

Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta-Analysis

Pensée Wu, MBChB, MD(Res); Martha Gulati, MD, MS; Chun Shing Kwok, MBBS, MSc, BSc; Chun Wai Wong; Aditya Narain, MBChB; Shaughn O'Brien, MB BCh, MD, DSc; Carolyn A. Chew-Graham, MBChB, MD; Ganga Verma, MBChB; Umesh T. Kadam, MBChB, PhD; Mamas A. Mamas, BM BCh, DPhil

Background—Preterm delivery (<37 weeks gestational age) affects 11% of all pregnancies, but data are conflicting whether preterm birth is associated with long-term adverse maternal cardiovascular outcomes. We aimed to systematically evaluate and summarize the evidence on the relationship between preterm birth and future maternal risk of cardiovascular diseases.

Methods and Results—A systematic search of MEDLINE and EMBASE was performed to identify relevant studies that evaluated the association between preterm birth and future maternal risk of composite cardiovascular disease, coronary heart disease, stroke, and death caused by cardiovascular or coronary heart disease and stroke. We quantified the associations using random effects meta-analysis. Twenty-one studies with over 5.8 million women, including over 338 000 women with previous preterm deliveries, were identified. Meta-analysis of studies that adjusted for potential confounders showed that preterm birth was associated with an increased risk of maternal future cardiovascular disease (risk ratio [RR] 1.43, 95% confidence interval [CI], 1.18, 1.72), cardiovascular disease death (RR 1.78, 95% CI, 1.42, 2.21), coronary heart disease (RR 1.49, 95% CI, 1.38, 1.60), coronary heart disease death (RR 2.10, 95% CI, 1.87, 2.36), and stroke (RR 1.65, 95% CI, 1.51, 1.79). Sensitivity analysis showed that the highest risks occurred when the preterm deliveries occurred before 32 weeks gestation or were medically indicated.

Conclusions—Preterm delivery is associated with an increase in future maternal adverse cardiovascular outcomes, including a 2-fold increase in deaths caused by coronary heart disease. These findings support the assessment of preterm delivery in cardiovascular risk assessment in women. (*J Am Heart Assoc.* 2018;7:e007809. DOI: 10.1161/JAHA.117.007809.)

Key Words: cardiovascular disease risk factors • coronary heart disease risk • long-term outcome • pregnancy and postpartum • stroke

G lobally, preterm birth affects 11% of all pregnancies, with an estimated 14.9 million babies born before 37 weeks gestational age each year.¹ In addition to being the leading cause of neonatal mortality,² there is increasing evidence to show that preterm delivery is an adverse pregnancy outcome associated with an increased risk of future maternal cardiovascular health.³⁻⁵ Cardiovascular disease is the leading cause of mortality worldwide,⁶ most of which is preventable by altering behavioral risk profiles and lifestyle modifications, but there may be sex-specific cardio-vascular risk factors that need to be recognized in women.⁷

Pregnancy is characterized by a challenge to the cardiovascular system with a doubling of blood volume, elevated coagulation and inflammatory factors, hyperlipidemia, and insulin resistance.^{8,9} This physiological stress for most women is uncomplicated but for women who experience preterm birth,

Received October 12, 2017; accepted November 13, 2017.

From the Keele Cardiovascular Research Group, Institute for Applied Clinical Sciences and Centre for Prognosis Research, Institute of Primary Care and Health Sciences, University of Keele, Stoke-on-Trent, United Kingdom (P.W., C.S.K., C.W.W., A.N., M.A.M.); Academic Unit of Obstetrics and Gynaecology (P.W., S.O'., G.V.) and The Heart Centre, University Hospital of North Midlands, Stoke-on-Trent, United Kingdom (C.S.K., C.W.W., A.N., M.A.M.); Division of Cardiology, University of Arizona, Phoenix, AZ (M.G.); Institute for Applied Clinical Sciences, Keele University School of Medicine, Stoke-on-Trent, United Kingdom (S.O'.); Research Institute, Primary Care and Health Sciences (C.A.C.-G.) and NIHR Collaboration for Leadership in Applied Health Research and Care (CLAHRC) West Midlands, Keele University, Stoke-on-Trent, United Kingdom (C.A.C.-G.); College of Life Sciences, University of Leicester, United Kingdom (U.T.K.).

Accompanying Data S1, Tables S1 through S8, and Figure S1 are available at http://jaha.ahajournals.org/content/7/2/e007809/DC1/embed/inline-suppleme ntary-material-1.pdf

Correspondence to: Pensée Wu, MBChB, MD(Res), Maternity Centre, Royal Stoke University Hospital, University Hospital of North Midlands, Stoke-on-Trent, United Kingdom. E-mail: p.wu@keele.ac.uk

^{© 2018} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Clinical Perspective

What Is New?

- Preterm delivery is associated with a 1.4- to 2-fold increase in maternal risk for future incident cardiovascular events, cardiovascular death, coronary heart disease events, coronary heart disease death, and stroke.
- This increased risk is greatest in preterm births that occur before 32 weeks in gestation or in those that are delivered for medical indications such as fetal growth restriction or pre-eclampsia.
- For cardiovascular disease and coronary heart disease outcomes, the risks are higher in women with a greater number of recurrent preterm births.

What Are the Clinical Implications?

- In keeping with current recommendations, our study highlights the importance of advising women with preterm births about their increased cardiovascular risk and advocating and supporting lifestyle and behavioral changes to control their modifiable risk factors.
- These findings support the evaluation of preterm delivery in cardiovascular risk assessment in postnatal women.

this adverse pregnancy outcome may serve to identify women at risk for cardiovascular disease who would not have been detected using traditional risk assessment tools at a time when it may be possible to alter their risk trajectory.¹⁰⁻¹²

It remains unclear whether preterm delivery is an independent risk factor for future cardiovascular disease or an early marker of women with background high-risk profiles for future cardiovascular disease. As preterm birth is a heterogeneous condition with multiple causes, the pathogenesis of preterm birth remains poorly understood. The main proposed mechanisms include increased systemic inflammation, infection, or vascular diseases.^{13–15} The duration of pregnancy gestation has been inversely correlated to insulin resistance, blood pressure, and low-grade inflammation in women years after delivery.^{16–18} In addition, women with previous preterm births, but without pre-eclampsia or small-for-gestational-age births, have higher atherogenic lipids and carotid arterial wall thickening in the decade after delivery compared with women who had term births.¹⁹ Therefore, the dysregulation in cardiometabolic factors with their common pathways to cardiovascular diseases may provide a possible explanation for the link between preterm birth and future cardiovascular diseases.^{20,21}

Previous studies, including a meta-analysis, have examined the relationship between preterm delivery and future incident cardiovascular disease.^{3–5} The previous meta-analysis included studies published up to 2011.³ Since then, there have been further studies including large sample sizes (ie, >100 000 participants).^{22–24} Some newer studies also demonstrated

results inconsistent with earlier literature showing no increased risk for future stroke events.^{25,26} Furthermore, previous work did not differentiate between morbidity and mortality outcomes, nor examined clinically relevant factors such as gestation at delivery, recurrence and cause of preterm births. As recent guidelines from the United States^{27,28} and European Union²⁹ recommend the inclusion of a history of preterm birth to evaluate the cardiovascular disease and stroke risk in women based on evidence from cohort studies published up to 2011,^{30–35} there is a need for contemporary evidence. To this end, we conducted a systematic review and meta-analysis to quantify the risk of maternal cardiovascular events in later life following preterm birth and contribute to future recommendations for clinical practice.

Methods

Eligibility Criteria

The data, analytic methods, and study materials have been made available to other researchers for purposes of reproducing the results or replicating the procedure. The protocol was registered on PROSPERO an International prospective register of systematic reviews.³⁶ We selected studies investigating postnatal cardiovascular outcomes of women with preterm delivery. Preterm delivery was defined as birth any time before 37 weeks gestation. Primary cardiovascular outcomes were composite cardiovascular disease (defined as a combination of cardiac, cerebrovascular, and peripheral vascular disease), death caused by composite cardiovascular disease, coronary heart disease, death caused by coronary heart disease, stroke, and stroke death. The International Classification of Diseases (ICD) (versions 7-10) code definitions of the outcomes are specific to each study and are detailed in Table S2. The included studies had at least 2 groups (1 with preterm birth and 1 with term birth) and reported sufficient data to allow for accurate risk estimates to be calculated. There was no restriction based on language, cohort type, study design, or duration of follow-up.

Data Sources and Searches

MEDLINE and EMBASE were searched using OVID SP for studies from inception to October 2017. The detailed search terms are outlined in Methods S2. Manual searching for additional articles was also conducted by reviewing the bibliography of relevant review articles and published systematic reviews.^{3–5,37}

Study Selection and Data Extraction

Two reviewers (P.W. and G.V.) screened all titles that met the inclusion criteria. This was followed by a screen of the remaining abstracts. The full articles were screened by

the same 2 reviewers and the final decision to include studies was made by P.W. Independent double data extraction was done by 4 reviewers (P.W., C.S.K., C.W., and A.N.). Data were collected on study design, year, country, number of participants, mean age, parity, cohort characteristics, definition and ascertainment of preterm birth, ascertainment of outcomes, timing of assessment, adequacy of follow-up, and results. The information was obtained from published data.

Study Quality Assessment

Study quality was assessed based on the recommendations of the Newcastle-Ottawa Quality Assessment Scale for cohort studies.³⁸ We evaluated studies that had the following characteristics as at low risk of bias: selection of exposed cohort from the general population of pregnant women; selection of nonexposed cohort from the same population; reliable ascertainment of exposure such that the likelihood of controls (term birth) being misclassified as having preterm birth when they did not or cases being wrongly classified as not having preterm birth was minimized; exclusion of women who had cardiovascular outcome of interest before or during pregnancy; comparable cohort where confounders, in particular age, pre-eclampsia, and diabetes mellitus/insulin resistance, or any other cardiovascular risk factors such as smoking, body mass index, and cholesterol, were accounted for; assessment of outcomes prospectively or through linkage of records and/or independent blind assessment; follow-up duration for at least 5 years postpartum; and <10% of the study participants in each cohort being lost to follow-up.

Data Synthesis and Analysis

We used RevMan Version 5.3.5 (Nordic Cochrane Centre) to conduct random effects meta-analysis using the inverse variance method for pooling log risk ratios (RRs). We used random effects because the studies were conducted in a wide range of settings in different populations, hence the need to take heterogeneity into account for the pooled effect estimate. Where possible, we chose to pool adjusted risk estimates from primary studies and when these data were not available, raw data were used to calculate unadjusted risk estimates. Studies were pooled in meta-analysis with subgroups based on whether or not the study used adjustments to account for confounders. Statistical heterogeneity was assessed using the I^2 statistic where I^2 values of 30% to 60% represented moderate level of heterogeneity.³⁹ Where there was greater than a moderate degree of heterogeneity, we performed leave-1-out analysis to identify studies that contributed to high degree of heterogeneity. In the case of an analysis where there are more than 10 studies and little evidence of heterogeneity, we planned to perform funnel plots to assess for publication bias.⁴⁰ Sensitivity analysis was performed to consider the follow-up duration of the studies (<10, 10–30, and >30 years), gestation (<32 weeks versus 32–37 weeks), and recurrence (1 recurrence versus \geq 2 recurrence) of preterm births, and whether the preterm births occurred spontaneously or were medically indicated. For the sensitivity analysis on gestation, we excluded studies where the subgroups could not be categorized as either <32 weeks or 32 to 37 weeks gestation (eg, <34 weeks gestation).

Results

Description of Studies Included in Analysis

The initial MEDLINE and EMBASE search produced 653 titles and abstracts. After screening, 21 studies were included in the analysis (Figure 1) including 5 813 682 women in total (ranges from 446 to 923 686 women in each study). Studies recruiting patients from the same population were paired to avoid duplication of participant numbers.^{31,32,41,42} Some studies assessed the same population over different time points.^{24,31,32,41-45} In these cases, the study with the longest follow-up period was used for analysis in order to obtain the highest event rate.

Table 1 summarizes the study designs and participant characteristics. Out of the 16 studies that reported the number of women in study and control groups, 338 007 women delivered preterm while 5 261 933 delivered at term.* Data for women with singleton pregnancies were included in 15 studies.[†] At the index pregnancy, the participants had a mean or median age ranging from 23 to 31 years. The mean follow-up period ranged from 5.2 to 57 years.

Quality Assessment of Included Studies

The study quality was evaluated based on the recommendations of the Newcastle-Ottawa Quality Assessment Scale (Tables S1 and S2).³⁸ Fifteen studies were found to use reliable methods for ascertaining the preterm birth exposure, whereas 16 studies used reliable methods of obtaining cardiovascular outcomes.

Pooled Analysis of Preterm Birth and Cardiovascular Outcomes

Table 2 shows the results of the studies. A total of 8 studies were pooled and showed a 1.6-fold significantly increased

*References 5, 22, 23, 25, 26, 30, 31, 41, 43–51. [†]References 22–24, 30–32, 35, 41–44, 47–50.

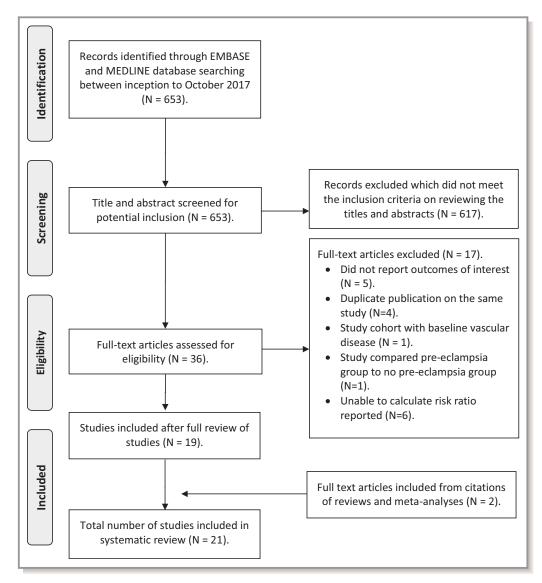


Figure 1. Flow diagram of study inclusion. Adapted from: Moher et al.⁵²

maternal risk of composite cardiovascular disease in preterm birth (RR 1.56, 95% confidence interval [CI], 1.32, 1.84, I²=93%) (Figure 2A).^{22,23,25,30,43,46,48,51} Combining the 5 studies that adjusted for potential confounders, 23, 25, 43, 46, 48 the risk was 1.4-fold (adjusted risk ratio [aRR] 1.43, 95% Cl, 1.18, 1.72; $I^2=89\%$). The potential confounding factors evaluated in the studies are shown in Table S2. All 5 studies had adjusted for age. We performed leave-1-out analyses to explore the sources of heterogeneity. It was mainly driven by the Catov 2010 study.⁴³ By excluding this study, heterogeneity was reduced to 54% in the adjusted analysis (aRR 1.52, 95% CI, 1.31, 1.75). For composite cardiovascular disease death, the pooled results suggest a 1.8-fold increase in maternal cardiovascular disease death with preterm birth (RR 1.81, 95% CI, 1.55, 2.10, I^2 =70%; aRR 1.78, 95% CI, 1.42, 2.21, I^2 =77%) (Figure 2B).^{24,31,35,41,43,53} There were no common confounders in the adjusted studies as they had adjusted for different confounding factors. The heterogeneity was mainly driven by the Davey-Smith 2005 study. 53 After excluding this study, heterogeneity reduced to 0% in both overall and adjusted analyses.

For coronary heart disease there was a 1.5-fold increase risk of events with preterm birth (RR 1.50, 95% Cl, 1.39, 1.62, $I^2=51\%$, aRR 1.49, 95% Cl, 1.38, 1.60, $I^2=54\%$) (Figure 3A). All of the 5 studies that used adjusted data had adjusted for age and socioeconomic status or education.^{23,25,43,44,50} The heterogeneity was mainly driven by the Hastie 2011 study.⁴⁴ If this study was excluded, heterogeneity was reduced to 33% in the adjusted analysis (aRR 1.45, 95% Cl, 1.33, 1.57). The 4 adjusted studies reporting coronary heart disease death showed a 2-fold increased risk with preterm birth (aRR 2.10, 95% Cl, 1.87, 2.36, $I^2=0\%$, Figure 3B).^{24,44,47,53} There were no common confounders over these 4 studies as they had adjusted for different confounding factors.

Table	1.	Study	Design	and	Participant	Characteristics
-------	----	-------	--------	-----	-------------	-----------------

Study ID	Study Design, Country, Year	Total No. of Participants (Preterm/Term)	Mean Age at Pregnancy (y)	Parity	Participant Selection Criteria
Bonamy 2011 ³⁰	Retrospective cohort study, Sweden, 1983–2005	923 686 (preterm 56 893/term 866 793)	Median 26.9	Р	Women with a first singleton birth in Sweden between 1983 and 2005
Catov 2007 ⁴⁶	Cross-sectional study, United States, 1997–2004	446 (preterm 27/term 419)	23.5	Р	Women enrolled in the Health, Aging and Body Composition (Health ABC) study on 70- to 79-year-olds living in Pittsburgh during 1997 and 1998, who provided their past obstetric history
Catov 2010 ⁴³	Retrospective cohort study, Denmark, 1973–2006	427 765 (preterm 26 588/term 401 177)	25.5	A	Women with singleton births in Denmark between 1973 and 1983
Cirillo 2015 ⁴⁷	Prospective cohort study, United States, 1959–2011	10 310 (preterm 1251/term 9059)	Median 26	A	Women receiving prenatal care from the Kaiser Health Plan in California recruited to the Child Health and Development Studies (CHDS)
Smith 2000 ³⁵	Cohort study, Finland, 1954 -2000	3706	Unclear	Р	A cohort of singleton live births between 1954 and 1963 in Helsinki
Smith 2005 ⁵³	Cohort study, Finland, 1973 –1997	10 368 mothers and 22 807 fathers	Unclear	A	Parents who had children born between 1973 and 1980 in Sweden
Freibert 2011 ⁵¹	Cross-sectional study, United States, 2006–2008	2882 (preterm 324/ term 2558)	Unclear	A	Women from the Kentucky Women's Health Registry aged ≥50 y of age between 2006 and 2008, who provided their past obstetric history
Hastie 2011 ⁴⁴	Retrospective cohort study, Scotland, 1969–2007	750 350 (preterm 44 743/term 705 607)	Median 24.5	Р	Women with first singleton live births in Scotland between January 1969 and July 2007
Hovi 2014 ²²	Retrospective cohort study, Finland, 1987–2012	152 219 mothers (preterm 8720/term 39–41 wks 143 499) and 190 996 fathers	Unclear	Р	Women with first singleton births in the Finnish Medical Birth Register from 1987 to 1990
Irgens 2001 ⁴⁵	Retrospective cohort study, Norway, 1967–1992	602 117 (preterm 26 018/term 576 099)	Unclear	Р	Women with first deliveries recorded in the Norwegian medical birth registry from 1967 to 1992
Kessous 2013 ⁴⁸	Retrospective cohort study, Israel, 1988–2010	47 908 (preterm 5992/term 41 916)	29	A	Women with singleton birth at the Soroka University Medical Center in Negev between 1988 and 1999
Lykke 2010 ⁴¹ & Lykke 2010 ³¹	Retrospective cohort study, Denmark, 1978–2007	755 398 (preterm 41 659/term 713 739) in Lykke 2010 ⁴¹ or 685 594 (preterm 41 659/ term 643 935) in Lykke 2010 ³¹	26.8	P	Women with first singleton delivery in Denmark from 1978 to 2007
Nardi 2006 ⁴⁹	Case-control study, France, 1990–2000	514 (preterm 76/term 438)	55 at enrollment	P	Women born between 1925 and 1950 who had a first MI between 1990 and 2000, matched with women of similar age, year and month of inclusion in study, educational level and area of residence. All women were in a health insurance scheme primarily covering teachers who had singleton pregnancies

SYSTEMATIC REVIEW AND META-ANALYSIS

Table 1. Continued

Study ID	Study Design, Country, Year	Total No. of Participants (Preterm/Term)	Mean Age at Pregnancy (y)	Parity	Participant Selection Criteria
Ngo 2015 ²³	Retrospective cohort study, Australia, 1994–2012	797 056 (preterm 59 563/term 737 493)	Median 31	A	Women who had a singleton birth between July 1994 and December 2011 in New South Wales
Pell 2004 ⁴² & Smith 2001 ³²	Retrospective cohort study, Scotland, 1981–1999	199 668 (Pell 2004) or 129 920 (Smith 2001)	Median 23	P	Women with first singleton live births in Scotland between 1981 and 1985
Rich-Edwards 2015 ²⁴	Retrospective cohort study, Norway, 1967–2009	688 662 (preterm 40 981 [spontaneous 33 230; indicated 7751]/term 647 681 [spontaneous 550 604; indicated 97 077])	24.6	Ρ	Women with first singleton birth between 1967 and 1998 in the Medical Birth Registry of Norway
Tanz 2017 ²⁵	Prospective cohort study, United States, 1989–2013	70 182 (preterm 6178, term 64 004)	27.4	Р	Subset of women with pregnancies in the Nurses' Health Study II, that followed registered nurses aged 25 to 42 y in 1989
Wang 2011 ²⁶	Retrospective cohort study, Taiwan, 2000–2008	4715 (preterm 1134/ term 3581)	27.8	P	Randomly selected, frequency-matched control women delivering in the same year as women with hypertensive disorders in pregnancy in the National Health Insurance program between 2000 and 2004
Wikstrom 2005 ⁵⁰	Cross-sectional study; Sweden; 1973–1982	365 730 (preterm 17 860/term 347 870)	Median 48*	Р	Women in the Swedish Medical Birth Register from 1973 to 1982 with singleton pregnancies

A indicates any parity; MI, myocardial infarction; P, primiparous. *Age at follow-up.

Figure 4 shows the pooled analysis for studies on maternal preterm birth and stroke, and illustrate the risk to be increased by 1.7-fold in preterm birth (aRR 1.65, 95% Cl, 1.51, 1.79, $l^2=0\%$).^{23,25,26,32,42,43} All studies had adjusted for potential confounders that included age and socioeconomic status or education or urbanization level. The pooled result on preterm birth and stroke death was not statistically significant (aRR 1.30, 95% Cl, 0.94, 1.80, $l^2=66\%$).^{24,53} We did not perform funnel plots to assess for publication bias as <10 studies were included in each analysis.

Sensitivity Analysis for Follow-Up Time

We conducted sensitivity analyses to consider the effect of follow-up time for cardiovascular outcomes that were significant in the adjusted studies (Table 3). At <10 years following preterm birth, the risks for composite cardiovascular disease (RR 1.65, 95% Cl, 1.49, 1.82), coronary heart disease (RR 1.61, 95% Cl, 1.40, 1.86), and stroke (RR 1.67, 95% Cl, 1.45, 1.93) were already significant and similar to longer follow-up times.

Sensitivity Analysis Considering Effect of Gestation of Preterm Birth, Recurrence of Preterm Birth, and Spontaneous Versus Medically Indicated Preterm Birth

Sensitivity analyses were performed to consider the effect of gestation, recurrence, and spontaneous onset of preterm birth in the 5 cardiovascular outcomes that were significant in the adjusted studies. These showed that the risks were higher when preterm deliveries occurred before 32 weeks gestation in all outcomes: composite cardiovascular disease (RR 1.85, 95% Cl, 1.51, 2.28), composite cardiovascular disease death (RR 2.10, 95% Cl, 1.61, 2.74), coronary heart disease (RR 1.62, 95% Cl, 1.28, 2.04), coronary heart disease death (RR 2.30, 95% Cl, 1.53, 3.46), and stroke (RR 2.00, 95% Cl, 1.65, 2.43), compared with those occurring at 32 to 37 weeks gestation (Table 4).

When recurrence of preterm birth was studied, the risks for composite cardiovascular disease (RR 1.58, 95% Cl, 1.17, 2.12) and coronary heart disease (RR 1.95, 95% Cl, 1.53, 2.50) were higher if the preterm birth recurred in 2 or more pregnancies compared with recurring once only (Table 5). The

Table 2. Study Outcomes, Follow-Up and Results	Table	2.	Study	Outcomes,	Follow-Up	and	Results
--	-------	----	-------	-----------	-----------	-----	---------

Study ID	Definition of Preterm	Follow-Up Duration	Definition of Outcome	Results (Preterm vs Term)
Bonamy 2011 ³⁰	Moderately preterm (32– 36 wks), very preterm (28–31 wks), extremely preterm (≤27 wks)	11.8 у	CVD: unstable angina, acute MI, cerebral infarction, cerebral hemorrhage, subarachnoid hemorrhage, transient ischemic attack, acute stroke or heart failure	32 to 36 wks: 320/49 537 vs 3154/866 793 aHR 1.39 (1.22–1.58) 28 to 31 wks: 70/5259 vs 3154/866 793. aHR 2.57 (1.97–3.34) ≤27 wks: 24/2097 vs 3154/866 793. aHR 2.18 (1.33–3.57)
Catov 2007 ⁴⁶	Delivery <37 wks gestation	57 y	CVD: MI, angina, coronary artery bypass surgery, percutaneous transluminal angioplasty, stroke or peripheral vascular disease	12/27 vs 120/491. aHR 2.85 (1.19–6.85)
Catov 2010 ⁴³	Delivery <37 wks gestation	28 y	CVD: CHD, stroke, hypertension, atherosclerosis or thrombosis	Any preterm: $3454/26 588 \text{ vs } 39 485/$ 401 177. aHR 1.18 (1.10-1.25) 35 to 36 wks: aHR 1.26 (1.20-1.33) 33 to 34 wks: aHR 1.26 (1.16-1.37) $\leq 32 \text{ wks: aHR } 1.36 (1.21-1.53)$ Recurrent 1 preterm birth: aHR 1.16 (1.09- 1.25) Recurrent ≥ 2 preterm births: aHR 1.26 (1.05-1.51)
			CVD death*	Any preterm: aHR 1.98 (1.73–2.26) 35 to 36 wks: aHR 1.87 (1.59–2.14) 33 to 34 wks: aHR 2.10 (1.73–2.78) \leq 32 wks: aHR 2.10 (1.47–3.00) Recurrent 1 preterm birth: aHR 1.70 (1.33–2.16) Recurrent \geq 2 preterm births: aHR 2.12 (1.22–3.68)
			CHD*	Any preterm: $1272/26 588 \text{ vs } 13 283/$ 401 177. aHR 1.42 (1.34-1.52) 35 to 36 wks: aHR 1.41 (1.30-1.53) 33 to 34 wks: aHR 1.49 (1.32-1.68) $\leq 32 \text{ wks: aHR } 1.38 (1.15-1.66)$ Recurrent 1 preterm birth: aHR 1.22 (1.09-1.36) Recurrent ≥ 2 preterm births: aHR 1.78 (1.40-2.27)
			Stroke*	Any preterm: $351/26588$ vs $3185/401177$. aHR 1.67 (1.48–1.89) 35 to 36 wks: aHR 1.73 (1.49–2.01) 33 to 34 wks: aHR 1.42 (1.10–1.84) \leq 32 wks: aHR 1.92 (1.38–2.67) Recurrent 1 preterm birth: aHR 1.77 (1.44–2.17) Recurrent \geq 2 preterm births: aHR 1.37 (0.75–2.49)
Cirillo 2015 ⁴⁷	Delivery <37 wks gestation	40 y	CHD death	aHR 2.1 (1.40–3.01)
Smith 2000 ³⁵	Delivery <37 wks gestation	Unclear	CVD death	aHR 2.06 (1.22–3.47)
Smith 200553	Delivery <37 wks	20.4 y	CVD (CHD and stroke) death	aHR 1.32 (1.09–1.61)
	gestation		CHD death	aHR 1.66 (1.20–2.29)
			Stroke death	aHR 1.07 (0.77–1.49)

SYSTEMATIC REVIEW AND META-ANALYSIS

Table 2. Continued

Study ID	Definition of Preterm	Follow-Up Duration	Definition of Outcome	Results (Preterm vs Term)
Freibert 2011 ⁵¹	Delivery between 20 and	Unclear	CVD	110/324 vs 573/2558
	36 wks gestation		CHD	37/324 vs 159/2558
Hastie 2011 ⁴⁴	Delivery <37 wks 22 y gestation		CHD	Any preterm: aHR 1.58 (1.47–1.71) Spontaneous (n=29 965): aHR 1.46 (1.33–1.61) Medically indicated (n=14 747): aHR 1.81 (1.61–2.04)
			CHD death	Any preterm: aHR 2.26 (1.88–2.71) Spontaneous (n=29 965): aHR 2.14 (1.70–2.70) Medically indicated (n=14 747): aHR 2.49 (1.89–3.30)
Hovi 2014 ²²	Delivery <37 wks gestation	22 y	CVD: CHD and stroke	Any preterm: 431/8720 vs 4127/143 499 34 to 36 wks: 303/6540 vs 4127/143 499. HR 1.55 (1.38–1.74) 32 to 33 wks: 50/954 vs 4127/143 499. HR 1.61 (1.22–2.13) 28 to 31 wks: 52/809 vs 4127/143 499. HR 2.12 (1.61–2.79) <28 wks: 26/417 vs 4127/143 499. HR 2.00
Irgens 200145	Delivery between 16 and	13 y	CHD death	aHR 2.95 (2.12–4.11)
	36 wks gestation		Stroke death	aHR 1.91 (1.26–2.91)
Kessous 2013 ⁴⁸	Delivery <37 wks gestation	10 y	CVD: hospitalization for CHD, stroke, peripheral vascular disease, hyperlipidemia, angina, hypertension, atherosclerosis, MI, heart failure, pulmonary heart disease, cardiac arrest, cardiac catheterization or cardiovascular stress test	$\begin{array}{l} \mbox{Any preterm: aHR 1.4 (1.2-1.6)} \\ 34 \mbox{ to 37 wks (n=4596): OR 1.4 (1.2-1.6).} \\ <34 \mbox{ wks (n=1396): OR 1.7 (1.3-2.1)} \\ \mbox{Spontaneous (n=41 669): OR 1.4 (1.2-1.6)} \\ \mbox{Medically indicated (n=6239):} \\ \mbox{ OR 1.7 (1.3-2.4)} \\ \mbox{Recurrent 1 preterm birth: 261/5217} \\ \mbox{ vs 1467/41 916} \\ \mbox{Recurrent } \ge 2 \mbox{ preterm births: 43/775} \\ \mbox{ vs 1467/41 916} \\ \end{array}$
Lykke 2010a ⁴¹ & Lykke 2010b ³¹	Delivery <37 wks gestation	14.6 y (Lykke 2010a)	CHD	Any preterm: 589/41 659 vs 7257/713 739 32 to 36 wks: 500/35 255 vs 7257/713 739 aHR 1.32 (1.20–1.45) 28 to 31 wks: 63/4698 vs 7257/713 739. aHR 1.03 (0.80–1.34) 20 to 27 wks: 26/1706 vs 7257/713 739. aHR 1.61 (1.09–2.37) Recurrent 1 preterm birth: 71/4244 vs 4730/471 052. aHR 1.36 (1.02–1.81)
		14.8 y (Lykke 2010b)	CVD (CHD, stroke, hypertension, thromboembolic disease and type 2 diabetes mellitus) death	115/41 659 vs 824/643 935. aHR 1.98 (1.64–2.40)
Nardi 2006 ⁴⁹	Delivery <8 mo gestation	5.2 у	CHD death	23/76 vs 86/438
Ngo 2015 ²³	Delivery 20 to 36 wks gestation	7.5 y	CVD: hospitalization or death for CHD, stroke, and congestive heart failure	Any preterm: aHR 1.65 (1.50–1.83) 35 to 36 wks: aHR 1.53 (1.35–1.74) 33 to 34 wks: aHR 1.89 (1.55–2.31) 20 to 32 wks: aHR 1.83 (1.50–2.23)

Table 2. Continued

Study ID	Definition of Preterm	Follow-Up Duration	Definition of Outcome	Results (Preterm vs Term)
				$\begin{array}{l} \mbox{Spontaneous: aHR 1.53 (1.35-1.72)} \\ \mbox{Medically indicated: aHR 1.93 (1.66-2.25)} \\ \mbox{1 preterm birth: aHR 1.62 (1.46-1.79).} \\ \mbox{Recurrent} \ge 2 \mbox{ preterm births:} \\ \mbox{aHR 2.04 (1.56-2.67)} \end{array}$
			CHD	Any preterm: aHR 1.61 (1.39–1.85) 35 to 36 wks: aHR 1.49 (1.24–1.78) 33 to 34 wks: aHR 1.89 (1.43–2.51) 20 to 32 wks: aHR 1.72 (1.29–2.29) Spontaneous: aHR 1.53 (1.29–1.81) Medically indicated: aHR 1.77 (1.41–2.21) 1 preterm birth: aHR 1.54 (1.33–1.79) Recurrent \geq 2 preterm births: aHR 2.31 (1.61–3.33)
			Stroke	Any preterm: aHR 1.68 (1.46–1.95) 35 to 36 wks: aHR 1.49 (1.23–1.80) 33 to 34 wks: aHR 1.90 (1.41–2.56) 20 to 32 wks: aHR 2.13 (1.61–2.82) Spontaneous: aHR 1.49 (1.24–1.78) Medically indicated: aHR 2.12 (1.70–2.65) 1 preterm birth: aHR 1.68 (1.44–1.95) Recurrent \geq 2 preterm births: aHR 1.76 (1.14–2.73)
Pell 2004 ⁴² & Smith 2001 ³²	Delivery 24 to 36 wks gestation	14 to 19 y (Pell 2004)	Stroke	aHR 1.91 (1.35–2.70).
		15 to 19 y (Smith 2001)	CHD death	HR 2.2 (0/9–5.7). aHR 1.9 (0.7–4.9)
Rich-Edwards 2015 ²⁴	Delivery <37 w gestation	24.8 у	CVD (CHD and stroke) death	HR 1.9 (1.7–2.2) Spontaneous: Any preterm: HR 1.7 (1.5–2.0) 35 to 36 wks: aHR 1.4 (1.0–1.8) 32 to 34 wks: aHR 1.9 (1.3–2.7) 22 to 31 wks: aHR 2.1 (1.4–3.1) Medically indicated: Any preterm: HR 3.7 (2.4–4.5) Recurrent 1 preterm birth: aHR 3.3 (2.4–4.5)
			CHD death	Spontaneous: Any preterm: aHR 2.1 (1.7–2.5) 35 to 36 wks: aHR 2.1 (1.6–2.7) 32 to 34 wks: aHR 2.4 (1.7–3.4) 22 to 31 wks: aHR 2.3 (1.5–3.4) Medically indicated: 35 to 36 wks: aHR 6.2 (4.2–9.3) 32 to 34 wks: aHR 4.7 (2.2–9.8)
			Stroke death	Spontaneous: Any preterm: 1.5 (1.2–1.8) 35 to 36 wks: aHR 1.3 (0.9–1.7) 32 to 34 wks: aHR 1.9 (1.3–2.8) 22 to 31 wks: aHR 1.8 (1.1–2.8) Medically indicated: Any preterm: aHR 3.0 (2.0–4.3) 35 to 36 wks: aHR 2.9 (1.7–5.1) 32 to 34 wks: aHR 1.9 (0.8–4.7) 22 to 31 wks: aHR 5.4 (2.8–10.4)

SYSTEMATIC REVIEW AND META-ANALYSIS

Table 2. Continued

Study ID	Definition of Preterm	Follow-Up Duration	Definition of Outcome	Results (Preterm vs Term)
Tanz 2017 ²⁵	Delivery >20 and <37 wks gestation	32 y	CVD: MI and stroke	Without hypertensive disorders of pregnancy (preterm 4487 vs term 51 343): Any preterm: aHR 1.35 (1.06–1.72) 32 to <37 wks: aHR 1.12 (0.83–1.52) 20 to <32 wks: aHR 2.01 (1.38–2.93) Recurrent 1 preterm birth: aHR 1.63 (1.18–2.25)
			CHD	Any preterm: aHR 1.55 (1.19–2.01) 32 to <37 wks: aHR 1.36 (0.99–1.86) 20 to <32 wks: aHR 2.10 (1.38–3.21)
			Stroke	Any preterm: aHR 1.28 (0.95–1.71) 32 to <37 wks: aHR 1.09 (0.76–1.56) 20 to <32 wks: aHR 1.84 (1.15–2.95)
Wang 2011 ²⁶	Unclear	6.4 y	Stroke	aHR 1.51 (0.77–2.93)
Wikstrom 2005 ⁵⁰	Delivery <37 wks gestation	15 y	CHD	145/17 860 vs 1959/347 870. aRR 1.3 (1.1–1.5)

Data are HR/OR (95% confidence intervals). aHR indicates adjusted hazard ratio; aRR, adjusted risk ratio; CHD, coronary heart disease/ischemic heart disease; CVD, cardiovascular disease; MI, myocardial infarction; RR, risk ratio.

*Data not adjusted for diabetes mellitus.

risks for all available outcomes were greatest when the preterm birth occurred as a result of medically indicated compared with spontaneous preterm birth: composite cardio-vascular disease (RR 1.88, 95% Cl, 1.64, 2.16), composite cardiovascular disease death (RR 3.70, 95% Cl, 2.88, 4.76), coronary heart disease (RR 1.80, 95% Cl, 1.62, 2.00), coronary heart disease death (RR 3.56, 95% Cl, 1.74, 7.25), and stroke (RR 2.12, 95% Cl, 1.70, 2.65, Table 6).

The full cardiovascular risk factor profile of the preterm birth and the control term birth population is described in Table S3. Significant differences in age,^{44,48} ethnicity,⁴⁸ education,⁴³ socioeconomic class,⁴⁴ obesity,⁴⁸ hypertension,⁴⁴ pre-eclampsia,^{43,44} and small-for-gestational-age fetus⁴³ between the preterm and term birth groups were detected at the index pregnancy in 3 studies. Although these only contributed to 21% of total participant women, the cardiovascular risk factor profiles at the index birth were not available in the majority of participants within this systematic review and meta-analysis. Additional sensitivity analyses were performed where studies were stratified by singleton pregnancies, year of the study, quality of the study, location of the study, and pre-existing cardiovascular diagnosis in participants (Tables S4 through S8). We found that the results did not vary substantially.

Discussion

This meta-analysis examined 96 341 474 women years and included 338 007 women with preterm birth out of 5 813 682 study participants in 21 studies. We found that preterm delivery is associated with an increased maternal

risk for future incident cardiovascular events, cardiovascular death, coronary heart disease events, coronary heart disease death, and stroke. The adjusted risk ranged between 1.4and 2-fold compared with those without a history of preterm birth. This increased risk is greatest in preterm births that occur before 32 weeks in gestation or in those that are delivered for medical indications such as fetal growth restriction or pre-eclampsia. For the composite cardiovascular disease and coronary heart disease outcomes, the risks are higher in women with a greater number of recurrent preterm births. Preterm delivery is a significant event in a woman's reproductive history with a good recall rate including high specificity.54-56 Therefore, it may be considered as a potential risk factor for future cardiovascular disease in women, as recommended by the current guidelines from the American Heart Association and European Society of Cardiology.²⁷⁻²⁹

By including an additional 1.7 million participants to the previous meta-analysis in this field, our results are consistent with earlier literature showing an increased risk in coronary heart disease, stroke, and composite cardiovascular disease.³ Although our risk estimate for composite cardiovascular disease was lower than previously reported, this may be because of the difference in data analysis. In the previous meta-analysis, there was no distinction between adjusted and unadjusted data nor between morbidity and mortality outcomes. There are 2 other systematic reviews without meta-analysis of the literature, which also support our findings.^{4,5} Unique to this study, we conducted sensitivity analyses to consider the duration of follow-up, gestation at birth,

		Risk Ra	tio		Risk Ratio	
	Weight	IV, Randon	n, 95% Cl	IV	, Random, 95% Cl	
Unadjusted						
Bonamy 2011 ³⁰	14.5%		81, 2.21]		-	
Freibert 2011 ⁵¹	13.2%	1.52 [1.:	28, 1.79]			
Hovi 201422	14.6%		56, 1.89]			
Subtotal (95% CI)	42.3%	-	52, 2.03]		•	
Heterogeneity: Tau ² = 0			2 (P = 0.01); l² = 78%			
Test for overall effect: Z	= 7.62 (P	< 0.00001)				
Adjusted						
Catov 2007 ⁴⁶	2.9%	2.85 [1.	19, 6.84]			
Catov 201043	15.0%	1.18 [1.	11, 1.26]		-	
Kessous 201348	13.7%	1.40 [1.3	21, 1.62]		-	
Ngo 2015 ²³	14.5%		49, 1.82]		*	
Tanz 2017 ²⁵	11.6%		06, 1.72]			
Subtotal (95% CI)	57.7%		18, 1.72]		•	
Heterogeneity: Tau² = 0 Test for overall effect: Z			4 (P < 0.00001); I ² = 89	%		
Total (95% CI)	100.0%	1.56 [1.3	32, 1.84]		•	
			,			
Heterogeneity: $Tau^2 = 0$	05. Chi ² =	= 98 72 df =	$7 (P < 0.00001) \cdot I^2 = 93^{\circ}$			
· · ·			7 (P < 0.00001); I ² = 93	0.1 0.2 0	.5 1 2	5 1
Test for overall effect: Z	= 5.21 (P	< 0.00001)	. ,	0.1 0.2 0 Favours p	.5 1 2 reterm Favours term	•
Test for overall effect: Z	= 5.21 (P	< 0.00001)	7 (P < 0.00001); l ² = 93 = 1 (P = 0.09), l ² = 65.2%	0.1 0.2 0 Favours p		•
Test for overall effect: Z Test for subgroup differe	= 5.21 (P	< 0.00001)	= 1 (P = 0.09), I ² = 65.29	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe	= 5.21 (P	< 0.00001) j² = 2.88, df =	= 1 (P = 0.09), I ² = 65.29 Risk Ratio	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup	= 5.21 (P	< 0.00001) j² = 2.88, df =	= 1 (P = 0.09), I ² = 65.29	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted	= 5.21 (P	< 0.00001) j ² = 2.88, df = Weight	= 1 (P = 0.09), I ² = 65.2% Risk Ratio IV, Random, 95% CI	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴	= 5.21 (P	< 0.00001) i ² = 2.88, df = <u>Weight</u> 25.8%	= 1 (P = 0.09), I ² = 65.29 Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16]	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI)	= 5.21 (P ences: Ch	< 0.00001) j ² = 2.88, df = Weight	= 1 (P = 0.09), I ² = 65.2% Risk Ratio IV, Random, 95% CI	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app	= 5.21 (P ences: Ch	< 0.00001) i ² = 2.88, df = <u>Weight</u> 25.8% 25.8%	= 1 (P = 0.09), I ² = 65.29 Risk Ratio <u>IV, Random, 95% CI</u> 1.90 [1.67, 2.16] 1.90 [1.67, 2.16]	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app	= 5.21 (P ences: Ch	< 0.00001) i ² = 2.88, df = <u>Weight</u> 25.8% 25.8%	= 1 (P = 0.09), I ² = 65.29 Risk Ratio <u>IV, Random, 95% CI</u> 1.90 [1.67, 2.16] 1.90 [1.67, 2.16]	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted	= 5.21 (P ences: Ch	< 0.00001) i ² = 2.88, df = <u>Weight</u> 25.8% 25.8%	= 1 (P = 0.09), I ² = 65.29 Risk Ratio <u>IV, Random, 95% CI</u> 1.90 [1.67, 2.16] 1.90 [1.67, 2.16]	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted Catov 2010 ⁴³	= 5.21 (P ences: Ch	< 0.00001) i ² = 2.88, df = <u>Weight</u> 25.8% 25.8%	= 1 (P = 0.09), I ² = 65.29 Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16] 1.90 [1.67, 2.16] 1.98 [1.73, 2.26]	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted Catov 2010 ⁴³	= 5.21 (P ences: Ch	< 0.00001) j ² = 2.88, df = <u>Weight</u> 25.8% 25.8% 25.8% P < 0.00001)	= 1 (P = 0.09), I ² = 65.29 Risk Ratio <u>IV, Random, 95% CI</u> 1.90 [1.67, 2.16] 1.90 [1.67, 2.16]	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted	= 5.21 (P ences: Ch	< 0.00001) j ² = 2.88, df = <u>Weight</u> 25.8% 25.8% 25.8% 25.5%	= 1 (P = 0.09), I ² = 65.29 Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16] 1.90 [1.67, 2.16] 1.98 [1.73, 2.26]	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted Catov 2010 ⁴³ Davey Smith 2000 ³⁵ Davey Smith 2005 ⁵²	= 5.21 (P ences: Ch licable Z = 9.76 (F	< 0.00001) i ² = 2.88, df = <u>Weight</u> 25.8% 25.8% 2 < 0.00001) 25.5% 6.7%	= 1 (P = 0.09), I ² = 65.29 Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16] 1.90 [1.67, 2.16] 1.98 [1.73, 2.26] 2.06 [1.22, 3.47]	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted Catov 2010 ⁴³ Davey Smith 2000 ³⁵ Davey Smith 2005 ⁵² Lykke 2010a ⁴¹ & Lykke	= 5.21 (P ences: Ch licable Z = 9.76 (F	< 0.00001) j ² = 2.88, df = <u>Weight</u> 25.8% 25.8% 2 < 0.00001) 25.5% 6.7% 20.8%	= 1 (P = 0.09), I ² = 65.29 Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16] 1.90 [1.67, 2.16] 1.98 [1.73, 2.26] 2.06 [1.22, 3.47] 1.32 [1.09, 1.60]	0.1 0.2 0 Favours p	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted Catov 2010 ⁴³ Davey Smith 2000 ³⁵ Davey Smith 2005 ⁵² Lykke 2010a ⁴¹ & Lykke Subtotal (95% CI)	= 5.21 (P ences: Ch licable Z = 9.76 (F	< 0.00001) j ² = 2.88, df = <u>Weight</u> 25.8% 25.8% 25.8% 25.5% 6.7% 20.8% 21.2% 74.2%	= 1 (P = 0.09), I ² = 65.29 Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16] 1.90 [1.67, 2.16] 1.98 [1.73, 2.26] 2.06 [1.22, 3.47] 1.32 [1.09, 1.60] 1.98 [1.64, 2.40]	0.1 0.2 0 Favours p 	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Study or Subgroup Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted Catov 2010 ⁴³ Davey Smith 2000 ³⁵ Davey Smith 2005 ⁵² Lykke 2010a ⁴¹ & Lykke Subtotal (95% CI) Heterogeneity: Tau ² = C	= 5.21 (P ences: Ch licable Z = 9.76 (F 2010b ³¹ 0.04; Chi ²	< 0.00001) j ² = 2.88, df = <u>Weight</u> 25.8% 25.8% 25.5% 6.7% 20.8% 21.2% 74.2% = 12.89, df =	= 1 (P = 0.09), I ² = 65.2% Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16] 1.90 [1.67, 2.16] 2.06 [1.22, 3.47] 1.32 [1.09, 1.60] 1.98 [1.64, 2.40] 1.78 [1.42, 2.21] = 3 (P = 0.005); I ² = 77%	0.1 0.2 0 Favours p 	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted Catov 2010 ⁴³ Davey Smith 2000 ³⁵ Davey Smith 2005 ⁵² Lykke 2010a ⁴¹ & Lykke Subtotal (95% CI)	= 5.21 (P ences: Ch licable Z = 9.76 (F 2010b ³¹ 0.04; Chi ²	< 0.00001) j ² = 2.88, df = <u>Weight</u> 25.8% 25.8% 25.5% 6.7% 20.8% 21.2% 74.2% = 12.89, df =	= 1 (P = 0.09), I ² = 65.2% Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16] 1.90 [1.67, 2.16] 2.06 [1.22, 3.47] 1.32 [1.09, 1.60] 1.98 [1.64, 2.40] 1.78 [1.42, 2.21] = 3 (P = 0.005); I ² = 77%	0.1 0.2 0 Favours p 	reterm Favours term	•
Test for overall effect: Z Test for subgroup differe Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted Catov 2010 ⁴³ Davey Smith 2000 ³⁵ Davey Smith 2000 ³⁵ Davey Smith 2005 ⁵² Lykke 2010a ⁴¹ & Lykke Subtotal (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z	= 5.21 (P ences: Ch licable Z = 9.76 (F 2010b ³¹ 2.04; Chi ² Z = 5.10 (F	< 0.00001) i ² = 2.88, df = <u>Weight</u> 25.8% 25.8% 2 < 0.00001) 25.5% 6.7% 20.8% 21.2% 74.2% = 12.89, df = > < 0.00001) 100.0%	<pre>= 1 (P = 0.09), I² = 65.2% Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16] 1.90 [1.67, 2.16] 2.06 [1.22, 3.47] 1.32 [1.09, 1.60] 1.98 [1.64, 2.40] 1.78 [1.42, 2.21] = 3 (P = 0.005); I² = 77% 1.81 [1.55, 2.10]</pre>	0.1 0.2 0 Favours p	Risk Ratio Random, 95% CI	
Test for overall effect: Z Test for subgroup differe Unadjusted Rich-Edwards 2015 ²⁴ Subtotal (95% CI) Heterogeneity: Not app Test for overall effect: Z Adjusted Catov 2010 ⁴³ Davey Smith 2000 ³⁵ Davey Smith 2000 ³⁵ Davey Smith 2005 ⁵² Lykke 2010a ⁴¹ & Lykke Subtotal (95% CI) Heterogeneity: Tau ² = 0 Test for overall effect: Z	= 5.21 (P ences: Ch licable Z = 9.76 (F 2010b ³¹ 0.04; Chi ² Z = 5.10 (F	< 0.00001) i ² = 2.88, df = <u>Weight</u> 25.8% 25.8% 2 < 0.00001) 25.5% 6.7% 20.8% 21.2% 74.2% = 12.89, df = P < 0.00001) 100.0% = 13.28, df =	<pre>= 1 (P = 0.09), I² = 65.29 Risk Ratio IV, Random, 95% CI 1.90 [1.67, 2.16] 1.90 [1.67, 2.16] 2.06 [1.22, 3.47] 1.32 [1.09, 1.60] 1.98 [1.64, 2.40] 1.78 [1.42, 2.21] = 3 (P = 0.005); I² = 779 1.81 [1.55, 2.10] = 4 (P = 0.010); I² = 709</pre>	0.1 0.2 0 Favours p	Risk Ratio Random, 95% CI	

Figure 2. Risk of composite cardiovascular disease with preterm birth. A, Cardiovascular disease events. B, Cardiovascular disease death. Cl indicates confidence interval.

recurrent preterm birth, and spontaneous or medically indicated preterm birth.

Because of the multifactorial nature of preterm birth causes, several pathognomonic mechanisms have been hypothesized.^{13,57} These include vascular and metabolic factors,^{58–60} as well as pre-eclampsia and fetal growth

restriction that have both been independently associated with future adverse cardiovascular outcomes.^{61–63} Moreover, preterm birth markers, such as proinflammatory cytokines, matrix metalloproteinase, fibrinolysis, prostaglandin cascade,^{8,59,64–68} and dyslipidemia,^{59,66,69} are also involved in atherosclerosis and endothelial dysfunction.^{34,70–73}

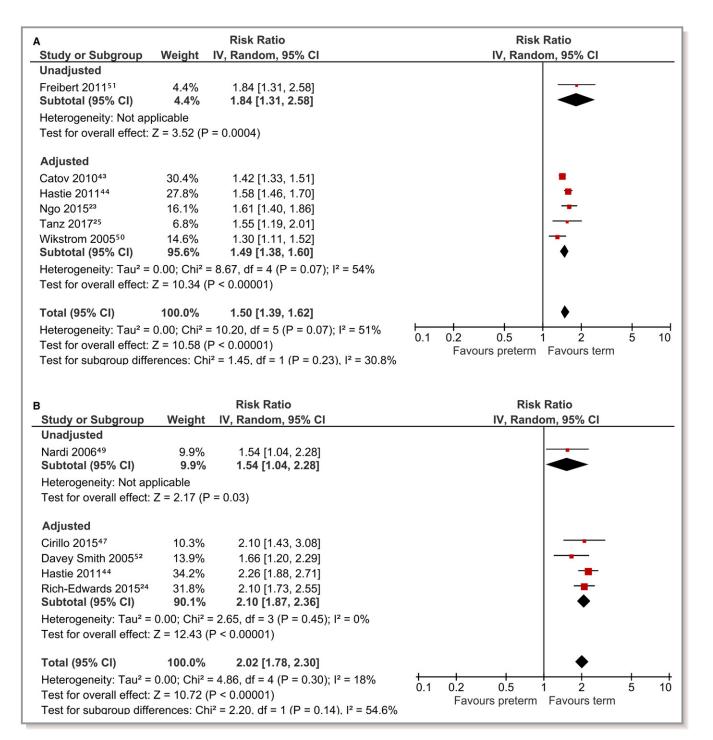


Figure 3. Risk of coronary heart disease with preterm birth. A, Coronary heart disease events. B, Coronary heart disease death. Cl indicates confidence interval.

Therefore, preterm birth shares common risk factors with cardiovascular disease^{74,75} and the association we identified may have been an epiphenomenon in women with high cardiovascular risk profiles that predispose them to both preterm birth and cardiovascular diseases. In contrast, other longitudinal studies have shown no difference in lipid profile, blood pressure, and inflammatory markers between preterm and term deliveries.^{17,76}

There may also be other possible hypotheses for the association of preterm delivery and long-term adverse cardiovascular outcomes. One third of normotensive preterm births exhibit placental abnormalities commonly seen in pre-eclampsia and placental insufficiency,^{77,78} while \approx 17% of preterm births are medically indicated.⁷⁹ Common medical indications for preterm birth include pre-eclampsia and placental insufficiency causing fetal growth restriction, which

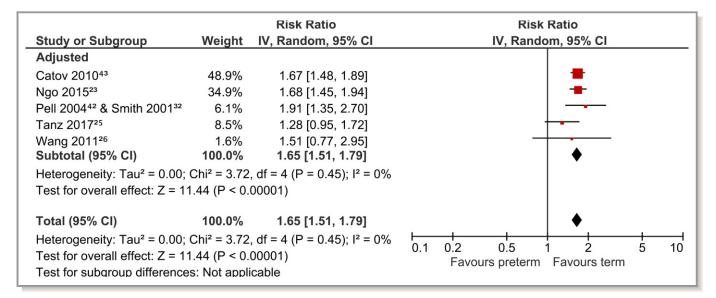


Figure 4. Risk of stroke with preterm birth. Cl indicates confidence interval.

may have confounded any relationships reported in the literature. Moreover, diabetes mellitus is more common in women with previous preterm deliveries, which may have confounded our findings.⁸⁰ Although smoking has not been universally agreed upon as a risk factor for preterm birth,^{81,82} the causative relationship between smoking and cardiovas-cular diseases is well established.^{83–86} Other possible confounders include obesity and socioeconomic status, both of which have been linked to increased risks of preterm birth^{32,87–89} and cardiovascular disease in women.^{90–92}

Although the majority of the included studies (n=16) have attempted to adjust for some potential confounders,[‡] none of the studies have adequately adjusted for all relevant risk factors that form the basis of many of the established cardiovascular risk prediction scores (eg, cholesterol and family history of cardiovascular disease). There was also limited overlap between the adjusted confounding factors among the studies. As many key confounders for cardiovascular diseases were not adjusted for in the included studies, it is possible that the relationships that we have reported are entirely driven by differences in cardiovascular risk factor profiles at baseline. In the studies (48% of total participants) that presented the baseline cardiovascular risk factor profiles, the majority did not calculate whether there were any differences between the preterm and term birth groups. In the 3 studies (21% of total participants) that calculated this difference, all of them showed significant baseline risk factor profile differences between the preterm birth and the term birth populations. 43,44,48

The 2011 American Heart Association guidelines for cardiovascular disease prevention in women advised healthcare professionals to inquire about adverse pregnancy outcomes, including preterm delivery, as a part of any cardiovascular risk assessment in women. However, there was a lack of additional specific guidance as preterm birth was not considered a major cardiovascular disease risk factor.²⁸ The 2014 guidelines from the American Heart Association and American Stroke Association for the prevention of stroke in women also recognized preterm birth as a factor associated with increased stroke risks after pregnancy, but did not make further recommendations because of the lack of evidence in the literature.²⁷ More recently, the 2016 European Society of Cardiology guidelines recommended the consideration of periodic screening for hypertension and

 Table 3. Sensitivity Analyses With Regard to Duration of Follow-Up

Outcomes	<10 Y	10 to 30 Y	>30 Y
CVD	1.65 [1.49, 1.82],	1.54 [1.19, 2.01],	1.73 [0.87, 3.46],
	n=1	n=4	n=2
CVD death		1.79 [1.51, 2.11], n=4	
CHD	1.61 [1.40, 1.86],	1.45 [1.32, 1.60],	1.55 [1.19, 2.01],
	n=1	n=3	n=1
CHD	1.54 [1.04, 2.28],	2.08 [1.80, 2.40],	2.10 [1.43, 3.08],
death	n=1	n=3	n=1
Stroke	1.67 [1.45, 1.93],	1.70 [1.51, 1.90],	1.28 [0.95, 1.72],
	n=2	n=2	n=1

Data are risk ratio [95% confidence intervals], number of pooled studies. CHD indicates coronary heart disease; CVD, cardiovascular disease.

[‡]References 23–26, 30–32, 35, 41–48, 50, 53.

Table 4.	Sensitivity	Analysis	With	Regard	to	Gestation of
Preterm I	Birth					

Outcomes	<32 Wks	32 to 37 Wks
CVD	1.85 [1.51, 2.28], n=6	1.40 [1.23, 1.59], n=5
CVD death	2.10 [1.61, 2.74], n=2	1.85 [1.58, 2.16], n=2
CHD	1.62 [1.28, 2.04], n=3	1.44 [1.35, 1.53], n=3
CHD death	2.30 [1.53, 3.46], n=1	2.20 [1.78, 2.71], n=1
Stroke	2.00 [1.65, 2.43], n=3	1.49 [1.22, 1.83], n=3

Data are risk ratio [95% confidence intervals], number of pooled studies. CHD indicates coronary heart disease; CVD, cardiovascular disease.

diabetes mellitus in women with a history of preterm birth.²⁹ In line with these recommendations, we suggest a detailed evaluation of a screening program for cardiovascular disease in women with a history of preterm birth, particularly in women who delivered because of any medical indications or before 32 weeks gestation (ie, the very or extremely preterm as defined by the World Health Organization). An opportune time for this screening is at the 6-week postpartum visit suggested in the World Health Organization recommendations on postnatal care.⁹³

The strength of our study lies in the large sample size with a total of 96 341 474 patient-years follow-up. We used a search strategy without limiting the study design, language, and used independent reviewers for performing double data extractions and data analysis. All of the studies were designed to assess future cardiovascular diseases as their main outcome.

The limitations of this study include the risk of confounding and being unable to attribute causality of future cardiovascular disease to preterm delivery. These are because of the longitudinal nature of the epidemiological studies we included in this meta-analysis. As with any meta-analysis, there may be inherent publication bias, where studies with positive findings are more likely to be published compared with those showing neutral or negative outcomes. Over half of the included studies were retrospective in design. Therefore, there was limited control over the quality of data collected. As such, the preterm birth exposure could have been prone to recall bias or

Table 5. Sensitivity Analysis With Regard to Recurrence ofPreterm Birth

Outcomes	Recurrent 1 Preterm Birth	Recurrent \geq 2 Preterm Births
CVD	1.42 [1.17, 1.73], n=4	1.58 [1.17, 2.12], n=3
CVD death	2.35 [1.23, 4.50], n=2	2.12 [1.22, 3.68], n=1
CHD	1.36 [1.09, 1.71], n=2	1.95 [1.53, 2.50], n=2
Stroke	1.77 [1.44, 2.17], n=1	1.61 [1.13, 2.30], n=2

Data are risk ratio [95% confidence intervals], number of pooled studies. CHD indicates coronary heart disease; CVD, cardiovascular disease.

Outcomes	Spontaneous	Medically Indicated
CVD	1.47 [1.34, 1.62], n=2	1.88 [1.64, 2.16], n=2
CVD death	1.70 [1.47, 1.96], n=1	3.70 [2.88, 4.76], n=1
CHD	1.48 [1.36, 1.60], n=2	1.80 [1.62, 2.00], n=2
CHD death	2.12 [1.82, 2.45], n=2	3.56 [1.74, 7.25], n=2
Stroke	1.49 [1.24, 1.79], n=1	2.12 [1.70, 2.65], n=1

Data are risk ratio [95% confidence intervals], number of pooled studies. CHD indicates coronary heart disease; CVD, cardiovascular disease.

inaccuracies in historical data collection. Furthermore, the cardiovascular outcomes were determined by subjective selfreporting in 3 studies.^{25,46,51} Heterogeneity may have arisen because of differences in the study population, research methodology, period of conducting the study, and inherent differences between the studies. Two studies were conducted in ethnically diverse populations^{26,48} in contrast to the other studies that were performed in white populations. Six studies examined women of any parity,^{23,43,47,48,51,53} while the others studied primiparous women. Specific populations were analyzed in 2 studies, which were Nardi et al⁴⁹ (women covered by a particular health insurance program) and Tanz et al²⁵ (nurses). As shown in Table 1, there was a mixture of retrospective, prospective, cross-sectional, and case-control studies. Because of the variation in duration of follow-up in the studies, the index preterm birth could have occurred in 1954 or in 2011. There has been both a change in obstetric practice, cardiovascular screening, and management of cardiovascular risk factors over these 57 years, which could have contributed toward differences between the studies. In the composite cardiovascular disease outcome, the heterogeneity was mainly driven by the Catov 2010 study.⁴³ Out of the pooled adjusted studies, this was the only study conducted in Europe as the others were conducted in the United States, Australia, or Israel.

Our finding of an association between preterm delivery and the future development of incident cardiovascular disease has important implications for women and health policy. Women who experience a preterm delivery are at a higher risk of cardiovascular events and this suggests that a formal cardiovascular risk assessment using established risk scores should be considered in these women.^{94,95} In addition, clinicians may find it pertinent to educate women regarding their increased cardiovascular risk and potentially motivate women toward controlling any modifiable risk factors. The perinatal period is a valuable time for opportunistic advice, education, intervention, and monitoring in at-risk women. However, there is little awareness regarding the long-term cardiovascular consequences of pregnancy complications among healthcare professionals. A survey showed that only 5% of internists inquired about pre-eclampsia during history taking, while primary care data showed that 50% of women who had pre-eclampsia did not receive any further postnatal follow-up after 3 months.^{96,97} Cardiovascular disease presents differently between men and women,^{28,98} and most cardiac sudden deaths in women occur without prior history of heart disease.^{99,100} Therefore, it would be appropriate to utilize past obstetric history to comprehensively assess cardiovascular risk profiles in women. Our findings support the current guidelines from the American Heart Association^{27,28} and the European Society of Cardiology²⁹ to assess preterm delivery as part of the cardiovascular disease risk assessment in women.

Conclusions

Our large meta-analysis that included 5 813 682 women, 338 007 of whom had experienced a preterm delivery, demonstrated that preterm birth is associated with a 1.4- to 2-fold increase in future adverse cardiovascular outcomes. In keeping with current recommendations, our study highlights the importance of advising women with preterm births about their increased cardiovascular risk and advocating and supporting lifestyle and behavioral changes to control their modifiable risk factors. These findings support the assessment of preterm delivery in cardiovascular risk assessment in women, with the 6-week postpartum visit the ideal place for this to occur.

Sources of Funding

This work was supported by a grant from the North Staffordshire Heart Committee. Wu is funded by a National Institute for Health Research (NIHR) Transitional Research Fellowship and Kwok is funded by a NIHR Academic Clinical Fellowship. This article presents independent research funded by the NIHR. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health.

Disclosures

None.

References

- Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller AB, Kinney M, Lawn J. Born too soon: the global epidemiology of 15 million preterm births. *Reprod Health.* 2013;10:S2.
- Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn JE, Cousens S, Mathers C, Black RE. Global, regional, and national causes of child mortality in 2000–13, with projections to inform post-2015 priorities: an updated systematic analysis. *Lancet*. 2015;385:430–440.

- Heida KY, Velthuis BK, Oudijk MA, Reitsma JB, Bots ML, Franx A, van Dunné FM. Cardiovascular disease risk in women with a history of spontaneous preterm delivery: a systematic review and meta-analysis. *Eur J Prev Cardiol*. 2015;23:253–263.
- Robbins CL, Hutchings Y, Dietz PM, Kuklina EV, Callaghan WM. History of preterm birth and subsequent cardiovascular disease: a systematic review. *Am J Obstet Gynecol.* 2014;210:285–297.
- Rich-Edwards JW, Fraser A, Lawlor DA, Catov JM. Pregnancy characteristics and women's future cardiovascular health: an underused opportunity to improve women's health? *Epidemiol Rev.* 2014;36:57–70.
- 6. The World Health Organisation. The global health observatory (GHO). 2017.
- Gulati M. Improving the cardiovascular health of women in the nation. Circulation. 2017;135:495–498.
- Sattar N, Greer IA. Pregnancy complications and maternal cardiovascular risk: opportunities for intervention and screening? *BMJ*. 2002;325:157–160.
- Hytten F, Leitch I. The physiology of human pregnancy. 2nd edition, Blackwell Scientific Publications, Oxford. 1971.
- Harskamp RE, Zeeman GG. Preeclampsia: at risk for remote cardiovascular disease. Am J Med Sci. 2007;334:291–295.
- 11. Garovic VD, Hayman SR. Hypertension in pregnancy: an emerging risk factor for cardiovascular disease. *Nat Clin Pract Nephrol.* 2007;3:613–622.
- Rich-Edwards JW, McElrath TF, Karumanchi A, Seely EW. Breathing life into the lifecourse approach: pregnancy history and cardiovascular disease in women. *Hypertension*. 2010;56:331–334.
- Romero R, Espinoza J, Kusanovic JP, Gotsch F, Hassan S, Erez O, Chaiworapongsa T, Mazor M. The preterm parturition syndrome. *BJOG*. 2006;113(suppl 3):17–42.
- Siddiqui N, Hladunewich M. Understanding the link between the placenta and future cardiovascular disease. *Trends Cardiovasc Med.* 2011;21:188–193.
- Romero R, Kusanovic JP, Chaiworapongsa T, Hassan SS. Placental bed disorders in preterm labor, preterm PROM, spontaneous abortion and abruptio placentae. *Best Pract Res Clin Obstet Gynaecol.* 2011;25:313–327.
- Catov JM, Lewis CE, Lee M, Wellons MF, Gunderson EP. Preterm birth and future maternal blood pressure, inflammation, and intimal-medial thickness: the CARDIA study. *Hypertension*. 2013;61:641–646.
- Hastie CE, Smith GC, Mackay DF, Pell JP. Association between preterm delivery and subsequent C-reactive protein: a retrospective cohort study. Am J Obstet Gynecol. 2011;205:556.e1–556.e4.
- Perng W, Stuart J, Rifas-Shiman SL, Rich-Edwards JW, Stuebe A, Oken E. Preterm birth and long-term maternal cardiovascular health. *Ann Epidemiol.* 2015;25:40–45.
- Catov JM, Dodge R, Barinas-Mitchell E, Sutton-Tyrrell K, Yamal JM, Piller LB, Ness RB. Prior preterm birth and maternal subclinical cardiovascular disease 4 to 12 years after pregnancy. *J Womens Health (Larchmt)*. 2013;22:835– 843.
- Kaaja RJ, Greer IA. Manifestations of chronic disease during pregnancy. JAMA. 2005;294:2751–2757.
- Williams D. Pregnancy: a stress test for life. Curr Opin Obstet Gynecol. 2003;15:465–471.
- Hovi P, Turkka S, Näsänen-Gilmore S, Vääräsmäki M, Gissler M, Pouta A, Kajantie E. Parental cardiovascular morbidity in families with a preterm child, a national register study [abstract]. Arch Dis Child. 2014;99:A103.
- Ngo AD, Chen JS, Figtree G, Morris JM, Roberts CL. Preterm birth and future risk of maternal cardiovascular disease—is the association independent of smoking during pregnancy? *BMC Pregnancy Childbirth*. 2015;15:144.
- Rich-Edwards JW, Klungsoyr K, Wilcox AJ, Skjaerven R. Duration of pregnancy, even at term, predicts long-term risk of coronary heart disease and stroke mortality in women: a population-based study. *Am J Obstet Gynecol.* 2015;213:518.e1–518.e8.
- Tanz LJ, Stuart JJ, Williams PL, Rimm EB, Missmer SA, Rexrode KM, Mukamal KJ, Rich-Edwards JW. Preterm delivery and maternal cardiovascular disease in young and middle-aged adult women. *Circulation*. 2017;135: 578–589.
- Wang IK, Chang SN, Liao CC, Liang CC, Chang CT, Lin HH, Liu JH, Liu YL, Chuang FR, Hsu CY, Huang CC, Sung FC. Hypertensive disorders in pregnancy and preterm delivery and subsequent stroke in Asian women: a retrospective cohort study. *Stroke*. 2011;42:716–721.
- 27. Bushnell C, McCullough LD, Awad IA, Chireau MV, Fedder WN, Furie KL, Howard VJ, Lichtman JH, Lisabeth LD, Pina IL, Reeves MJ, Rexrode KM, Saposnik G, Singh V, Towfighi A, Vaccarino V, Walters MR. Guidelines for the prevention of stroke in women: a statement for healthcare professionals from the American Heart Association/American Stroke Association. *Stroke*. 2014;45:1545–1588.

- Mosca L, Benjamin EJ, Berra K, Bezanson JL, Dolor RJ, Lloyd-Jones DM, Newby LK, Piña IL, Roger VL, Shaw LJ, Zhao D, Beckie TM, Bushnell C, D'Armiento J, Kris-Etherton PM, Fang J, Ganiats TG, Gomes AS, Gracia CR, Haan CK, Jackson EA, Judelson DR, Kelepouris E, Lavie CJ, Moore A, Nussmeier NA, Ofili E, Oparil S, Ouyang P, Pinn VW, Sherif K, Smith SC, Sopko G, Chandra-Strobos N, Urbina EM, Vaccarino V, Wenger NK. Effectiveness-based guidelines for the prevention of cardiovascular disease in women—2011 update: a guideline from the American Heart Association. *Circulation*. 2011;123:1243–1262.
- Piepoli MF, Hoes AW, Agewall S, Albus C, Brotons C, Catapano AL, Cooney MT, Corra U, Cosyns B, Deaton C, Graham I, Hall MS, Hobbs FD, Lochen ML, Lollgen H, Marques-Vidal P, Perk J, Prescott E, Redon J, Richter DJ, Sattar N, Smulders Y, Tiberi M, van der Worp HB, van Dis I, Verschuren WM. 2016 European guidelines on cardiovascular disease prevention in clinical practice. *Eur J Prev Cardiol.* 2016;23:NP1–NP96.
- Bonamy AK, Parikh NI, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: effects of gestational age and fetal growth. *Circulation*. 2011;124:2839–2846.
- Lykke JA, Paidas MJ, Damm P, Triche EW, Kuczynski E, Langhoff-Roos J. Preterm delivery and risk of subsequent cardiovascular morbidity and type-ii diabetes in the mother. *BJOG*. 2010;117:274–281.
- Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. *Lancet.* 2001;357:2002–2006.
- Banerjee M, Cruickshank JK. Pregnancy as the prodrome to vascular dysfunction and cardiovascular risk. Nat Clin Pract Cardiovasc Med. 2006;3:596–603.
- Sattar N. Do pregnancy complications and CVD share common antecedents? *Atheroscler Suppl.* 2004;5:3–7.
- Smith GD, Whitley E, Gissler M, Hemminki E. Birth dimensions of offspring, premature birth, and the mortality of mothers. *Lancet.* 2000;356:2066– 2067.
- Wu P, Gulati M, Kwok C, Wong C, Narain A, O'Brien S, Kadam U, Mamas M. Preterm birth and maternal cardiovascular outcome: a systematic review and meta-analysis. *PROSPERO*: International prospective register of systematic reviews. 2017;CRD42017068455. Available from: http://www.crd.york.ac.uk/ PROSPERO/display_record.php?ID=CRD42017068455. Accessed December 27, 2017.
- Park K, Wei J, Minissian M, Merz CNB, Pepine CJ. Adverse pregnancy conditions, infertility, and future cardiovascular risk: implications for mother and child. *Cardiovasc Drugs Ther*. 2015;29:391–401.
- Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, Tugwell P. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2000. Available at: www.ohri.ca/programs/clinica l_epidemiology/oxford.asp. Accessed Octoober 12, 2017.
- Higgins JP, Green S. Cochrane Handbook for Systematic Reviews of Interventions. Chichester, United Kingdom: Wiley; 2008.
- Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007;176:1091– 1096.
- Lykke JA, Langhoff-Roos J, Lockwood CJ, Triche EW, Paidas MJ. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery. *Paediatr Perinat Epidemiol.* 2010;24:323–330.
- Pell JP, Smith GC, Walsh D. Pregnancy complications and subsequent maternal cerebrovascular events: a retrospective cohort study of 119,668 births. Am J Epidemiol. 2004;159:336–342.
- Catov JM, Wu CS, Olsen J, Sutton-Tyrrell K, Li J, Nohr EA. Early or recurrent preterm birth and maternal cardiovascular disease risk. *Ann Epidemiol.* 2010;20:604–609.
- Hastie CE, Smith GC, Mackay DF, Pell JP. Maternal risk of ischaemic heart disease following elective and spontaneous pre-term delivery: retrospective cohort study of 750 350 singleton pregnancies. *Int J Epidemiol.* 2011;40:914–919.
- Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. *BMJ*. 2001;323:1213–1217.
- Catov JM, Newman AB, Roberts JM, Kelsey SF, Sutton-Tyrrell K, Harris TB, Colbert L, Rubin SM, Satterfield S, Ness RB; Health ABCS. Preterm delivery and later maternal cardiovascular disease risk. *Epidemiology*. 2007;18:733–739.
- Cirillo PM, Cohn BA. Pregnancy complications and cardiovascular disease death: 50-year follow-up of the child health and development studies pregnancy cohort. *Circulation*. 2015;132:1234–1242.

- Kessous R, Shoham-Vardi I, Pariente G, Holcberg G, Sheiner E. An association between preterm delivery and long-term maternal cardiovascular morbidity. *Am J Obstet Gynecol.* 2013;209:368.e1–368.e8.
- Nardi O, Zureik M, Courbon D, Ducimetiere P, Clavel-Chapelon F. Preterm delivery of a first child and subsequent mothers' risk of ischaemic heart disease: a nested case-control study. *Eur J Cardiovasc Prev Rehabil.* 2006;13:281–283.
- Wikstrom AK, Haglund B, Olovsson M, Lindeberg SN. The risk of maternal ischaemic heart disease after gestational hypertensive disease. *BJOG*. 2005;112:1486–1491.
- Freibert SM, Mannino DM, Bush H, Crofford LJ. The association of adverse pregnancy events and cardiovascular disease in women 50 years of age and older. J Womens Health (Larchmt). 2011;20:287–293.
- Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. *PLoS Med.* 2009;6:e1000097.
- Smith GD, Sterne J, Tynelius P, Lawlor DA, Rasmussen F. Birth weight of offspring and subsequent cardiovascular mortality of the parents. *Epidemi*ology. 2005;16:563–569.
- Yawn BP, Suman VJ, Jacobsen SJ. Maternal recall of distant pregnancy events. J Clin Epidemiol. 1998;51:399–405.
- Tomeo CA, Rich-Edwards JW, Michels KB, Berkey CS, Hunter DJ, Frazier AL, Willett WC, Buka SL. Reproducibility and validity of maternal recall of pregnancy-related events. *Epidemiology*. 1999;10:774–777.
- Buka SL, Goldstein JM, Spartos E, Tsuang MT. The retrospective measurement of prenatal and perinatal events: accuracy of maternal recall. *Schizophr Res.* 2004;71:417–426.
- Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. *Lancet.* 2008;371:75–84.
- Catov JM, Bodnar LM, Kip KE, Hubel C, Ness RB, Harger G, Roberts JM. Early pregnancy lipid concentrations and spontaneous preterm birth. *Am J Obstet Gynecol.* 2007;197:610.e1–610.e17.
- Catov JM, Bodnar LM, Ness RB, Barron SJ, Roberts JM. Inflammation and dyslipidemia related to risk of spontaneous preterm birth. *Am J Epidemiol*. 2007;166:1312–1319.
- Kramer MS, Kahn SR, Rozen R, Evans R, Platt RW, Chen MF, Goulet L, Seguin L, Dassa C, Lydon J, McNamara H, Dahhou M, Genest J. Vasculopathic and thrombophilic risk factors for spontaneous preterm birth. *Int J Epidemiol.* 2009;38:715–723.
- Magnussen EB, Vatten LJ, Lund-Nilsen TI, Salvesen KA, Davey Smith G, Romundstad PR. Prepregnancy cardiovascular risk factors as predictors of pre-eclampsia: population based cohort study. *BMJ*. 2007;335:978.
- Ray JG, Diamond P, Singh G, Bell CM. Brief overview of maternal triglycerides as a risk factor for pre-eclampsia. *BJOG*. 2006;113:379–386.
- Wu P, Haththotuwa R, Kwok CS, Babu A, Kotronias RA, Rushton C, Zaman A, Fryer AA, Kadam U, Chew-Graham CA, Mamas MA. Preeclampsia and future cardiovascular health: a systematic review and meta-analysis. *Circ Cardiovasc Qual Outcomes*. 2017;10:e003497.
- 64. Behman R, Butler A. Preterm Birth: Causes, Consequences, and Prevention. Washington, DC: The National Academies Press; 2007.
- Catov JM, Bodnar LM, Hackney D, Roberts JM, Simhan HN. Activation of the fibrinolytic cascade early in pregnancy among women with spontaneous preterm birth. *Obstet Gynecol.* 2008;112:1116–1122.
- Edison RJ, Berg K, Remaley A, Kelley R, Rotimi C, Stevenson RE, Muenke M. Adverse birth outcome among mothers with low serum cholesterol. *Pediatrics*. 2007;120:723–733.
- Mudd LM, Holzman CB, Catov JM, Senagore PK, Evans RW. Maternal lipids at mid-pregnancy and the risk of preterm delivery. *Acta Obstet Gynecol Scand*. 2012;91:726–735.
- Zhang J, Villar J, Sun W, Merialdi M, Abdel-Aleem H, Mathai M, Ali M, Yu KF, Zavaleta N, Purwar M, Nguyen TN, Campodonico L, Landoulsi S, Lindheimer M, Carroli G. Blood pressure dynamics during pregnancy and spontaneous preterm birth. *Am J Obstet Gynecol.* 2007;197:162.e1–162.e6.
- Steffen KM, Cooper ME, Shi M, Caprau D, Simhan HN, Dagle JM, Marazita ML, Murray JC. Maternal and fetal variation in genes of cholesterol metabolism is associated with preterm delivery. *J Perinatol*. 2007;27:672–680.
- Thomson AJ, Telfer JF, Young A, Campbell S, Stewart CJR, Cameron IT, Greer IA, Norman JE. Leukocytes infiltrate the myometrium during human parturition: further evidence that labour is an inflammatory process. *Hum Reprod.* 1999;14:229–236.
- Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83:456S–460S.

- Blake GJ, Ridker PM. Novel clinical markers of vascular wall inflammation. Circ Res. 2001;89:763–771.
- DeFranco E, Teramo K, Muglia L. Genetic influences on preterm birth. Semin Reprod Med. 2007;25:40–51.
- 74. Kahn R, Buse J, Ferrannini E, Stern M. The metabolic syndrome: time for a critical appraisal. Joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. *Diabetologia*. 2005;48:1684–1699.
- Alberti KGMM, Zimmet P, Shaw J. Metabolic syndrome—a new world-wide definition. A consensus statement from the international diabetes federation. *Diabet Med.* 2006;23:469–480.
- Fraser A, Nelson SM, Macdonald-Wallis C, Cherry L, Butler E, Sattar N, Lawlor DA. Associations of pregnancy complications with calculated cardiovascular disease risk and cardiovascular risk factors in middle age: the Avon Longitudinal Study of Parents and Children. *Circulation*. 2012;125:1367– 1380.
- Arias F, Rodriquez L, Rayne SC, Kraus FT. Maternal placental vasculopathy and infection: two distinct subgroups among patients with preterm labor and preterm ruptured membranes. *Am J Obstet Gynecol.* 1993;168:585–591.
- Germain AM, Carvajal J, Sanchez M, Valenzuela GJ, Tsunekawa H, Chuaqui B. Preterm labor: placental pathology and clinical correlation. *Obstet Gynecol*. 1999;94:284–289.
- Tucker JM, Goldenberg RL, Davis RO, Copper RL, Winkler CL, Hauth JC. Etiologies of preterm birth in an indigent population: is prevention a logical expectation? *Obstet Gynecol.* 1991;77:343–347.
- Li S, Zhang M, Tian H, Liu Z, Yin X, Xi B. Preterm birth and risk of type 1 and type 2 diabetes: systematic review and meta-analysis. *Obes Rev.* 2014;15:804–811.
- Kyrklund-Blomberg NB, Cnattingius S. Preterm birth and maternal smoking: risks related to gestational age and onset of delivery. *Am J Obstet Gynecol.* 1998;179:1051–1055.
- Shiono PH, Klebanoff MA, Rhoads GG. Smoking and drinking during pregnancy. Their effects on preterm birth. JAMA. 1986;255:82–84.
- McGorrian C, Yusuf S, Islam S, Jung H, Rangarajan S, Avezum A, Prabhakaran D, Almahmeed W, Rumboldt Z, Budaj A, Dans AL, Gerstein HC, Teo K, Anand SS. Estimating modifiable coronary heart disease risk in multiple regions of the world: the INTERHEART Modifiable Risk Score. *Eur Heart J.* 2011;32:581–589.
- Haire-Joshu D, Glasgow RE, Tibbs TL. Smoking and diabetes. *Diabetes Care*. 1999;22:1887–1898.
- Al-Delaimy WK, Manson JE, Solomon CG, Kawachi I, Stampfer MJ, Willett WC, Hu FB. Smoking and risk of coronary heart disease among women with type 2 diabetes mellitus. *Arch Intern Med*. 2002;162:273–279.
- Huebschmann AG, Regensteiner JG, Vlassara H, Reusch JE. Diabetes and advanced glycoxidation end products. *Diabetes Care*. 2006;29:1420–1432.

- Morgen CS, Bjork C, Andersen PK, Mortensen LH, Nybo Andersen AM. Socioeconomic position and the risk of preterm birth: a study within the Danish National Birth Cohort. *Int J Epidemiol.* 2008;37:1109–1120.
- Torloni MR, Betran AP, Daher S, Widmer M, Dolan SM, Menon R, Bergel E, Allen T, Merialdi M. Maternal BMI and preterm birth: a systematic review of the literature with meta-analysis. J Matern Fetal Neonatal Med. 2009;22:957–970.
- McDonald SD, Han Z, Mulla S, Beyene J. Overweight and obesity in mothers and risk of preterm birth and low birth weight infants: systematic review and meta-analyses. *BMJ*. 2010;341:c3428.
- Thurston RC, Kubzansky LD, Kawachi I, Berkman LF. Is the association between socioeconomic position and coronary heart disease stronger in women than in men? *Am J Epidemiol*. 2005;162:57–65.
- Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease. J Am Coll Cardiol. 2009;53:1925–1932.
- Manson JE, Colditz GA, Stampfer MJ, Willett WC, Rosner B, Monson RR, Speizer FE, Hennekens CH. A prospective study of obesity and risk of coronary heart disease in women. *N Engl J Med.* 1990;322:882–889.
- World Health Organization. WHO recommendations on postnatal care of the mother and newborn. 2013.
- Bang H, Edwards AM, Bomback AS, Ballantyne CM, Brillon D, Callahan MA, Teutsch SM, Mushlin AI, Kern LM. Development and validation of a patient self-assessment score for diabetes risk. *Ann Intern Med.* 2009;151:775–783.
- Lindstrom J, Tuomilehto J. The diabetes risk score: a practical tool to predict type 2 diabetes risk. *Diabetes Care*. 2003;26:725–731.
- Young B, Hacker MR, Rana S. Physicians' knowledge of future vascular disease in women with preeclampsia. *Hypertens Pregnancy*. 2012;31:50–58.
- Nijdam ME, Timmerman MR, Franx A, Bruinse HW, Numans ME, Grobbee DE, Bots ML. Cardiovascular risk factor assessment after pre-eclampsia in primary care. *BMC Fam Pract*. 2009;10:77.
- 98. Shaw LJ, Bairey Merz CN, Pepine CJ, Reis SE, Bittner V, Kelsey SF, Olson M, Johnson BD, Mankad S, Sharaf BL, Rogers WJ, Wessel TR, Arant CB, Pohost GM, Lerman A, Quyyumi AA, Sopko G. Insights from the NHLBI-sponsored women's ischemia syndrome evaluation (WISE) study: Part I: gender differences in traditional and novel risk factors, symptom evaluation, and gender-optimized diagnostic strategies. J Am Coll Cardiol. 2006;47:S4–S20.
- Burke AP, Farb A, Malcom GT, Liang Y, Smialek J, Virmani R. Effect of risk factors on the mechanism of acute thrombosis and sudden coronary death in women. *Circulation*. 1998;97:2110–2116.
- 100. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics—2012 update. *Circulation*. 2012;125:e2–e220.

SUPPLEMENTAL MATERIAL

Data S1.

Search terms

Synonyms of preterm birth ('preterm delivery' or 'preterm birth' or 'premature delivery' or 'premature birth') AND 'ischaemic heart disease' or 'ischemic heart disease' or 'coronary artery disease' or 'coronary heart disease' or 'myocardial infarction' or 'acute coronary syndrome' or 'heart failure' or 'cardiac failure' or 'left ventricular systolic dysfunction' or 'stroke' or 'cerebrovascular disease' or 'cerebrovascular accident' or 'cardiomyopathy' or 'peripheral vascular disease' or 'cardiovascular disease' or 'cardiovascular morbidity'.

 Table S1. Study quality assessment overview.

Study ID	Representative	Selection of	Ascertainment	Demonstration	Comparability	Assessment	Follow-up	Adequacy	Total
	of the exposed	the non-	of preterm	that outcome of	of cohort	of outcome	duration to	of follow-up	score
	cohort	exposed	birth	interest was not			capture		
		cohort		present at start			outcomes		
				of study					
Bonamy 2011 ¹	*	*	*	*	**	*	*	*	9
Catov 2007 ²	*	*			**		*	*	6
Catov 2010 ³	*	*	*	*	**	*	*	*	9
Cirillo 2015 ⁴	*	*	*	*	*	*	*	*	8
Davey Smith	*	*	*	*	*	*			6
2000 ⁵									
Davey Smith	*	*	*	*	*	*	*		7
20056									
Freibert 2011 ⁷	*	*						*	3
Hastie 2011 ⁸	*	*	*		*	*	*	*	7
Hovi 2014 ⁹	*	*	*			*	*	*	6
Irgens 2001 ¹⁰	*	*	*	*	*	*	*	*	8
Kessous 2013 ¹¹	*	*	*	*	**	*	*	*	9
Lykke 2010a ¹² &	*	*	*	*	**	*	*	*	9
Lykke 2010b ¹³									
Nardi 2006 ¹⁴		*		*	*	*	*		5
Ngo 2015 ¹⁵	*	*	*	*	*	*	*	*	8
Pell 2004 ¹⁶ &	*	*	*		*	*	*		6
Smith 200117									

Rich-Edwards	*	*	*	*	*	*	*	*	8
2015 ¹⁸									
Tanz 2017 ¹⁹		*		*	*		*		4
Wang 2011 ²⁰	*	*	*	*	*	*	*	*	8
Wikstrom 2005 ²¹	*	*	*		*	*	*	*	7

Study ID	Representative	Selection	Ascertainment	Demonstration	Comparability of cohort	Reliable	Follow-up	Adequacy
	of the exposed	of the	of preterm	that outcome of		ascertainment of	duration	of follow-
	cohort	non-	birth	interest was not		outcomes	to capture	up
		exposed		present at start of			outcomes	
		cohort		study				
Bonamy	General cohort	Controls	From the	Excluded women	Adjusted for maternal age,	ICD-8 to 10 codes	Median	Database
20111	of women.	from the	Swedish	with a CVD event	birth year, highest income and	from the hospital	11.8 years.	study.
		same	Medical Birth	before their first	highest education level before	discharge register or		
		cohort.	Register.	delivery.	first delivery, country of birth,	the cause of death		
					pregestational hypertension,	register.		
					pregestational diabetes			
					mellitus, gestational diabetes	ICD-8: 411, 427.00,		
					mellitus, gestational	427.10.		
					hypertension, pre-	ICD-9: 411B, 428.		
					eclampsia/eclampsia and	ICD-8/9: 410, 430-		
					maternal smoking at beginning	436.		
					of pregnancy.	ICD-10: G45, I20.0,		
						121-22, 150, 160-64.		
Catov	General cohort	Controls	Self-reported.	Excluded women	Adjusted for race, age at study	Self-reported and	Mean 57	All women
2007 ²	of women.	from the		who reported pre-	baseline, systolic BP, log	validated using an	years.	followed
		same		eclampsia or	pulse wave velocity (from	algorithm that		up.
		cohort.		hypertension	simultaneous carotid and	assesses medication,		
				during pregnancy.	femoral artery Doppler flow	physical examination,		
					signals), insulin resistance, log	blood tests and ECG.		

Table S2. Study quality assessment in detail.

					IL-6, HDL cholesterol and			
					statin use.			
Catov	General cohort	Controls	From the	Excluded women	Adjusted for maternal age at	ICD-8 and 10 codes	Mean 28	Database
2010 ³	of women.	from the	Danish Medical	with	first birth, parity, education,	from the National	years.	study.
		same	Birth Registry.	hospitalization for	birth year. Excluded pre-	Hospital Discharge		
		cohort.		CVD or diabetes	eclampsia, SGA offspring and	Register.		
				before the first	diabetes.			
				birth during study		ICD-8: 410-414, 430-		
1				period and those		438, 440, 444, 452,		
				dying during		453.		
				delivery.		ICD-10: I20-25.5,		
						160-69.8, 170-70.9,		
						174, 181, 182.		
Cirillo	General cohort	Controls	From medical	Not applicable as	Adjusted for age, race, parity,	ICD-7 to 10 codes in	Median 40	<10% loss
2015 ⁴	of women.	from the	records.	death outcome.	BMI and smoking. Excluded	data linkage to	years.	to follow-
		same			pre-existing heart disease,	California Vital		up.
		cohort.			multiple births, gestations <20	Statistics and		
					weeks and missing parity data.	National Death		
						Index.		
						ICD-7: 420.1.		
						ICD-8: 410, 412.		
						ICD-9: 410, 411, 414,		
						429.		
						ICD-10: I21, I24, I25.		

Davey	General cohort	Controls	From previous	Not applicable as	Adjusted for age, height,	From Finnish Central	Unclear.	Unclear.
Smith	of women.	from the	study records.	death outcome.	marital status, visits to private	Population and Cause		
2000 ⁵		same			doctor, BP and hormone use	of Death registers.		
		cohort.			during pregnancy,			
Davey	General cohort	Controls	From the	Not applicable as	Adjusted for birth weight.	ICD-9 codes in the	Mean 20.4	Unclear.
Smith	of parents.	from the	Swedish	death outcome.		Swedish Cause of	years.	
20056		same	Medical Birth			Death register.		
		cohort.	Register.					
						ICD-9: 390-459.		
Freibert	General cohort	Controls	Self-reported.	No.	Unadjusted.	Self-reported.	Unclear.	92.3% of
20117	of women.	from the						all eligible
		same						women had
		cohort.						complete
								data.
Hastie	General cohort	Controls	From routine	No.	Adjusted for age at delivery,	ICD-8 to10 codes	Mean 22	Database
20118	of women.	from the	national		height, deprivation category,	from electronic	years.	study.
		same	electronic		birthweight decile, essential	records.		
		cohort.	records.		hypertension and pre-			
					eclampsia.	ICD-8/9: 410-414.		
						ICD-10: I20-25.		
Hovi	General cohort	Controls	From the	No.	Unadjusted.	ICD-9 and 10 codes	Up to 22	<1% loss
20149	of women.	from the	Finnish Medical			from the Hospital	years.	to follow-
		same	Birth Register.			Discharge Register		up.
		cohort.				data and non-primary		

						care outpatient visit		
						data.		
						No details on exact		
						ICD codes used.		
Irgens	General cohort	Controls	From the	Not applicable as	Adjusted for age at delivery	ICD-8 and 9 codes	Median 13	<10% loss
200110	of women.	from the	Medical Birth	death outcome.	and year of birth of baby.	from the Registry of	years.	to follow-
		same	Registry of		Excluded pre-eclampsia.	Causes of Death.		up.
		cohort.	Norway.					
						ICD-8/9: 410-429.		
Kessous	General cohort	Controls	From the	Excluded women	Adjusted for diabetes,	ICD-9 codes from the	Mean 10	Database
201311	of women.	from the	hospital	with known CVD	gestational diabetes, obesity,	hospitalization	years.	study.
		same	perinatal	before or during	age, pre-eclampsia, ethnicity,	database.		
		cohort.	database.	the index	anaemia and induction of			
				pregnancy.	labour.	ICD-9: 272.2, 272.4,		
						401.9, 402, 404,		
						404.9, 410, 411,		
						411.8, 411.81, 413,		
						413.9, 414, 414.8,		
						414.9, 415, 415.0,		
						427.5, 428.0, 428.1,		
						428.9, 429.9, 429.2,		
						436, 437, 437.1, 440,		
						440.2, 443.8, 443.89,		
						443.9, V810, V812,		
						Z0045-Z0047, Z005,		

Lykke 2010a ¹² & Lykke 2010b ¹³	General cohort of women.	Controls from the same cohort.	From the National Patient Registry in Denmark.	Excluded pre- existing diabetes, cardiovascular diagnosis and women who died or emigrated 3 months after delivery.	Adjusted for maternal age at delivery, year of delivery, hypertensive pregnancy disorders, SGA or large-for- gestational-age offspring, placental abruption and stillbirth (Lykke 2010a). Adjusted for maternal age at delivery and year of delivery (Lykke 2010b).	Z0065, Z3721- Z3723, Z37211, Z3610, Z3619, Z8852-Z8857, Z8877, Z8941, Z8943, Z8944, Z895. ICD codes from the National Patient Registry (Lykke 2010a) or from cause of death registry or first cardiovascular diagnosis within 1 week prior to death (Lykke 2010b). ICD-8: 39-44, 45.145.8, 41.0-41.4, 427.09-427.11, 427.19, 427.99, 428.99, 429.00, 429.08, 429.09, 430- 438.	Median 14.6 years (Lykke 2010a) or 14.8 years (Lykke 2010b).	<10% loss to follow- up.
--	-----------------------------	---	---	---	--	---	--	--------------------------------

						ICD-10: G45, I0-9,		
						120-25, 150, 151.3,		
						151.9, 160-67.		
Nardi	Teachers	Controls	Self-reported.	Not applicable as	Unadjusted. Excluded pre-	Death from CHD	Mean 5.2	19% loss to
2006 ¹⁴	covered by a	from the	Ben reported.	death outcome.	existing MI, angina,	using ICD-9 codes	years from	follow-up.
2000	health			death outcome.	psychiatric disorders and	from insurance and	study	ionow-up.
		same						
	insurance	cohort.			unspecified other cardiac and	national databases.	enrolment.	
	scheme.				non-cardiac diseases.			
						ICD-9: 410-414.		
Ngo	General cohort	Controls	From the	Excluded chronic	Adjusted for age, country of	ICD-10 codes from	Median 7.5	Linkage
2015 ¹⁵	of women.	from the	perinatal data	hypertension or	birth, socioeconomic status,	national datasets.	years.	proportion
		same	collection.	hypertensive	parity, SGA offspring,			for records
		cohort.		disorders of	diabetes, gestational diabetes	ICD-10: G45.0-45.2,		>98%.
				pregnancy, CVD	and smoking.	G45.4, G45.8, G45.9,		
				event prior to last		G46, I20-25, I25.2,		
				birth, CVD event		150, 160-66, 167.0-		
				within 42 days of		67.2, I67.4-67.9,		
				last birth and death		I68.1, I68.2, I68.8,		
						I69.		

				before follow-up				
				period.				
Pell 2004 ¹⁶	General cohort	Controls	From routine	No.	Excluded stillbirths. Adjusted	ICD-9 and 10 codes	14-19	11.9%
& Smith	of women.	from the	maternity		for age, height, deprivation	from the Scottish	years.	(Pell 2004)
200117		same	hospital		category, pre-eclampsia,	Morbidity Record		or 4.4%
		cohort.	records.		lowest birth weight quintiles	system and General		(Smith
					and previous spontaneous	Registrar's Office.		2001) loss
					miscarriage (Pell 2004).			to follow-
					Additional adjustment for	ICD-9: 410-414, 430-		up.
					essential hypertension, but not	438.		
					previous miscarriage (Smith	ICD-10: G44, I-20-		
					2001).	25, I60-69,		
Rich-	General cohort	Controls	From the	Not applicable as	Adjusted for year of delivery,	ICD-8 to 10 codes in	Median	8.3% loss
Edwards	of women.	from the	Medical Birth	death outcome.	age and education at first	the National Cause of	24.8 years.	to follow-
201518		same	Registry of		birth.	Death Registry.		up.
		cohort.	Norway.					
						ICD-8/9: 410-414,		
						430-438.		
						ICD-10: I20-25, I60-		
						69.		
Tanz	Registered	Controls	Self-reported.	Excluded pre-	Excluded hypertensive	Self-reported then	Median 32	32% of
201719	nurses.	from the		existing MI or	disorders of pregnancy.	verified with medical	years.	eligible
		same		stroke.	Adjusted for age at first birth,	records.		women had
		cohort.			age in 1989, ethnicity, parental			missing
					education, pre-pregnancy			data.
					BMI, smoking, Alternative			

					Healthy Eating Index score,			
					alcohol intake, physical			
					activity at 18 years of age, oral			
					contraceptive use, chronic			
					hypertension,			
					hypercholesterolaemia, type 2			
					diabetes and family history of			
					MI or stroke before 60 years			
					of age.			
Wang	General cohort	Controls	From National	Excluded pre-	Adjusted for age, urbanization	ICD-9 codes from the	Mean 6.4	Database
2011^{20}	of women.	from the	Health	existing stroke or	level, diabetes,	national database.	years.	study.
		same	Insurance	hypertension.	hyperlipidaemia, CHD,			
		cohort.	program		abruption, lupus and	ICD-9: 430-437,		
			database.		thrombophilia.	674.0, A290-294,		
						A299.		
Wikstrom	General cohort	Controls	ICD codes from	Excluded	Adjusted for age, socio-	ICD-9 and ICD-10	15 years.	3.15%
2005^{21}	of women.	from	Swedish	hypertension and	economic level, category of	codes from hospital		died or
		same	Medical	diabetes.	hospital in which the first	discharge register and		emigrated.
		cohort.	Register.		child was born.	cause of death		
						register.		
						ICD-9: 410-414.		
						ICD=10: I20-25.		

BMI=body mass index, BP=blood pressure, CHD=coronary heart disease, CVD=cardiovascular diseases, ECG=electrocardiogram, HDL=highdensity lipoprotein, IL=interleukin, MI=myocardial infarction, SGA=small-for-gestational age. **Table S3.** Cardiovascular risk factor profile of preterm birth and term birth groups in the included studies. GDM=gestational diabetes, HBW=high birth weight >2500g, LBW=low birth weight <2500g, BMI=body mass index, N.S.=non-significant, SE=socio-economic, SEIFA=socio-economic indexes for areas, SGA=small-for-gestational age, wk=weeks gestation.

Study ID	Risk factor	During p	regnancy	/ study	At follow-up		
	profile	e	nrolment				
		Preterm	Term	р	Preterm	Term	p
				value			value
Bonamy 2011 ¹	Not available	-	-	-	-	-	-
Catov 2007 ²	Age (year)	23.1	HBW	-	72.9	HBW	-
			23.7			73.0	
			LBW			LBW	
			22.0			73.4	
	Black race (%)	-	-	-	51.9	HBW	-
						41.5	
						LBW	-
						63.2	
	Low SE status	-	-	-	22.2	HBW	-
	(%)					14.2	
						LBW	
						18.4	
	Ever smoker	-	-	-	66.7	HBW	-
	(%)					41.7	
						LBW	
						47.4	
	BMI (kg/m ²)	-	-	-	27.8	HBW	-
						28.3	
						LBW	
						26.7	
	Triacylglycerol	-	-	-	139.5	HBW	-
	(mg/dL)					141.3	
						LBW	

						163.7	
	Fasting glucose	_		_	104.0	HBW	-
	(mg/dL)					101.4	
						LBW	
						98.0	
	Fasting insulin	_	-	-	9.8	HBW	-
	(IU/mL)					8.2	
						LBW	
						10.7	
	Hypertension	-	-	-	70.4	HBW	-
	(%)					59.8	
						LBW	
						71.1	
	Diabetes (%)	-	-	-	7.7	HBW	-
						9.5	
						LBW	
						7.9	
Catov 2010 ³	Age (year)	25.2	25.7	-	-	-	-
	Basic	51.1	44.1	< 0.001	-	-	-
	education (%)						
	Pre-eclampsia	5.0	3.2	< 0.001	-	-	-
	(%)						
	SGA (%)	13.1	9.2	<0.001	-	-	-
Cirillo 2015 ⁴	Not available	-	-	-	-	-	-
Davey Smith	Not available	-	-	-	-	-	-
2000^{5}							
Davey Smith	Not available	-	-	-	-	-	-
20056							
Freibert 2010 ⁷	Age (year)	-	-	-	59.6	60.3	-
	Education ≤12	-	-	-	38	36.4	-
	years (%)						
	Ever smoker	-	-	-	44	40	-
	(%)						

Hastie 2011 ⁸	Age (year)	24	25	< 0.001	_	-	-
	High	7.9	6.7	< 0.001	_	_	_
	deprivation						
	quintile using						
	Carstairs index						
	(%)						
	Hypertension	0.4	0.1	< 0.001	-	-	-
	(%)						
	Pre-eclampsia	8.8	8.1	< 0.001	_	-	-
	(%)						
Hovi 2014 ⁹	Not available	-	-	-	-	-	-
Irgens 2001 ¹⁰	Not available	-	-	-	-	-	-
Kessous	Age (years)	28.1	29.9	0.001	-	-	-
201311	Jewish (%)	52.6	70.4	0.001	-	-	-
	GDM and	8.3	8.2	N.S.	-	-	-
	Diabetes (%)						
	Obesity (%)	1.1	2.0	0.001	-	-	-
Lykke 2010a ¹²	Not available	-	-	-	-	-	_
& Lykke							
2010b ¹³							
Nardi 2006 ¹⁴	Not available	-	-	-	-	-	-
Ngo 2015 ¹⁵	High	24.0	20.9	-	-	-	-
	deprivation						
	using SEIFA						
	index (%)						
	Ever smoker	30.0	28.3	-	-	-	-
	(%)						
	Diabetes (%)	1.3	0.4	-	-	-	-
Pell 2004 ¹⁶ &	Not available	-	-	-	-	-	-
Smith 2001 ¹⁷							
	Age (year)	23.7	23.9	-	-	-	-

Rich-Edwards	Education	53.6	46.4	_	_	-	-
2015 ¹⁸	<high school<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td></high>						
	(%)						
Tanz 2017 ¹⁹	Age (year)	<32 wk	27	-		-	-
		27.5					
		≥32 to					
		<37 wk					
		27.8					
	BMI≥30 (%)	<32 wk	3.1		-	_	_
		4.0					
		≥32 to					
		<37 wk					
		3.4					
	Caucasian (%)	<32 wk	92.9	-	-	-	_
		91.0					
		≥32 to					
		<37 wk					
		90.9					
	Ever smoker	<32 wk	31.8	-	_	-	-
	(%)	33.0					
		≥32 to					
		<37 wk					
		30.9					
Wang 2011 ²⁰	Not available	-	-	-	-	-	-
Wikstrom	Not available	-	-	-	-	-	-
2005^{21}							

Outcomes	Singleton pregnancies only	Singleton and multiple pregnancies
CVD	1.56 [1.27, 1.93], n=5	1.56 [1.32, 1.84], n=8
CVD death	1.95 [1.79, 2.12], n=4	1.81 [1.55, 2.10], n=5
CHD	1.48 [1.36, 1.61], n=4	1.50 [1.39, 1.62], n=6
CHD death	2.07 [1.76, 2.44], n=3	2.02 [1.78, 2.30], n=5
Stroke	1.69 [1.54, 1.85], n=3	1.65 [1.51, 1.79], n=5

Table S4. Sensitivity analysis with regards to singleton and multiple pregnancies.

Outcomes	Study year before 1990	Study year after 1990	Study year before 1970	Study year after 1970
CVD	1.51 [1.20, 1.90],	1.62 [1.46, 1.80],	-	-
	n=5	n=3		
CVD death	-	-	1.91 [1.68, 2.16],	1.74 [1.36, 2.23],
			n=2	n=3
CHD	1.46 [1.34, 1.59],	1.64 [1.44, 1.87],	-	-
	n=4	n=2		
CHD death	-	-	2.17 [1.92, 2.46],	1.61 [1.26, 2.07],
			n=3	n=2
Stroke	1.60 [1.33, 1.93],	1.67 [1.45, 1.93],	-	-
	n=3	n=2		

Table S5. Sensitivity analysis with regards to the year each study was commenced.

Table S6. Sensitivity analysis with regards to study quality score.

Outcomes	Study quality score ≤6	Study quality score ≥7
CVD	1.59 [1.38, 1.83], n=4	1.53 [1.18, 1.97], n=4
CVD death	2.06 [1.22, 3.47], n=1	1.79 [1.51, 2.11], n=4
CHD	1.65 [1.34, 2.03], n=2	1.48 [1.36, 1.61], n=4
CHD death	1.54 [1.04, 2.28], n=1	2.10 [1.87, 2.36], n=4
Stroke	1.55 [1.05, 2.29], n=2	1.67 [1.52, 1.83], n=3

Outcomes	Study location: Europe	Study location: U.S.	Study location: other
CVD	1.54 [1.23, 1.92], n=5	1.73 [0.87, 3.46], n=2	1.65 [1.49, 1.82], n=1
CVD death	1.81 [1.55, 2.10], n=5	-	-
CHD	1.45 [1.32, 1.60], n=3	1.65 [1.34, 2.03], n=2	1.61 [1.40, 1.86], n=1
CHD death	1.98 [1.69, 2.33], n=4	2.10 [1.43, 3.08], n=1	-
Stroke	1.70 [1.51, 1.90], n=2	1.28 [0.95, 1.72], n=1	1.67 [1.45, 1.93], n=2

Table S7. Sensitivity analysis with regards to study location.

Table S8. Sensitivity analysis with regards to whether the study excluded women with pre-existing cardiovascular disease.

Outcomes	Pre-existing CVD excluded	Pre-existing CVD not excluded
CVD	1.54 [1.24, 1.92], n=6	1.65 [1.46, 1.85], n=2
CVD death	1.98 [1.77, 2.21], n=2	1.54 [1.02, 2.33], n=3
CHD	1.45 [1.33, 1.57], n=4	1.59 [1.48, 1.71], n=2
CHD death	-	2.02 [1.78, 2.30], n=5
Stroke	1.63 [1.49, 1.78], n=4	1.91 [1.35, 2.70], n=1

Figure S1. PRISMA checklist

PRISMA 2009 Checklist

Section/topic	#	Checklist item	Reported on page #		
TITLE					
Title	1	Preterm Delivery and Future Risk of Maternal Cardiovascular Disease: A Systematic Review and Meta- Analysis.	1		
ABSTRACT					
Structured summary	2	Background: Preterm delivery (<37 weeks gestational age) affects 11% of all pregnancies, but data are conflicting whether preterm birth is associated with long-term adverse maternal cardiovascular outcomes.	5 6 7 8		

		<i>Results</i> : Twenty-one studies with over 5.8 million women, including over 338,000 women with previous preterm deliveries, were identified. Meta-analysis of studies that adjusted for potential confounders showed that preterm birth was associated with an increased risk of maternal future cardiovascular disease (risk ratio (RR) 1.43, 95% CI 1.18, 1.72), cardiovascular disease death (RR 1.78, 95% CI 1.42, 2.21), coronary heart disease (RR 1.49, 95% CI 1.38, 1.60), coronary heart disease death (RR 2.10, 95% CI 1.87, 2.36), and stroke (RR 1.65, 95% CI 1.51, 1.79). Sensitivity analysis showed that the highest risks occurred when the preterm deliveries occurred before 32 weeks gestation or were medically indicated. <i>Limitations</i> : The limitations of this study include the risk of confounding and being unable to attribute	16 17
		causality of future cardiovascular disease to preterm delivery. There may be inherent publication bias, recall bias or inaccuracies in historical data collection. Heterogeneity may have arisen due to differences in the study population, research methodology, period of conducting the study, and inherent differences between the studies.	
		<i>Conclusions</i> : Preterm delivery is associated with an increase in future maternal adverse cardiovascular outcomes, including a two-fold increase in deaths due to coronary heart disease. These findings support the assessment of preterm delivery in cardiovascular risk assessment in women.	
		Systematic review registration number: PROSPERO CRD42017068455	
INTRODUCTION			_
Rationale	3	Preterm birth (<37 weeks gestational age) affects 11% of all pregnancies. Pregnancy is characterized by a challenge to the cardiovascular system. This physiological stress for most women is uncomplicated but for women who experience preterm birth, this adverse pregnancy outcome may serve to identify women at risk for cardiovascular disease who would not have been detected using traditional risk assessment tools at a time when it may be possible to alter their risk trajectory. It remains unclear whether preterm delivery is an independent risk factor for future cardiovascular disease or an early marker of women with background high-risk profiles for future cardiovascular disease. The pathogenesis of preterm birth remains poorly understood.	5
Objectives	4	To systematically evaluate and summarize the evidence on the relationship between preterm birth and future maternal risk of cardiovascular diseases, we reviewed studies that compared long-term adverse cardiovascular outcomes between women with and without preterm birth in postnatal women.	6
METHODS			
Protocol and registration	5	Available from: http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017068455 Protocol registration number: PROSPERO CRD42017068455	6
Eligibility criteria	6	Participants: postnatal women. Comparisons: Preterm birth versus term birth. Outcome measures: ischaemic heart disease, coronary artery disease, coronary heart disease, myocardial infarction, acute coronary syndrome, heart failure, cardiac failure, left ventricular systolic dysfunction,	6

		stroke, cerebrovascular disease, cerebrovascular accident, cardiomyopathy, peripheral vascular disease, cardiovascular disease, cardiovascular morbidity, cardiovascular mortality.	
		<i>Study characteristics</i> : the included studies had at least two groups (one with preterm birth and one with term birth) and reported sufficient data to allow for accurate risk estimates to be calculated. There was no restriction based on language, cohort type, study design or duration of follow-up.	
Information sources	7	Searches were conducted using the databases MEDLINE and EMBASE from inception to present. Manual searching for additional articles was also conducted by reviewing the bibliography of relevant review articles and published systematic reviews. The last search was run on 7 th October 2017.	7
Search	8	Synonyms of preterm birth ('preterm delivery' or 'preterm birth' or 'premature delivery' or 'premature birth') AND 'ischaemic heart disease' or 'ischemic heart disease' or 'coronary artery disease' or 'coronary heart disease' or 'myocardial infarction' or 'acute coronary syndrome' or 'heart failure' or 'cardiac failure' or 'left ventricular systolic dysfunction' or 'stroke' or 'cerebrovascular disease' or 'cerebrovascular accident' or 'cardiomyopathy' or 'peripheral vascular disease' or 'cardiovascular disease' or 'cardiovascular morbidity' or 'cardiovascular mortality'.	Supplemental methods 2.
Study selection	9	Eligibility assessment was performed independently by 2 reviewers. Disagreements between reviewers were resolved by using the eligibility assessment by PW, who is a more experienced researcher.	7
Data collection process	10	Independent double data extraction was done by 4 reviewers using predefined data fields, including study quality indicators. Disagreements between reviewers were resolved by consensus. If no agreement could be reached, the decision was made by PW. The information was obtained from published data.	7
Data items	11	Data were collected on study design, year, country, number of participants, mean age, parity, cohort characteristics, definition and ascertainment of preterm birth, ascertainment of outcomes, timing of assessment, adequacy of follow-up and results. Where possible, we chose to pool adjusted risk estimates from primary studies and when these data were not available, raw data were used to calculate unadjusted risk estimates.	7, 8
Risk of bias in individual studies	12	Each study was individually assessed for quality based on the recommendations of the Newcastle-Ottawa Quality Assessment Scale for cohort studies by independent reviewers. No studies were excluded following quality assessment.	7
Summary measures	13	We conducted random effects meta-analysis using the inverse variance method for pooling log risk ratios.	8
Synthesis of results	14	Studies were pooled in meta-analysis with subgroups based on whether or not the study used adjustments to account for confounders. Statistical heterogeneity was assessed using the I ² statistic.	8
Risk of bias across studies	15	In the case for an analysis where there is more than 10 studies and little evidence of heterogeneity, we planned to perform funnel plots to assess for publication bias.	8
Additional analyses	16	Sensitivity analysis was performed to consider the follow-up duration of the studies (<10 years, 10-30 years, and >30 years), gestation (<32 weeks versus 32-37 weeks) and recurrence (1 recurrence versus ≥2	8

		recurrence) of preterm births, and whether the preterm births occurred spontaneously or were medically indicated.	
RESULTS			
Study selection	17	See flow diagram in figure 1.	Figure 1
Study characteristics	18	See table 1.	Table 1
Risk of bias within studies	19	See supplemental table 1 and 2.	Supplemental tables 1 and 2.
Results of individual studies	20	See table 2, figures 2-4.	Table 2, figures 2-4.
Synthesis of results	21	See figures 2-4.	Figures 2-4.
Risk of bias across studies	22	We did not perform funnel plots to assess for publication bias as less than 10 studies were included in each analysis.	11
Additional analysis	23	See table 3 and supplemental table 4.	Table 3 and supplemental table 4.
DISCUSSION	1		
Summary of evidence	24	We found that preterm delivery is associated with an increased maternal risk for future incident cardiovascular events, cardiovascular death, coronary heart disease events, coronary heart disease death and stroke. The adjusted risk ranged between 1.4 to 2–fold compared to those without a history of preterm birth. This increased risk is greatest in preterm births that occur before 32 weeks in gestation or in those that are delivered for medical indications such as fetal growth restriction or pre-eclampsia. For the composite cardiovascular disease and coronary heart disease outcomes, the risks are higher in women with a greater number of recurrent preterm births.	13
Limitations	25	<i>Outcome level</i> : The limitations of this study include the risk of confounding and being unable to attribute causality of future cardiovascular disease to preterm delivery. Heterogeneity may have arisen due to differences in the study population, research methodology, period of conducting the study, and inherent differences between the studies.	16

		<i>Review level:</i> There may be inherent publication bias, recall bias or inaccuracies in historical data collection.	
Conclusions	26	In keeping with current recommendations, our study highlights the importance of advising women with preterm births about their increased cardiovascular risk and advocating and supporting lifestyle and behavioural changes to control their modifiable risk factors. These findings support the assessment of preterm delivery in cardiovascular risk assessment in women, with the 6-week postpartum visit the ideal place for this to occur.	17
FUNDING			
Funding	27	This work was supported by a grant from the North Staffordshire Heart Committee. PW and CSK are funded by National Institute for Health Research Fellowships.	18

From: Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6: e1000097.

Supplemental References:

1. Bonamy AK, Parikh NI, Cnattingius S, Ludvigsson JF, Ingelsson E. Birth characteristics and subsequent risks of maternal cardiovascular disease: Effects of gestational age and fetal growth. *Circulation*. 2011;124:2839-2846.

2. Catov JM, Newman AB, Roberts JM, Kelsey SF, Sutton-Tyrrell K, Harris TB, Colbert L, Rubin SM, Satterfield S, Ness RB, Health ABCS. Preterm delivery and later maternal cardiovascular disease risk. *Epidemiology*. 2007;18:733-739.

3. Catov JM, Wu CS, Olsen J, Sutton-Tyrrell K, Li J, Nohr EA. Early or recurrent preterm birth and maternal cardiovascular disease risk. *Ann Epidemiol*. 2010;20:604-609.

4. Cirillo PM, Cohn BA. Pregnancy complications and cardiovascular disease death: 50-year follow-up of the child health and development studies pregnancy cohort. *Circulation*. 2015;132:1234-1242.

5. Smith GD, Whitley E, Gissler M, Hemminki E. Birth dimensions of offspring, premature birth, and the mortality of mothers. *Lancet*. 2000;356:2066-2067.

6. Smith GD, Sterne J, Tynelius P, Lawlor DA, Rasmussen F. Birth weight of offspring and subsequent cardiovascular mortality of the parents. *Epidemiology*. 2005;16:563-569.

7. Freibert SM, Mannino DM, Bush H, Crofford LJ. The association of adverse pregnancy events and cardiovascular disease in women 50 years of age and older. *J Womens Health* (*Larchmt*). 2011;20:287-293.

8. Hastie CE, Smith GC, Mackay DF, Pell JP. Maternal risk of ischaemic heart disease following elective and spontaneous pre-term delivery: Retrospective cohort study of 750 350 singleton pregnancies. *Int J Epidemiol*. 2011;40:914-919.

9. Hovi P, Turkka S, Näsänen-Gilmore S, Vääräsmäki M, Gissler M, Pouta A, Kajantie E. Parental cardiovascular morbidity in families with a preterm child, a national register study [abstract]. *Arch Dis Child*. 2014;99:A103-A103.

10. Irgens HU, Reisaeter L, Irgens LM, Lie RT. Long term mortality of mothers and fathers after pre-eclampsia: Population based cohort study. *BMJ*. 2001;323:1213-1217.

11. Kessous R, Shoham-Vardi I, Pariente G, Holcberg G, Sheiner E. An association between preterm delivery and long-term maternal cardiovascular morbidity. *Am J Obstet Gynecol*. 2013;209:368 e361-368.

12. Lykke JA, Langhoff-Roos J, Lockwood CJ, Triche EW, Paidas MJ. Mortality of mothers from cardiovascular and non-cardiovascular causes following pregnancy complications in first delivery. *Paediatr Perinat Epidemiol*. 2010;24:323-330.

13. Lykke JA, Paidas MJ, Damm P, Triche EW, Kuczynski E, Langhoff-Roos J. Preterm delivery and risk of subsequent cardiovascular morbidity and type-ii diabetes in the mother. *BJOG*. 2010;117:274-281.

14. Nardi O, Zureik M, Courbon D, Ducimetiere P, Clavel-Chapelon F. Preterm delivery of a first child and subsequent mothers' risk of ischaemic heart disease: A nested case-control study. *Eur J Cardiovasc Prev Rehabil*. 2006;13:281-283.

15. Ngo AD, Chen JS, Figtree G, Morris JM, Roberts CL. Preterm birth and future risk of maternal cardiovascular disease - is the association independent of smoking during pregnancy? *BMC Pregnancy Childbirth*. 2015;15:144.

16. Pell JP, Smith GC, Walsh D. Pregnancy complications and subsequent maternal cerebrovascular events: A retrospective cohort study of 119,668 births. *Am J Epidemiol*. 2004;159:336-342.

17. Smith GC, Pell JP, Walsh D. Pregnancy complications and maternal risk of ischaemic heart disease: A retrospective cohort study of 129,290 births. *Lancet*. 2001;357:2002-2006.

18. Rich-Edwards JW, Klungsoyr K, Wilcox AJ, Skjaerven R. Duration of pregnancy, even at term, predicts long-term risk of coronary heart disease and stroke mortality in women: A population-based study. *Am J Obstet Gynecol*. 2015;213:518 e511-518.

19. Tanz LJ, Stuart JJ, Williams PL, Rimm EB, Missmer SA, Rexrode KM, Mukamal KJ, Rich-Edwards JW. Preterm delivery and maternal cardiovascular disease in young and middle-aged adult women. *Circulation*. 2017;135:578-589.

20. Wang IK, Chang SN, Liao CC, Liang CC, Chang CT, Lin HH, Liu JH, Liu YL, Chuang FR, Hsu CY, Huang CC, Sung FC. Hypertensive disorders in pregnancy and preterm delivery and subsequent stroke in asian women: A retrospective cohort study. *Stroke*. 2011;42:716-721.

21. Wikstrom AK, Haglund B, Olovsson M, Lindeberg SN. The risk of maternal ischaemic heart disease after gestational hypertensive disease. *BJOG*. 2005;112:1486-1491.