-A-Lyser
3.5kDA MWCO dialysis cassettes and protein was
concentrated using Centricon YM-50 spin columns
(Millipore, Livingston, UK). Endotoxin was depleted
using Detoxigel endotoxin removing gel (Pierce,
Dorchester, UK). Quantitation of endotoxin content
was performed using the Limulus amoebocyte lysate
assay (QCL-1000, Cambrex Bioscience, St. Albans,
UK). The resulting endotoxin content was below
21 EU/mg of purified Hsp70 protein.

Protein was quantified using a BCA reagent
(Pierce) against a standard of bovine serum albumin.
Purity was determined by SDS-PAGE and silver
staining using the SilverSNAP Stain Kit II (Pierce).
For Western blotting, protein was transferred to
Hybond-C nitrocellulose membrane and probed with
an anti-human Hsp70 monoclonal antibody stated
by the manufacturer to cross-react with bovine
Hsp70 (SPA-810, Stressgen, Cambridge Bioscience,
Cambridge, UK).

2.2. Peptides

The FMDV 25-mer peptide BC2 LVGALLRTA-
TYYFADLEVAVKHEGN was synthesised in-house
using standard fluorenylmethoxycarbonyl chemistry
and corresponds to amino acid residues 61-85 on
the structural protein 1D (VP1) of FMDV serotype
O/UKG/35/2001. BC2 is an extended peptide of
the 15-mer p252 which was demonstrated, in a screen
of over 400 pentadecapeptides, to contain an epitope
recognised by CD4" T cells from cattle expressing
the class II allele DRB3*0701 which is linked to
the MHC I haplotype A31 [13]. The MHC class II
restriction of p252 has been demonstrated [14], but
the DRB3*0701 molecule has not been functionally
demonstrated to present the epitope. In some control
experiments, an irrelevant peptide from the Core pro-
tein of classical swine fever virus (CSFV) was used.
This peptide corresponds to amino acid residues
81-95 (KLEKALLAWAVIAIV).

2.3. Hsp70 peptide complex formation

To demonstrate Hsp70:BC2 complex formation, a
competitive binding assay was performed as previ-
ously described [28]. Briefly, BC2 was first biotinyl-
ated using the EZ-Link Biotinylation kit (Pierce).
Hsp70 (2 uM) was incubated with the biotinylated
peptide (60 M), with or without an excess of unla-
belled peptide, in PBS in a volume of 55 pL for
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1 hat 37 °C. Samples containing approximately
1 ug of Hsp70 were resolved on a non-reducing
10% SDS-PAGE gel. To minimise complex dissoci-
ation during preparation, the loading buffer contained
0.1% SDS and no reducing agent, and the samples
were not boiled prior to loading. The proteins were
then transferred to Hybond-C nitrocellulose mem-
brane and probed with HRP-conjugated streptavidin
(Southern Biotechnology, Cambridge Bioscience).
The control CSFV peptide was also biotinylated
and incubated with Hsp70 to form a complex; Con-
trol CSFV peptide/Hsp70 complex formation was
verified by Western blot analysis as above.

For the proliferation experiments, Hsp70 (3 pg)
and peptide (15 ng) were incubated for at least 1 h at
37 °Cin 30 pL PBS. Before adding to cells, the com-
plex was diluted in medium and 100 pL was added per
well to give the indicated final concentration, giving a
peptide-to-Hsp70 ratio of approximately 1:10. Hsp70
or peptide only controls were treated identically.

2.4. Cattle

Calves (Bos taurus) were British Holstein Friesians
conventionally reared at the Institute for Animal
Health (IAH, Compton, UK). The animals used in this
study were from a partially inbred herd in which MHC
class I haplotypes had been characterised at the level of
expressed genes [12]. The class II genes of these cattle
have not been fully characterised, so for the purposes
of this study, animals which were previously found
to respond to p252 by proliferation assay were consid-
ered responders to the extended BC2 peptide. Some of
the cattle had previously been vaccinated twice with a
single bovine dose of commercially available FMDV
serotype O inactivated vaccine (Merial, Pirbright,
UK). All experiments were approved by the Institute’s
ethical review process and were in accord with national
guidelines on animal use.

2.5. Culture media

Culture medium comprised RPMI 1640 supple-
mented with 10% heat-inactivated foetal calf serum
(Autogen, Calne, UK), 1 mM sodium pyruvate,
0.1 mM non-essential amino acids, 10 pg/mL genta-
mycin and 50 mM 2-mercaptoethanol, subsequently
termed complete medium.

2.6. Cells

Monocytes were isolated from bovine peripheral
blood mononuclear cells (PBMC) using anti-human
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CD14 paramagnetic microbeads (Miltenyi-Biotec,
Woking, UK). Labelled cells were isolated from a
Midimacs LS column (Miltenyi-Biotec) according
to the manufacturer’s instructions.

CD4" T cells were isolated from PBMC using
mouse anti-bovine CD4" antibody (clone CC30,
IAH Compton) [18] followed by rat anti-mouse
IgG1 microbeads (Miltenyi-Biotec) as above. Typi-
cally, purity following selection of CD4" was over
95% as determined by flow cytometry.

2.7. CD4" T cell proliferation assay

Proliferation experiments were performed as pre-
viously described £15]. Briefly, triplicate wells of
monocytes (5 X 10°/well) were incubated with anti-
gens as indicated and CD4" T cells (2 x 10°Awell)
in a total volume of 200 pL of complete medium
in u-bottomed 96 well microtitre plates. Medium
alone and Pokeweed mitogen (PWM) stimulated
cells (2 pg/mL) were used as negative and positive
controls, respectively. A sample of the antigen used
for vaccination (diluted 1/1000 in complete medium)
was used for assays with cells from vaccinated ani-
mals. After 5 days, cells were pulsed with 37 kBq
[3H] thymidine, per well, diluted in complete med-
ium and incubated for a further 16 h before harvest-
ing onto filter mats. The radioactive thymidine
incorporated into the DNA of proliferating cells
was determined by liquid scintillation counting using
a Trilux Microbeta counter (Wallac, Beaconsfield,
UK) and expressed as counts per minute (cpm). For
monocyte fixation experiments, monocytes were
fixed in 0.5% paraformaldehyde for 30 min at 4 °C
and then washed, added to antigens and CD4" Tcells
and assayed as above.

2.8. Interferon-gamma ELISA

Cultures were set up as for proliferation assays, but
after 72 h the supernatants were harvested and
assayed for IFN-y by capture ELISA. Nunc Maxisorp
ELISA plates were coated with anti-IFN-y antibody
(clone cc330, Serotec) diluted in 0.1 M sodium bicar-
bonate buffer (2 pg/mL) overnight at room tempera-
ture. The wells were washed with PBS/0.05%
Tween 20 and blocked for 1 h with blocking buffer
(1 mg/mL sodium casein in PBS) and washed again.
Samples, including an IFN-y standard titration and a
negative control of blocking buffer only (50 uL per
well), were added to the wells and incubated for 1 h at
room temperature. The wells were washed, incubated
with biotinylated anti-IFN-y antibody (clone cc302,
Serotec (diluted in blocking buffer (2 pg/mL))) for
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1 h at room temperature and then washed again. An
HRP-conjugated streptavidin antibody diluted 1/500
in blocking buffer was added for 45 min at room tem-
perature before development with o-Phenylenedi-
amine dihydrochloride (OPD; Sigma) according to
manufacturer’s instructions. The reaction was stopped
with 25 pL/well of 2 M sulphuric acid and the absor-
bance read at 450 nm. IFN-y concentration was deter-
mined against a standard of recombinant bovine
IFN-y in the range of 10-0.0137 ng/mL.

2.9. Data analysis

Statistical analyses were performed using the sta-
tistical software GraphPad Prism version 4. For pro-
liferation assays, the responses from medium, BC2,
Hsp70:BC2, Hsp70 + BC2 and Hsp70 stimulated
cells were analysed by one-way ANOVA followed
by Tukey’s post-test comparison to detect differences
between Hsp70:peptide complexes versus peptide
alone. p values < 0.05 were considered statistically
significant.

3. RESULTS

3.1. Purification and characterisation
of recombinant bovine Hsp70

The identity and purity of the preparation was
confirmed by silver staining and Western blot.
Apart from a single clear band at approximately
70 kDa, no additional bands were observed on a
silver stained gel after 1 pg of Hsp70 was
resolved. The gel was exposed until a band of
the expected size stained with high intensity
(Fig. 1A). A single protein of the predicted size
was also recognised by Western blot analysis
using a monoclonal antibody raised against
human Hsp70 (Fig. 1B).

3.2. Hsp70 binds FMDV peptide BC2

The capacity of recombinant bovine Hsp70
to bind the FMDV 25-mer peptide BC2 was
tested. The peptide was first biotinylated and
then complexes were formed by co-incubating
with Hsp70 for 1 h at 37 °C. Complex forma-
tion was then confirmed by non-reducing
SDS-PAGE followed by Western blot analy-
sis using streptavidin-HRP to detect biotin.
No signal was detected at ~ 70 kDa in the
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Figure 1. Purification of recombinant bovine
Hsp70 and formation of Hsp70:peptide complexes.
(A) Purified Hsp70 (1 pg) was resolved by SDS-
PAGE on a 10% gel and detected by silver staining.
Left hand lane indicates molecular weight markers.
(B) Purified Hsp70 (250 ng) was analysed by
Western blot using an anti-Hsp70 monoclonal
antibody (SPA-810, Stressgen). (C) 2 pM Hsp70
was incubated with 60 uM biotinylated peptide and
increasing amounts of unlabelled peptide in 55 pL
PBS at 37 °C for 1 h to form complexes. Fractions
containing an equivalent of 1 pg Hsp70 were
resolved by non-reducing SDS-PAGE on a 10%
gel, followed by Western blot analysis using
streptavidin-HRP to detect biotinylated peptide.
Controls of Hsp70 and biotinylated peptide only
were run in lanes 1 and 2 respectively. Lanes 4-—8
additionally contain unlabelled peptide at 6 puM,
60 uM, 150 puM, 300 uM and 600 pM (0.1x, 1x,
2.5%, 5x and 10x molar concentration of labelled
peptide). (A color version of this figure is available
at www.vetres.org.)

control lanes containing either Hsp70 or biotin-
ylated-BC2 alone; however a clear signal was
observed when both components were pre-incu-
bated prior to gel loading. As increasing
amounts of unlabelled peptide were added to
the mix to compete out the labelled peptide,
the anti-biotin signal decreased accordingly.
Equal quantities of Hsp70 were loaded in each
well (Fig. 1C). For subsequent experiments,
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complexes were formed with 3 pg Hsp70 and
15 ng peptide. A clear signal was also detected
at ~ 70 kDa when Hsp70 was incubated with
biotinylated CSFV peptide, but not in the con-
trol lanes containing Hsp70 or biotinylated pep-
tide alone (data not shown).

3.3. Enhanced proliferation of memory
CD4" T cells to Hsp70 complexed BC2

Three cattle vaccinated against FMDV
(FMD10, FMD17 and FMD18) were available
with a MHC haplotype recognising the epitope
contained within p252. When monocytes and
autologous CD4™ T cells isolated from the three
cattle were stimulated with a sample of the anti-
gen used for FMDYV vaccination, similar prolif-
eration responses were observed. To determine
an appropriate concentration of BC2 peptide
to use in the complexes, a titration of the pep-
tide was performed (Fig. 2A). 5 ng/mL was
found to be a suboptimal concentration and
was therefore used in subsequent experiments
with Hsp70 complexes formed at a peptide-to-
Hsp70 ratio of approximately 1:10 as previ-
ously determined to be optimal [16]. Prelimin-
ary experiments indicated that an excess
molar concentration of Hsp70 in the complex
did not increase the proliferative response.

Equal concentrations of BC2 peptide or
BC2:Hsp70 complex, pre-formed in a 30 pL
volume, were tested for their ability to stimulate
the same cells. In comparison to treatment with
BC2 in the absence of Hsp70, BC2:Hsp70
complex resulted in significantly higher prolif-
eration (p < 0.001; one-way ANOVA followed
by post-hoc Tukey) for all three animals
(Figs. 2B-D). However, variation in the magni-
tude of the enhancement was observed between
animals. Using cells from FMD17 the enhance-
ment was approximately 60-fold (Fig. 2C),
compared to approximately 30-fold for
FMDI10 (Fig. 2B) and threefold for FMD18
(Fig. 2D). These results were consistent across
three separate experiments for each animal.
When monocytes were fixed before the addition
of antigens, in order to prevent internal process-
ing, the T cell response to the Hsp70:BC2 com-
plex was significantly diminished (p < 0.001;
two-way ANOVA followed by post-hoc
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Figure 2. CD4" T cell proliferation induced by monocytes to BC2 and Hsp70:BC2 complexes.
(A) Monocytes isolated from cattle vaccinated against FMDV were co-incubated with autologous CD4" T
cells and FMDYV 25-mer peptide BC2 at 0.5, 5 and 50 ng/mL. After 5 days, wells were pulsed with 37 kBq
[3H] thymidine and incubated for a further 16 h before harvesting. Incorporated radioactivity was
determined by liquid scintillation counting and expressed as counts per minute (cpm). Data are presented as
the cpm x 10%/min mean + S.D. of triplicate cultures. (B—D) Monocytes isolated from cattle vaccinated
against FMDV were co-incubated with autologous CD4" T cells and either FMDV 25-mer peptide BC2
(5 ng/mL), Hsp70 (1 pg/mL) or BC2 and Hsp70, at the same final concentrations, but pre-incubated to form
a complex. Responses to Pokeweed mitogen (PWM) and vaccine antigen are also indicated. Proliferation
was assessed as above. One representative data set of three is shown for each of the three animals.
Significant differences in proliferation between BC2 and Hsp70:BC2 stimulated cells are indicated
(*** p < 0.001). (E) Monocytes were fixed with 0.5% paraformaldehyde before incubation with antigens
and T cells. Significant differences in proliferation between Hsp70:BC2 stimulated cells using fixed or
unfixed monocytes are indicated (*** p < 0.001). (F) 72 h after stimulation, supernatants from proliferation

assays were assayed for IFN-y production by capture ELISA. Data are presented as ng/mL mean + S.D. of
triplicate wells.
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Bonferroni). Across five separate experiments,
the T cell response had a mean reduction of
83%. Results from one experiment are shown
in Figure 2E. Cultures were set up alongside
the proliferation assays to assess the production
of IFN-y from CD4" T cells induced by mono-
cytes which had been stimulated with Hsp70
complexes. After 72 h, the concentration of
IFN-y in 200 pL of the culture supernatant
was measured by capture ELISA and was
found to correlate closely with CD4" T cell pro-
liferation. Results from one of three replicate
experiments are shown in Figure 2F.

With only three cattle of an appropriate hap-
lotype vaccinated against FMDYV, the data set
was expanded by using monocytes from four
unvaccinated A31 homozygous cattle with
CD4" T cells from FMDI17 (A31 heterozy-
gous). Again, significant enhancement of prolif-
eration (p < 0.001; two sample rtest) was
induced by the Hsp70:BC2 complex in all
experiments, varying between 10- and 25-fold
above that observed for BC2 in the absence
of Hsp70 (Fig. 3).

To determine whether the enhancement of
proliferation was antigen-specific or due to
non-specific activation of the T cells, a series
of controls were performed. The first set used
a CSFV peptide, not recognised by the cattle,
complexed to Hsp70. Counts of 1 000 or less
were observed with both the Hsp70:CSFV pep-
tide complex and Hsp70 in the absence of any
peptide (Fig. 4A). This result was consistent
across four separate experiments using cells
from different animals. The second control uti-
lised an animal with a different MHC haplotype
(A18/A19) that did not recognise the epitope
contained within BC2. The BC2 non-respond-
ing animal showed a very similar response to
whole vaccine antigen, but no proliferation
(cpm < 1 500) was induced by the Hsp70:BC2
complex (Fig. 4B).

The requirement for complex formation
between Hsp70 and BC2 was examined by per-
forming proliferation assays as before, but with-
out pre-incubation of the Hsp70 and BC2.
Significantly more proliferation (p < 0.001;
two sample ftest) was induced by the
Hsp70:BC2 complex than by both components
added together without pre-incubation (Fig. 4C).

Vet. Res. (2010) 41:36

4. DISCUSSION

Presentation of antigen by the MHC 1I path-
way to CD4 " T cells is one of the central require-
ments of an adaptive immune response.
Improving delivery of antigen to antigen present-
ing cells is therefore an aim of many vaccine
strategies. Enhanced presentation of peptides
chaperoned by heat shock proteins has been dem-
onstrated in the murine and human system [11,
16,31,35,37]. Our study confirms these findings
in cattle cells using FMDYV peptide antigen.

An essential aspect of heat shock protein
function is to form complexes with peptides.
Bovine recombinant Hsp70 was found to form
complexes with biotinylated FMDV peptide
BC2. The binding was determined to be spe-
cific and saturable by competition assay. The
actual molar ratio of Hsp70 binding to peptide
in the complexes was not determined in this
study, but could be tested by quantitative mass
spectrometry. For proliferation experiments,
Hsp70:peptide complexes were formed with a
molar ratio of approximately 1:10, previously
demonstrated to be optimal [16].

Proliferation assays were used to evaluate
the ability of Hsp70 to enhance the amount of
antigen presented via the MHC II pathway.
Peptide BC2 had previously been determined
to contain an epitope that is recognised by cattle
of the DRB3*0701 haplotype and stimulates a
CD4" T cell recall response [13]. Bovine
MoDC were originally considered for use as
antigen presenting cells, however preliminary
experiments indicated that differentiated MoDC
compared to directly isolated monocytes did not
endocytose Hsp70 efficiently. Macropinocyto-
sis has been demonstrated to be a major mech-
anism for Hsp70 uptake by human MoDC [3].
However bovine MoDC, unlike human or
mouse, do not constitutively macropinocytose'
[38] accounting for the inefficient uptake of
Hsp70 by bovine cells. This defect in bovine
MoDC model system is not thought to be rep-
resentative of bovine dendritic cells in vivo,
since DC isolated directly from afferent lymph
take up Lucifer Yellow, a marker for macropin-
ocytosis [19]. By wusing directly isolated

! Unpublished data.
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Figure 3. CD4" T cell proliferation induced by MHC-matched monocytes to Hsp70 complexes.
(A-D) Monocytes isolated from naive A31 homozygous cattle were co-incubated with CD4" T cells
from FMD17 (A31/A14) and either FMDV 25-mer peptide “BC2” (5 ng/mL), Hsp70 (1 pg/mL) or BC2
and Hsp70, at the same final concentrations, pre-incubated to form a complex. Responses to Pokeweed
mitogen (PWM) are also indicated. After 5 days, wells were pulsed with 37 kBq [3H] thymidine and
incubated for a further 16 h before harvesting. Incorporated radioactivity was determined by liquid
scintillation counting and expressed as counts per minute (cpm). Data are presented as the cpm x 10*/min
mean + S.D. of triplicate cultures. One representative data set of three is shown for each of the four animals.
Significant differences in proliferation between BC2 and Hsp70:BC2 stimulated cells are indicated

(*** p < 0.001).

monocytes, the problems of variability and loss
of function associated with cultured cells can be
eliminated. Recent evidence suggests that
monocytes are relevant antigen presenting cells
in vivo with the ability to endocytose antigen in
the periphery and ferry it to the lymph nodes
where presentation to T cells can take place
[29]. Consequently, bovine monocytes were
used as APC in subsequent experiments.

To determine whether Hsp70 facilitated anti-
gen presentation via MHC II molecules, CD4" T
cells from immunised cattle, of the appropriate
haplotype to recognise the epitope contained
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within BC2, were stimulated in vitro with either
BC2 chaperoned by Hsp70 or BC2 alone and
Hsp70 alone. Using monocytes as APC with
autologous CD4 " T cells, increased proliferation
to Hsp70:BC2 complexes compared to BC2 in
the absence of Hsp70 was consistently observed
for all of the three animals available, using a sub-
optimal concentration of peptide. The same
result was observed using monocytes from an
additional four naive animals and MHC half-
matched CD4" T cells from a vaccinated animal.
Variation in the enhancement of proliferation
was observed between animals. Although
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Figure 4. Enhancement of CD4" T cell proliferation by Hsp70 complexes is antigen-specific and requires
complex formation. (A) Monocytes isolated from FMD17 were co-incubated with autologous CD4" T cells
and either Hsp70 (1 pg/mL) alone, or Hsp70 complexed to FMDV 25-mer peptide BC2 (5 ng/mL) or a
classical swine fever virus (CSFV) peptide (5 ng/mL). After 5 days, wells were pulsed with 37 kBq [3H]
thymidine and incubated for a further 16 h before harvesting. Incorporated radioactivity was determined by
liquid scintillation counting and expressed as counts per minute (cpm). Data are presented as the cpm x 10%/
min mean + S.D. of triplicate cultures. (B) Monocytes isolated from FMD7 (A18/A19) which had
previously been vaccinated against FMDYV, but did not recognise the BC2 peptide, were co-incubated with
autologous CD4" T cells and antigens as indicated. Proliferation was assessed as above. (C) Monocytes
isolated from FMD17 were co-incubated with autologous CD4" T cells and either FMDV 25-mer peptide
BC2 (5 ng/mL), Hsp70 (1 pg/mL) or BC2 and Hsp70, at the same final concentrations, but either pre-
incubated to form a complex or added together without pre-incubation. Significant differences in
proliferation between Hsp70:BC2 complex and Hsp70 + BC2 stimulated cells are indicated
(*** p < 0.001). Proliferation was assessed as above.

differences in the frequency or responsiveness of ~ with Hsp70 or variation in the capacity to present

antigen-specific CD4 " T cells may have contrib-
uted to this variation, further variation was
observed between experiments using monocytes
from four separate animals with CD4" T cells
from a single MHC half-matched animal indicat-
ing that there was a difference at the level of the
antigen presenting capacity as well. It is unclear
whether this is related to the relative ability of the
monocytes from different animals to interact

the epitope on their MHC I molecules to CD4" T
cells. The requirement for antigen processing
was demonstrated by comparing T cell responses
using either lightly fixed monocytes or non-fixed
monocytes as antigen presenting cells. The fixed
monocytes which were unable to endocytose or
process antigen did not effectively stimulate pro-
liferation of T cells. As a measure of the effector
status of the activated T cells, IFN-y production
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was measured in the supernatants of stimulated
cells by capture ELISA and was found to closely
correlate with proliferation.

The proportion of reactive T cells that were
specific for the epitope in BC2 was not defined
in this assay. The induction of self-HSP T cell
reactivity in the form of CD4" CD25" regula-
tory T cells and regulatory Th2-type cytokine
responses has been reported to control autoim-
mune responses [36], therefore a proportion of
the proliferating cells could be against the
HSP element rather than the chaperoned pep-
tide. However both Hsp70 alone and Hsp70
complexed with an irrelevant CSFV peptide
did not induce measurable T cell proliferation,
suggesting that anti-Hsp70 regulatory T cells
did not make a major contribution to the prolif-
eration observed. Similarly, if a microbial con-
taminant was responsible for non-specific T
cell proliferation, then responses would be
expected in the Hsp70 and Hsp70:CSFV con-
trols. The MHC restriction of the epitope
allowed a further control. An animal vaccinated
against FMDYV, but of a haplotype that did not
recognise the epitope within BC2 did not show
any enhancement of proliferation to Hsp70:
BC2, providing further evidence that the prolif-
eration observed was not against the HSP
element or a contaminant of the Hsp70:BC2
preparation. However, it is possible that that
not all the proliferating T cells were specific
to the chaperoned antigen. Non-specific prolif-
eration of bystander T cells may have occurred
as a result of cytokines released from proliferat-
ing antigen-specific T cells [16]. Peptide tetra-
mers were not available for more detailed
analysis of antigen specificity.

Regardless of the proportion of memory T
cells specific to the antigen, the consistent
enhancement of proliferation by chaperoned
peptide suggest that Hsp70 was influencing the
presentation of peptide. The mechanism by
which this may occur is currently unknown,
however the results of the monocyte fixation
experiments indicate that active processing by
antigen presenting cells is required for enhanc-
ing the T cell response. The amount of presented
antigen may be increased by improved uptake,
loading or protection from degradation by
Hsp70 [3]. A direct interaction between purified
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HLA-DR and mammalian Hsp70 has been dem-
onstrated which might be of particular impor-
tance in the enhanced activation of T cells
with Hsp70-chaperoned peptides by Hsp70
transferring bound peptide directly to MHC 11
molecules [17]. Alternatively, Hsp70 could alter
the turnover of MHC class Il:antigen com-
plexes, increasing the length of time the com-
plex is displayed on the cell surface and
allowing activation of T cells at a lower antigen
concentration, but this has not been proven [16].
Evidence has been provided that enhanced
cross-presentation of HSP chaperoned antigen
to CD8" T cells rests solely on the ability of
heat shock proteins to form complexes and
not on their capacity to non-specifically stimu-
late the immune system [3, 4]. The requirement
for complex formation of Hsp70 and BC2 was
tested in CD4" T cell proliferation assays with
BC2 alone, Hsp70 complexed to BC2 and
Hsp70 plus uncomplexed BC2. The enhance-
ment of proliferation was only observed when
Hsp70 and BC2 were pre-incubated to form
complexes, providing further evidence that the
enhancement observed was not due to non-spe-
cific stimulation of either the APC or T cells.
The relevance of these studies in vivo rests
on the ability of antigen presenting cells in situ
to take up the complexes. The data presented
suggests that the formation of these complexes
can increase presentation of antigen to CD4" T
cells under limiting conditions. The fold
enhancement required in vitro for a demonstra-
ble difference in immunogenicity in vivo
remains to be determined, but in the case of
FMDV where cellular responses to vaccine are
variable and may relate to antigen payload
[27], the amplification seen here could poten-
tially make a significant difference to an individ-
ual’s anti-FMDV T cell response. However for
this to be a useful vaccine concept, greater anti-
genic coverage would be required to overcome
the MHC restriction of a single peptide. Future
work should consider forming heat shock pro-
tein complexes with larger viral proteins and
extending the findings to an in vivo cattle study.
In conclusion, we have demonstrated that
bovine Hsp70 can improve the delivery of
FMDV antigen to the MHC II pathway of
bovine antigen presenting cells resulting in
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enhanced T cell stimulation. This study further
demonstrates the potential of heat shock pro-
teins as antigen delivery vehicles for vaccine
purposes. Further work is required to under-
stand how the HSP complexes are handled by
APC in vivo.
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