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Abstract
Background: Recent studies showed that inflammation and immunity might play es-
sential roles in the progression of intracerebral hemorrhage (ICH). However, the un-
derlying mechanisms for changes at the cellular and molecular levels after ICH remain 
unclear.
Methods: We	downloaded	the	microarray	dataset	of	ICH	from	the	Gene	Expression	
Omnibus	 (GEO)	 database.	 The	 differential	 expression	 gene	 analysis	 was	 obtained	
by	weighted	gene	co-	expression	network	analysis	(WGCNA).	We	got	the	hub	genes	
and performed the biological functions and signaling pathways of these genes by 
Metascape.	 GSVA	 algorithm	 was	 used	 to	 evaluate	 the	 potential	 physical	 function	
of	 time-	varying	 ICH	samples.	We	used	 single-	sample	gene	 set	enrichment	analysis	
(ssGSEA)	 to	assess	 the	 immune	 signatures	 infiltration	and	analyzed	 the	correlation	
between hub genes and immune signatures.
Results: The data sets of all 22 ICH samples in GSE12	5512	were	examined	by	 the	
WGCNA	R	package.	We	finally	screened	five	hub	genes	(GAPDH,	PF4,	SELP,	APP,	and	
PPBP)	in	the	royal	blue	module.	Metascape	analysis	displayed	the	biological	processes	
related to inflammation and immunology. Cell adhesion molecule binding, myeloid 
leukocyte activation, CXCR chemokine receptor binding, and regulation of cytokine 
production were the most enriched pathophysiological process. The immune signa-
tures infiltration analyses showed that ICH patients’ early and late samples had differ-
ent	activity	and	abundance	of	immune-	related	cells	and	types.
Conclusions: GAPDH,	PF4,	SELP,	APP,	and	PPBP	are	identified	as	potential	biomark-
ers for predicting the progression of ICH. This study may help us better understand 
the immunologic mechanism and shed new light on the promising approaches of im-
munotherapy for ICH patients.
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1  |  INTRODUC TION

Intracerebral hemorrhage (ICH) remains the most devastating form of 
stroke.1	Although	ICH	accounts	for	10%–	15%	of	all	stokes,	it	is	reported	
that	the	fatality	rate	of	ICH	at	30	days	is	approximately	40%,	and	a	1-	year	
survival	 rate	of	only	30%.2,3 It has caused a severe concern for public 
health, and patients who are suffering from ICH will have severe neuro-
logical deficits, causing a substantial burden on both parents and families.

Intracerebral hemorrhage is defined as the nontraumatic hemor-
rhage of the primary brain parenchyma. ICH is caused by the spon-
taneous infiltration of blood into the brain parenchyma.4 Previous 
preclinical and a few clinical studies implicate that secondary brain 
injury might accelerate the progression of ICH.5,6	Secondary	damage	
following ICH is triggered by the hematoma, which involves various 
complex	 pathological	 processes,	 such	 as	 brain	 edema,	 blood-	brain	
barrier destruction, inflammation, and neuronal death.7 However, the 
underlying mechanisms of secondary brain injury after ICH remain un-
clear. In recent years, growing evidence has shown that immune cell 
infiltration plays a vital role in the occurrence and development of ICH, 
especially for secondary injury and the formation of perihematomal 
edema. Immunomodulators have been proved to delay the progres-
sion	of	PHE,	reduce	the	level	of	matrix	metalloproteinase	9	(MMP-	9)	in	
plasma and improve the clinical outcome of ICH patients.8,9 Treg cells 
(Regulatory T cells), as a negative regulatory subset of cells that can 
inhibit	the	function	of	other	immune	cells,	induce	the	protective	M2	
type transformation of microglia after ICH, and inhibit the upregula-
tion	of	pro-	inflammatory	cytokines,	such	as	TNF-	α,	IL-	β	and	MMP-	2.10

In	 this	 study,	we	hypothesized	 that	 several	 genes	 could	up-		 or	
downregulate in the evolving brain injury, indicating what patho-
physiological mechanisms were occurring and how ICH would induce 
inflammatory	and	immunologic	changes.	Using	bioinformatics	tech-
nology, we first downloaded the microarray dataset of ICH from the 
Gene	Expression	Omnibus	(GEO)	database.	We	performed	differen-
tial	 expression	 gene	 analysis	 by	weighted	 gene	 co-	expression	net-
work	analysis	(WGCNA).	Subsequently,	we	identified	the	key	genes	
and	 used	 single-	sample	 gene	 set	 enrichment	 analysis	 (ssGSEA)	 to	
analyze	the	difference	in	immune	infiltration	for	the	first	time.	In	ad-
dition,	we	analyzed	the	correlation	between	immune	signatures	and	
the	expression	of	genes.	These	findings	may	help	us	better	under-
stand	the	pathophysiological	mechanisms	of	brain	injury	by	explor-
ing the dynamic changes of core genes. Besides, from the immune 
system's perspective, evaluating the infiltration of immune cells and 
determining the differences in the composition of infiltrating im-
mune cells are of great value for elucidating the specific molecular 
mechanism of ICH and developing new immunotherapeutic targets.

2  |  MATERIAL S AND METHODS

2.1  |  Gene expression microarray data

We	acquired	the	microarray	expression	profiles	of	intracerebral	hem-
orrhage	 patients	 from	Gene	 Expression	Omnibus	 (GEO)	 database	
(http://www.ncbi.nlm.nih.	gov/geo/)	 that	contains	high-	throughput	

gene	 expression	 data,	 under	 the	 accession	 number	 GSE12	5512. 
Dataset GSE12	5512,	performed	on	 the	platform	of	GPL15433	 in-
cludes 11 patients and 22 samples. The first peripheral blood sample 
was obtained from each patient within 24 h of ICH symptom onset, 
and the second peripheral blood sample was collected from the 
same patient 72 h (+/−	6	 h)	 following	 the	 first.	 The	 aligned	 reads	
were	 quantified	 and	 converted	 to	 relative	 gene	 expression	 levels	
represented	by	FPKM	for	the	subsequent	network	construction.

2.2  |  WGCNA and identification of clinically 
significant modules

Weighted	gene	 co-	expression	network	analysis,	 a	 systematic	biol-
ogy method to find the modules of highly correlated genes with 
clinical phenotypes.11,12 In our study, we followed the standard 
process	of	WGCNA	and	applied	the	“WGCNA”	package	in	R	(http://
www.r-	proje	ct.org/) for data processing. We removed genes with 
zero-	variance	 between	 groups	 and	 screened	 the	 top	 5,000	 genes	
invariance for further analysis. The purpose of soft threshold setting 
was to make the network more in line with the characteristics of the 
scale-	free	network.	Then,	we	performed	a	topological	overlap	ma-
trix	(TOM)	to	estimate	its	connectivity	and	carried	out	hierarchical	
clustering analysis for dynamic tree cut. We used different colors to 
distinguish the modules.

Two indicators were adopted to identify modules related to clin-
ical	 phenotypes.	 Module	 eigengenes	 (MEs)	 summarized	 all	 genes	
with	similar	expression	patterns	into	a	single	characteristic	expres-
sion	 profile	module.	Gene	 significance	 (GS)	was	 calculated	 by	 the	
correlation	 between	MEs	 and	 clinical	 characteristics,	 equal	 to	 the	
log10 conversion of the p-	value	 in	 the	 linear	 regression	 between	
gene	expression	and	clinical	information	(GS	= LgP).13 The purpose 
of	GS	was	to	identify	the	clinically	relevant	modules	and	the	ME	of	
the module was considered the one related to the clinical feature.

2.3  |  Functional enrichment analysis of 
hub modules

Metascape	 (www.metas cape.org)is	 a	 web-	based	 portal	 that	 pro-
vides a comprehensive gene list annotation and analysis resource 
for	 experimental	 biologists.14 Our study used the tool to perform 
the biological functions and signaling pathways of genes involved 
in	hub	modules.	Pathway	with	Min	Overlap	≥	3	and	p ≤	0.01	was	
considered statistically significant. Besides, terms with similarities 
>0.3 were connected by edges and presented as a network graph to 
further	explore	the	relationship	between	terms.

2.4  |  Hub genes identification and efficacy 
verification

Hub genes are highly interconnected with nodes in the module 
and have been considered potential biological targets for clinical 

http://www.ncbi.nlm.nih
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traits corresponding to the module. Our research used the modu-
lar connectivity and clinical traits relationship to select candidate 
hub genes for the hub module. Here, module connectivity referred 
to the absolute value of the Pearson's Correlation between genes 
(Module	Membership).	 The	 clinical	 trait	 relationship	 referred	 to	
the absolute value of the Pearson's Correlation between each gene 
and	 the	 trait	 (Gene	 Significance).	 We	 set	 the	 screening	 criteria	
(gene significance for group >0.5,	module	membership	>0.8, and 
weighted Correlation <0.01)	for	the	feature	module.	Moreover,	we	
uploaded	all	genes	 in	the	hub	module	to	the	Search	Tool	 for	the	
Retrieval	 of	 Interacting	 Genes	 (STRING)	 database	 (https://strin 
g-	db.org/)	 to	construct	protein–	protein	 interaction	 (PPI)	and	ob-
tain	hub	genes.	We	defined	genes	with	node	connectivity	≥15	as	
the central nodes. Cytoscape was conducted to present the net-
work (https://cytos cape.org/).

These	hub	genes	were	verified	by	exploring	the	dynamic	changes	
with the progression of ICH and selected for receiver operating 
characteristic	 (ROC)	analysis.	The	area	under	the	curve	(AUC)	was	
applied to assess each gene's performance to predict the progres-
sion of ICH.

2.5  |  Gene set variation analysis (GSVA)

Gene set variation analysis is a nonparametric and unsupervised 
method for evaluating the enrichment of transcriptome genomes. 
By comprehensively scoring the gene sets of interest, it converts the 
gene-	level	 changes	 into	path-	level	 changes	and	evaluates	 the	bio-
logical function of the samples.15	In	this	study,	we	used	the	GSVA	al-
gorithm	to	evaluate	the	potential	biological	function	of	time-	varying	
ICH samples.

2.6  |  Evaluation of immune signatures infiltration

We	used	single-	sample	gene	set	enrichment	analysis	(ssGSEA)16 to 
obtain the chip data of patients with different subgroups of ICH. 
Herein, 29 immune signatures were first quantified for their enrich-
ment	degrees	within	respective	ICH	samples.	We	used	the	ssGSEA	
method to deduce the infiltration level of different immune cells and 
the	activity	of	 immune-	related	 functions	 in	 ICH	expression	profile	
data. The samples were screened with a p-	value	<	 0.05.	Utilizing	
the	“Corrplot”	package	to	display	a	correlation	heatmap	to	visualize	
the Correlation of 29 types of infiltrating immune signatures; the 
“ggplot2”	package	was	used	 to	analyze	 the	differences	 in	 immune	
signatures infiltration between the two groups.

2.7  |  The Correlation between hub genes and 
immune signatures

Spearman	 correlation	 analysis	 was	 used	 to	 perform	 the	 relation-
ship	between	hub	genes	and	infiltrating	immune	cells.	The	“ggplot2”	

package	was	employed	to	exhibit	 the	 results.	p-		value	<	0.05	was	
confirmed to be statistically different.

3  |  RESULTS

3.1  |  WGCNA and clinically significant modules 
identification

The data sets of all 22 ICH samples in training set GSE12	5512 were 
preprocessed	to	construct	the	co-	expression	module	by	the	WGCNA	
R package. We obtained the gene sets for subsequent analysis by re-
moving	genes	with	zero-	variance.	The	hclust	 function	was	used	and	
the clustering dendrograms with samples were correctly sorted in ran-
dom order. The result was shown in (Figure 1A). Then, we set the soft 
threshold	(power)	as	9	to	make	the	value	of	scale	independence	exceed	
0.8 and the average connectivity degree is higher (Figure 1B).	Next,	we	
used	the	power	value	to	construct	co-	expression	modules	and	finally	
identify	 10	 distinct	 gene	 co-	expression	modules	 in	 ICH	 (Figure 1C). 
These	co-	expression	modules	were	shown	in	different	colors.

According	to	the	Correlation	between	traits	and	module	feature	
vector genes and p-	value,	the	ME	of	the	royal	blue	module	showed	
a higher correlation with progress than other modules (Figure 1D). 
Thus, we identified the royal blue module as the most relevant mod-
ule to the disease progression of ICH.

3.2  |  Functional enrichment analysis

Metascape	analysis	displayed	 the	 first	20	enriched	 terms	as	 a	bar	
graph for the biological functions and signaling pathways. The results 
revealed that the hub genes in the royal blue module were mainly 
involved in platelet alpha granule, response to wounding, anchoring 
junction, platelet alpha granule membrane, and so on (Figure 2A). 
The network diagram was constructed with each enrichment term as 
a node and the similarity of the node as the edge (Figure 2B).	Among	
them, the biological processes related to inflammation and immunol-
ogy were mainly enriched in cell adhesion molecule binding, myeloid 
leukocyte activation, CXCR chemokine receptor binding, and regu-
lation of cytokine production. Thus, we inferred that the immune 
response might play an important role in ICH.

3.3  |  Identification and verification of hub genes 
in the royal blue module

A	 total	 of	 five	 genes	 with	 the	 cut-	off	 standard	 were	 identified	
as	 candidate	 hub	 genes:	 GAPDH,	 PF4,	 SELP,	 APP,	 and	 PPBP	
(Figure 3A). The results were consistent with the central node 
screened out by the PPI network we constructed (Figure 3B). With 
the	dynamic	change	of	 the	 ICH	process,	we	analyzed	 the	differ-
ential	expression	of	these	five	hub	genes.	These	genes	increased	
significantly with the progression of ICH, and the difference was 
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statistically significant (Figure 3C–	G).	As	an	example,	by	compar-
ing	 the	 drawn	 boxplot	 in	 the	 early	 stage	 (ICH	within	 24	 h),	 the	
gene	expression	of	GAPDH	was	significantly	increased	in	the	late	
phase (ICH at 72 h following the first time) (Figure 3C).	Moreover,	
the	AUC	value	of	these	genes	was	all	>0.75	(Figure 3H–	L) by ROC 
analysis,	which	verified	 that	 they	had	an	excellent	predictive	ef-
fect on ICH progression.

3.4  |  GSVA

We	used	the	GSVA	algorithm	to	obtain	the	main	regulated	pathways	
of	the	differences	in	the	expression	levels	of	hub	genes	with	the	pro-
gression	of	ICH.	Among	the	abundant	results	in	the	five	genes,	we	
found several overlapping pathways related to immune and inflam-
mation	response	pathways,	such	as	TNFα	signaling	via	NF-	kappa	B	
pathway,	 IL6-	JAK-	STAT3	signaling	pathway,	and	 IL2-	STAT5-		signal-
ing pathway (Figure 4A–	E).

3.5  |  Immune signatures infiltration analyses

Using	 the	 ssGSEA	method,	we	 first	mapped	 the	 infiltration	 levels	
of	29	 immune-	related	cells	and	types	 in	all	patients	with	 ICH.	The	
abscissa in the figure represented the number of each patient. The 

vertical	axis	represented	the	value	of	the	quantified	immune	signa-
tures infiltration (Figure 5A).	Similarly,	the	activity	or	abundance	of	
immune signatures in early and late samples from patients with ICH 
were	quantified	according	to	the	ssGSEA	score,	respectively.	These	
two	 groups	 showed	 different	 activity	 and	 abundance	 of	 immune-	
related cells and types (Figure 5B). Correlation heatmap of the 29 
types	of	immune	signatures	revealed	that	aDCs,	APC	co-	inhibition,	
and	Tregs	had	a	significant	positive	correlation.	ADCs	and	APC	co-	
inhibition	had	a	negative	correlation	with	NK	cells	(Figure 5C). The 
violin plot of the immune signatures infiltration showed the differ-
ence between the two stages of ICH. Compared with the early stage 
of ICH, the late stage of ICH generally contained a higher proportion 
of	aDCs	and	APC	co-	inhibition	(Figure 5D, p <	0.05).

3.6  |  Correlation analysis between hub genes and 
immune signatures

Correlation	analysis	showed	that	GAPDH	was	positively	correlated	
with	 aDCs,	 Type-	II	 IFN	 response	 and	 APC	 co-	inhibition	 (r > 0.4, 
p <	0.05)	and	negatively	correlated	with	NK	cells,	Cytolytic	activ-
ity and Th2 cells (r <	−0.4,	p <	0.05)	(Figure 6A).	PF4	was	positively	
correlated	with	Type-	II	IFN	response	and	APC	co-	inhibition	(r > 0.4, 
p <	0.05)	(Figure 6B).	Similarly,	SELP	was	positively	correlated	with	
Type-	II	IFN	response	and	APC	co-	inhibition	(r >	0.5,	p <	0.05)	and	

F I G U R E  1 Weighted	gene	co-	expression	network	analysis	(WGCNA).	(A)	Clustering	dendrogram	of	22	samples.	We	performed	sample	
clustering	to	detect	outliers	and	confirm	the	removal	of	the	batch	effect	from	data	sets.	(B)	The	optimal	soft	threshold	power	of	the	WGCNA	
was	screened	by	calculating	the	scale-	free	topological	fit	index	and	the	average	connectivity.	(C)	Dendrogram	of	all	differentially	expressed	
genes	clustered	according	to	a	dissimilarity	measure	(1-		TOM).	Different	colors	represented	the	divided	modules.	(D)	The	heatmap	of	
correlation	between	ME	and	the	progress	of	ICH	modules
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negatively	correlated	with	NK	cells	and	Th2	cells	(r <	−0.4,	p <	0.05)	
(Figure 6C).	APP	was	positively	correlated	with	Type-	II	IFN	response,	
T	 helper	 cells,	 APC	 co-	inhibition,	 aDCs	 and	 Mast	 cells	 (r > 0.4, 
p <	0.05)	and	negatively	correlated	with	NK	cells	(r <	−0.5,	p <	0.05)	
(Figure 6D).	 PPBP	 was	 positively	 correlated	 with	 Type-	II	 IFN	 re-
sponse	and	Mast	cells	(r >	0.5,	p <	0.05)	and	negatively	correlated	
with cytolytic activity and Th1 cells (r <	−0.4,	p <	0.05)	(Figure 6E).

4  |  DISCUSSION

Intracerebral	hemorrhage,	which	accounts	for	10%–	15%	of	all	stroke	
subtypes,	 is	 the	most	 common	 type	 of	 hemorrhagic	 stroke.	 Until	
now, there is still no effective treatment for this devastating disor-
der.	Patients	with	ICH	often	experience	poor	outcomes	due	to	the	

lack of efficient therapies. Comprehensive analysis of past studies 
suggests that immune responses serve a vital role in the progress of 
ICH.17 Hence, identifying the immune cell infiltration characteristics 
has	more	excellent	prognostics	value	in	ICH.	With	the	rapid	develop-
ment of technology, bioinformatics provides a powerful strategy for 
molecular	marker	 screening.	Among	 them,	WGCNA	shows	unique	
advantages to identify modules and core genes associated with dis-
ease phenotypes. Our study deeply mined the GEO database to ob-
tain	gene	expression	profiles	from	patients	with	ICH	and	screened	
for	hub	genes.	At	first,	we	performed	WGCNA	to	identify	the	critical	
module in the progression of ICH.

Meanwhile,	we	reported	meaningful	enrichment	and	pathways	
by metascape analysis, which triggered the regulatory ways linked 
to	secondary	cerebral	injury	induced	by	ICH.	Next,	we	identified	the	
five hub genes, which were involved in the pathophysiology of ICH. 

F I G U R E  2 Functional	enrichment	analysis	for	the	hub	genes	in	the	royal	blue	module.	(A)	The	bar	graph	displayed	the	first	20	enriched	
terms	for	the	biological	functions	and	signaling	pathways	by	Metascape	analysis.	(B)	The	network	diagram	was	constructed	with	each	
enrichment term as a node and the similarity of the node as the edge
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Then,	the	GSVA	algorithm	was	applied	to	obtain	the	main	regulated	
pathways	of	these	five	genes.	Finally,	we	mapped	the	infiltration	lev-
els	of	immune-	related	cells	and	types	in	all	patients	using	the	ICH-	
based	ssGSEA	method.	The	above	evidence	provided	new	research	
ideas for clarifying the diagnostic markers of cerebral hemorrhage 
changes	and	further	exploring	the	role	of	immune	cell	infiltration	in	
the dynamic changes of a cerebral hemorrhage.

Intracerebral hemorrhage would induce focal inflammation in 
the	 injured	 cerebrum	 region.	 Such	 localized	 brain	 inflammation	
provoked	secondary	brain	injury	by	magnifying	blood-	brain	barrier	
(BBB)	damage,	cerebrum	edema,	oxidative	stress,	and	directly	lead-
ing	 to	neuronal	cell	death.	 In	addition	 to	 inflammation	 localized	 in	
the injured brain region, numerous evidences demonstrated that 
inflammatory responses after ICH could occur and persist through-
out the entire brain. Whole brain inflammation might continuously 

frame the evolving pathology following ICH and affect patients’ 
long-	term	neurological	outcomes.18 In our research, five hub genes 
(GAPDH,	PF4,	SELP,	APP,	and	PPBP)	with	the	cut-	off	standard	(gene	
significance for group >0.5,	module	membership	>0.8, and weighted 
Correlation <0.01) were identified and screened out by the PPI net-
work.	 GAPDH	 (glyceraldehyde-	3-	phosphate	 dehydrogenase)	 was	
considered	a	classical	glycolytic	protein	of	little	interest.	As	a	"house-
keeping"	 protein,	 it	 has	 been	 frequently	 used	 to	 normalize	 PCR,	
western or northern blots for a long time. However, in recent years, 
the	view	has	changed	since	GAPDH	is	now	known	to	contribute	to	
a	number	of	diverse	cellular	functions,	such	as	DNA	replication	and	
repair, apoptosis, neurodegenerative disease, and viral pathogenesis 
unrelated to glycolysis.19	The	GAPDH	expressions	were	also	differ-
entially regulated in a variety of types of cells. The recent studies 
notified	that	GAPDH	was	differentially	expressed	in	multiple	tumor	

F I G U R E  3 Hub	genes	detection	and	validation	in	the	royal	blue	module.	(A)	The	scatterplot	of	Gene	Significance	(GS)	for	a	group	
versus	Module	Membership	(MM)	in	the	royal	blue	module.	Five	hub	genes	were	selected	in	the	royal	blue	module.	(B)	The	PPI	network	
displayed the results of the central node related to the progress of ICH. Color represented connectivity. The darker the color, the higher 
the	connectivity	(C–	G).	The	differential	expression	of	these	five	hub	genes	with	the	dynamic	change	of	the	ICH	process.	These	genes	all	
increased significantly in the late stage than in the early stage of ICH (p <	0.05).	(H–	L)	The	ROC	curve	showed	the	performance	of	using	
these	five	hub	genes	to	predict	progression.	The	AUC	value	of	these	genes	was	all	>0.75,	which	verified	that	they	had	a	good	predictive	
effect on ICH progression
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F I G U R E  4 Gene	set	variation	analysis	analysis.	(A)	GAPDH-	enriched	pathways.	(B)	PF4-	enriched	pathways.	(C)	SELP-	enriched	pathways.	
(D)	APP-	enriched	pathways.	(E)	PPBP-	enriched	pathways

F I G U R E  5 The	landscape	of	immune	infiltration	in	two	subtypes	of	ICH	samples.	(A)	The	relative	percentage	of	29	subpopulations	
of immune signatures in 22 samples from GSE12	5512. (B) The heat map of the Correlation among 29 types of immune signatures. (C) 
Landscape	evaluation	of	29	types	of	immune	signatures	in	two	subgroups	of	ICH	samples.	(D)	The	Violin	diagram	showed	the	difference	of	
immune infiltration between early and late groups according to dynamic changes of ICH. The early controls group was marked as blue, and 
the late group was marked as red (p <	0.05	was	regarded	as	statistical	significance)

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125512
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types	with	an	overall	trend	of	up-	regulation.20 Besides, the role of 
GAPDH	 in	 immunity	 had	 also	 been	 explored.	 Hypoxia	 activates	
HIF-	1α	transcription	factor	and	upregulates	GAPDH	expression.	The	
upregulation	of	GAPDH	may	enhance	the	transcription	and	activity	
of	HIF-	1α, ultimately limiting the accumulation of immune cells such 
as CD8+ T lymphocytes.21 In addition, the function of immune cells 
is	affected	by	metabolic	status.	Both	cytotoxic	T	cells	and	effector	
T cells dependent on glycolysis can be inhibited in low glucose and 
high lactate environments.22	Therefore,	the	modulation	of	GAPDH	
activity has the potential to be a new approach for the treatment of 
immunosuppression. Over the years, researchers have moved from 
platelets’ roles in maintaining homeostasis and thrombosis to their 
roles in inflammation and immunity.23	 Platelet-	expressed	 recep-
tors release a wide range of inflammatory mediators and have been 
shown to be involved in inflammation, immunity, and tissue repair.24 
Among	the	pathogenesis	of	many	diseases,	platelets	show	exciting	
prospects in the field of neuropathology, especially for stroke.25,26 
PF4	(Platelet	factor	4),	also	known	as	CXCL4,	has	been	detected	in	
the serum of patients suffering from stroke.27 It has been demon-
strated	to	be	expressed	in	microglia	both	in	vitro	and	in	vivo.	In	the	
stroke	model,	the	researchers	found	that	PF4	could	attract	microg-
lia or other immune cells to the site of injury.28	SELP	(P-	selectin)	as	
one of cell adhesion molecules discovered, mainly mediates platelet 

activation, endothelial cell adhesion and interaction with white blood 
cells, and is closely related to immune injury, inflammation, thrombo-
sis, and tumor metastasis.29,30	Studies	on	cerebrovascular	diseases	
had found that when cerebrovascular endothelium was damaged, 
the	expression	of	SELP	in	platelets	and	endothelial	cells	increased,	
and	 then	 binds	 with	 P-	selectin	 glycoprotein	 ligand-	1	 (PSGL-	1)	 on	
leukocytes to activate signal transduction in leukocytes, causing 
leukocytes to release inflammatory factors and aggravate inflam-
matory responses.31	Besides,	PSGL-	1	and	E/P-	selectins	were	essen-
tial	 for	T-	cell	 rolling	 in	 inflamed	CNS	microvessels.32	APP	 (amyloid	
precursor protein) as the source of the amyloid β peptide, has been 
principally	known	and	studied	for	its	involvement	in	Alzheimer's	dis-
ease. However, its main physiological function in the nervous sys-
tem has not been fully studied.33	Partial	mutation	of	APP	can	lead	
to	increased	Aβ	production,	or	Aβ more prone to aggregation. The 
accumulation	of	Aβ leads to the disorder of cellular calcium signaling 
and malfunctioning of mitochondria, which in turn leads to the loss 
of synapses and the death of neurons, as well as a series of neuroin-
flammation.34	There	was	 little	research	on	the	role	of	APP	 in	 ICH,	
especially the immune mechanism involved in the progression of 
cerebral	hemorrhage.	Therefore,	APP	as	a	potential	target	deserves	
further	study.	PPBP	(pro-	platelet	basic	protein)	or	chemokine	(C-	X-	C	
motif) ligand 7 (CXCL7) is an encoded protein, which belongs to the 

F I G U R E  6 Correlation	between	five	hub	genes	and	immune	signatures.	(A)	Correlation	between	GAPDH	and	infiltrating	immune	
signatures.	(B)	Correlation	between	PF4	and	infiltrating	immune	signatures.	(C)	Correlation	between	SELP	and	infiltrating	immune	signatures.	
(D)	Correlation	between	APP	and	infiltrating	immune	signatures.	(E)	Correlation	between	PPBP	and	infiltrating	immune	signatures.	The	size	
of the dots represented the strength of the Correlation between genes and immune signatures; the more significant the dots, the stronger 
the Correlation. The color of the dots represented the p-	value;	the	greener	the	color,	the	lower	the	p-	value,	and	the	purpler	the	color,	the	
larger the p-	value.	p <	0.05	was	considered	statistically	significant
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platelet growth factor of the CXC chemotherapy family. PPBP is re-
leased from activated platelets and is proved to be potential novel 
biomarker for multiple tumors.35,36 It had been demonstrated that 
in breast cancer, PPBP, as an important immune cytokine, was se-
creted by tumor monocytes and played an important role in cancer 
cell	migration,	 invasion,	 and	metastasis.	 After	 PPBP	 antibody	was	
administered,	the	abundance	of	M2	macrophages	in	the	tumor	mi-
croenvironment was significantly reduced, which reduced tumor 
growth and distant metastasis.37 PPBP had also been shown to be 
involved in immune regulation and promotion of inflammatory pro-
gression in brain injury.38 Given that the hub genes involved in han-
dling immune cells and closely related to the infiltration level in the 
progress of ICH. Besides, functional enrichment analysis indicated 
inflammation was relevant to the pathophysiology of ICH. Thus, we 
believed that the immune response was likely to participate in ICH's 
pathological process and progress.

Neutrophils	are	the	early	peripheral	blood	cells	to	penetrate	the	
perihematomal brain and the hematoma after ICH.39	 Neutrophils	
cause BBB damage, activation of resident microglia, and induce 
brain injury at early times following ICH.40 T lymphocytes, a com-
ponent of the adaptive immune system, regulate the immune re-
sponse	or	evoke	cytotoxicity.	T	 lymphocytes	have	been	 identified	
in perihematomal brain tissue of ICH patients, and Treg transfer 
reduces	neurological	deficits	 in	experimental	ICH.41	Moreover,	the	
circulating CD4+/CD8+T lymphocyte ratio has been proposed as a 
possible	predictor	of	postoperative	intracranial	pressure	and	short-	
term prognosis.42 Regulatory T cells meliorate BBB breakdown after 
stroke.43 This study first mapped the infiltration levels of neutro-
phils and CD8+ T lymphocytes in all patients with ICH based on the 
ssGSEA	method.

In the present study, five hub genes were identified, and their 
dynamic	 expression	 changes	 were	 validated,	 accompanied	 by	 the	
progress of ICH. The identified genes’ biological functions and path-
ways	provided	a	better-	detailed	understanding	of	inflammation	and	
immunity	 for	 ICH	development.	By	coupling	WGCNA,	metascape,	
GSVA	algorithm,	and	ssGSEA	method,	we	speculated	that	these	five	
hub genes might affect the development of ICH through the immune 
mechanism. These conclusions may help improve immunomodula-
tory therapies for ICH patients. However, our research was the sec-
ond mining and analysis of previously published data. The reliability 
of the present study needs to be validated by further in vivo and in 
vitro	experiments.

5  |  CONCLUSIONS

We identified the royal blue module as the most relevant module 
to the disease progression of ICH and finally screened five hub 
genes	 (GAPDH,	PF4,	SELP,	APP,	and	PPBP)	 in	 the	royal	blue	mod-
ule.	Metascape	 analysis	 displayed	 the	biological	 processes	 related	
to inflammation and immunology. These findings may help us better 
understand	the	pathophysiological	mechanisms	of	ICH	by	exploring	

the	dynamic	changes	of	hub	genes.	From	the	immune	system's	per-
spective, evaluating the infiltration of immune cells and determining 
the differences in the composition of infiltrating immune cells would 
be of great value for us to improve immunomodulatory therapies for 
ICH patients.
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