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Abstract
Evading apoptosis and chemo-resistance are considered as very important factors which help tumour progression and 
metastasis. Hence, to overcome chemo-resistance, there is an urgent requirement for emergence of more effective treatment 
options. Myricetin, a naturally occurring flavonoid, is present in various plant-derived foods and shows antitumour potential 
in different cancers. In the present in vitro study, results from the comet assay demonstrated that myricetin bulk (10 µM) and 
nano (20 µM) forms exhibited a non-significant level of genotoxicity in lymphocytes from multiple myeloma patients when 
compared to those from healthy individuals. Western blot results showed a decrease in Bcl-2/Bax ratio and an increase in P53 
protein levels in lymphocytes from myeloma patients, but not in lymphocytes from healthy individuals. A significant increase 
in intracellular reactive oxygen species level was also observed, suggesting that regulation of apoptotic proteins triggered by 
myricetin exposure in lymphocytes from myeloma patients occurred through P53 and oxidative stress-dependent pathways. 
The potency of myricetin against lymphocytes from myeloma patients marks it a potential candidate to be considered as an 
alternative to overcome chemo-resistance in cancer therapies.
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Introduction

Cancer is a serious threat to human health and life at pre-
sent that is constantly increasing (Yang et al. 2011). Chemo-
therapy, steroids, biological therapies and possibly stem cell 
transplant are the treatment methods currently being utilised 
for the therapy of multiple myeloma (MM) cancer. Initially, 
chemotherapy combined with other treatment works effec-
tively, but myeloma patients usually always have a relapse 
and these drugs also cause various side effects including 
alopecia, nausea, neuropathy, etc.; therefore, more careful 
drugs and novel therapies are required for human cancers 
(Huang et al. 2015).

Cell cycle ensures the homeostasis in an organ, while a 
dysregulation in any of its steps or components could lead 
to cancer development. The molecular targets involved in 
the cell cycle regulatory mechanisms are the main focus of 
investigational anticancer drugs (Diaz-Moralli et al. 2013).

The maintenance of apoptosis balance is highly essen-
tial for normal cellular growth, as excessive apoptosis 
causes atrophy, whereas faulty apoptosis leads to uncon-
trolled cellular growth which is implicated in various ill-
nesses including cancer. Hence, inducing apoptosis may be 
a promising strategy to overcome various problems related 
to cancer therapies (Hall et al. 2008). Various processes 
are involved in the inhibition of apoptosis in cancer cells 
such as P53 mutations and the expression of P-glycopro-
tein (Brunelle and Letai 2009). Mitochondria play a key 
role in apoptosis and other cellular metabolic processes. 
When apoptosis is induced, a variety of metabolic signals 
produced by mitochondria, cytosol and the membrane are 
triggered by stimuli. These signals can disrupt the energy 
metabolisms and modify the expression of Bcl-2 fam-
ily proteins (Seo et al. 2003). Reactive oxygen species 
(ROS), mainly produced by mitochondria intracellularly, 
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are considered to be the second messenger to participate 
in cellular mechanisms such as apoptosis and proliferation. 
The anticancer drugs including Taxol induce apoptosis in 
cancer cell mediated by increasing intracellular ROS levels 
(Perkins et al. 2000; Varbiro et al. 2001; Kim et al. 2013).

Myricetin belongs to a class of flavonoids called fla-
vonols, which exhibit antioxidant properties (Ong and 
Khoo 1997; Semwal et al. 2016) and mainly occur in fruits, 
nuts, berries, vegetables and red wine (Basli et al. 2012; 
Pérez-Cano and Castell 2016). Many past studies have 
demonstrated that myricetin induces apoptosis in various 
cancer cell lines comprising hepatoma, colon carcinoma 
cells, oesophageal, ovarian and pancreatic cancer (Phillips 
et al. 2011; Zhang et al. 2013; Zang et al. 2014; Xu et al. 
2016). In the literature, there is no evidence of research 
on the mechanism of action of myricetin bulk and nano-
particles in lymphocytes of multiple myeloma patients. As 
MM originates from the plasma cells which are a type of 
B lymphocytes (Ghosh and Matsui 2009), in our current 
study we used surrogate cells, lymphocytes, as model cells 
to examine the in vitro effects of different particle sizes of 
myricetin, i.e. the bulk (MYR B) and nanoparticle form 
(MYR N) and also investigated the molecular mechanisms 
involved in their effects. We further investigate the effects 
of myricetin on intracellular ROS levels in lymphocytes.

Materials and methods

Blood sample collection and ethics

The current project involving the use of human peripheral 
lymphocytes was granted ethical approval by Leeds East 
Ethics Committee (IRAS Reference No.:12/YH/0464) and 
the University of Bradford’s Sub-Committee for Ethics in 
Research involving healthy Human Subjects (Reference No.: 
0405/8). All peripheral blood samples (Tables 1 and 2) were 
collected after informed consent from patients and healthy 
individuals. The research support and governance office of 
Bradford Teaching Hospitals NHS Foundation also agreed to 
the research (REDA number 1202). Normally for this sort of 
study if a comet assay is involved, 20 individual patients are 
compared with a healthy individual group of 20. However, 
for the current study involving the Western blot technique, 
three individual patients were compared with three healthy 
individuals. These numbers are considered statistically 
acceptable, but we used six individual patients which were 
available at the time of study.

Cell culture and reagent

Lymphocytes from all the samples were isolated and main-
tained in RPMI-1640 medium (Sigma Aldrich, UK), sup-
plemented with 10% foetal bovine serum FBS (Invitrogen, 
UK) and 1% penicillin streptomycin (Invitrogen, UK) in a 
humidified incubator at 5% CO2 and at 37 °C. Myricetin was 
purchased from Sigma Aldrich, UK, and was dissolved in 
excipient mixture to produce its bulk and nano forms. The 
particle size of myricetin, stability and constitution of excip-
ient mixture are provided in our previous study (Akhtar et al. 
2020a, b). The primary antibodies against P53, Bcl-2, Bax 
and GAPDH were purchased from Abcam, Cambridge, UK.

Cell viability

Cytotoxicity was determined by measuring 3-(4,5-dimeth-
ylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT) dye 

Table 1   Brief information of blood samples from healthy individuals 
(M, male; F, female)

No Age Ethnicity Gender Smoking history Family history

1 60 ASIAN M YES NONE
2 59 CAUCASIAN F YES NONE
3 61 CAUCASIAN F NO NONE
4 52 CAUCASAIN F NO NONE
5 60 CAUCASIAN F NO NONE
6 55 CAUCASIAN M NO NONE

Table 2   Brief information of blood samples from MM patients

No Age Ethnicity Gender Smoking 
history

Family history Medical condition

1 55 CAUCASIAN F NO NONE MULTIPLE MYELOMA
2 56 CAUCASIAN M NO PANCREATIC CACNER MULTIPLE MYELOMA
3 79 CAUCASIAN M NO BREAST CANCER MULTIPLE MYELOMA
4 77 CAUCASIAN F NO OVARIAN AND BREAST CANCER MULTIPLE MYELOMA
5 70 CAUCASIAN M NO NONE MULTIPLE MYELOMA
6 87 CAUCASIAN M NO NONE MULTIPLE MYELOMA
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(Sigma Aldrich, UK) absorbance. Lymphocytes (1 × 104) 
were seeded in 96-well plates and incubated overnight to 
get attached to the bottom of plates at 37 °C in the presence 
of CO2 5%. Then cells were treated with different treatment 
groups for 1, 24 and 48 h. After that media were removed, 
10 µl of MTT dye (5 mg/ml) was added to the wells and 
incubated for 4 h under the same conditions in the dark. 
Then, formazan crystals were dissolved in 200 µl of DMSO 
and absorbance was read at 590 nm.

Determination of ROS production

Cellular ROS was monitored by cellular ROS detection 
kit using 2′,7′-dichlorofluorescin diacetate (DCFDA) dye 
(Abcam, UK). Briefly, isolated lymphocytes were seeded 
overnight in 96-well plates and then treated with chemicals 
for 1 h. Cells were then washed followed by addition of 
DCFDA dye into each well and incubated for another 45 min 
at 37 °C in the presence of 5% CO2. Dye was washed off and 
fluorescence was measured at 485/535 nm.

DNA damage assessment using the Comet assay

Lymphocytes were treated with MYR B (10 µM) and MYR 
N (20 µM) for 1 h and the cell suspension was centrifuged 
at 3000 rpm (1000g). The supernatant was removed and the 
pelleted cells were subjected for the Comet assay as previ-
ously defined with minor changes (Singh et al. 1988; Tice 
et al. 2000; OECD 2016; Anderson et al. 2014; Azqueta and 
Dusinska 2015).

Western blot analysis

Lymphocytes were seeded in six-well plates at a concentra-
tion of 106cells/well, incubated overnight and treated with 
chemicals for 24 h. Then cells were lysed and total protein 
levels were determined using the Bio-Rad Bradford assay kit 
(Bio-Rad, UK). The cell lysates were separated using pro-
tein electrophoresis and blotted on nitrocellulose membrane 
(Abcam, UK). The membranes were blocked overnight in 
5% bovine serum albumin (BSA) diluted in Tris-buffered 
saline supplemented with 0.1% Tween 20 at 4  °C. The 
membranes were then incubated with primary and second-
ary antibody dilutions, overnight at cold and for 1 h at room 
temperature, respectively.

Statistical analysis

Results were expressed as mean ± standard error of mean 
(SEM). GraphPad prism was used to perform statistical cal-
culation. The results were analysed using t tests and one-way 
analysis of variance (ANOVA) to test differences between 

each treatment and control. A P value of < 0.05 was consid-
ered statistically significant.

Results and discussion

MTT assay

The effects of MYR B and MYR N on the viability of 
healthy lymphocytes were compared to those of the 
untreated group. Neither of the concentrations of MYR B 
and MYR N reduced viability less than 80% in the healthy 
group (Akhtar et al. 2020a, b). However, MYR B and MYR 
N at 40 µM reduced the viability to 68% and 51%, respec-
tively, after 48 h of treatment in lymphocytes from multiple 
myeloma patients (shown in Fig. 1). Results indicated that 
cancer cells are more sensitive to myricetin bulk and nano-
particles than the healthy ones, possibly due to the compro-
mised defence and repair mechanisms owing to the disease 
state. Lower concentrations (10 and 20 µM) of both forms of 
myricetin did not reduce the viability less than 80% in lym-
phocytes from the patient group. The effects of the excipient 
mixture (the vehicle mixture for chemical preparation) were 
also considered to exclude any errors. Hence, the current 
study was conducted using the non-toxic concentrations of 
MYR B and MYR N so that any of the results obtained 
are not due to the artefact of toxicity. The concentrations of 
MYR B (10 µM) and MYR N (20 µM) and hydrogen per-
oxide (H2O2) (50 µM) used throughout the current in vitro 

Fig. 1   Determination of cell cytotoxicity by MTT-based assay Lym-
phocytes from MM patients showing cell viability after treatment 
with different concentrations of MYR B and MYR N. Cell cyto-
toxicity was expressed as % of the control for 1, 24 and 48  h. The 
treatment groups included untreated (NC), MYR B (10 µM, 20 µM 
and 40 µM), MYR N (10 µM, 20 µM and 40 µM) and EM (excipient 
mixture 0.1%). The best concentrations for MYR B and MYR N were 
determined by dose response curves. Values are the means of three 
independent experiments and the error bars represent SDs. (ns, not 
significant; *P < 0.01; **P < 0.003; ***P < 0.0001)
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study were determined by dose response studies using the 
comet assay in our previous study (Akhtar et al. 2020a, b).

The comet assay

In our previous study (Akhtar et al. 2020a, b), we found no 
relationship among the confounding factors (age, ethnicity, 
smoking) regardless of the treatment groups and these fac-
tors also do not seem to be contributing in this study towards 
DNA damage.

DNA damage and strand break formation caused by MYR 
B and MYR N in lymphocytes from healthy individuals and 
myeloma cancer patients were assessed using the comet 
assay and data were analysed presenting two parameters: % 
tail DNA and Olive tail moment (OTM). However, due to 
similar results, only OTM data arew shown. Figure 2 shows 
no significant effect on DNA damage induced by MYR 
B and MYR N in healthy lymphocytes. Results from the 
patient group (Fig. 3) showed a high level of basal DNA 
damage due to the disease condition and a non-significant 
genotoxicity induction by MYR B and MYR N treatment.

Analysis of apoptosis‑related proteins using 
Western blot technique

An investigation was carried out to find whether the mito-
chondrial dependent intrinsic pathway was involved in apop-
tosis induction potential of myricetin. The protein expres-
sion of major pro-apoptotic and anti-apoptotic protein levels, 

Bax and Bcl-2, respectively, were analysed using Western 
blotting.

Results showed (Fig.  4a, b) that Bcl-2 levels were 
increased by 3.4-fold with MYR B and 2.1-fold with MYR 
N in lymphocytes from healthy individuals. However, Bax 
seemed to be down-regulated by 0.6-fold after exposing 
to MYR B and 0.4-fold with MYR N treatment. In patient 
lymphocytes, Bax levels were significantly increased by 
threefold with MYR B and 3.1-fold with MYR N. However, 
Bcl-2 seemed to be down-regulated, by 0.6-fold after expos-
ing to MYR B and 0.9-fold with MYR N treatment (Fig. 5a, 
b). These results from Western blot analysis indicated that 
MYR B and MYR N can potentially induce apoptosis in 
lymphocytes from myeloma patients by altering the Bcl-2 
family proteins expression, but this effect was not evident in 
lymphocytes from healthy individuals. This might be due to 
the differential effects of myricetin on healthy and patient 
lymphocytes. Our results are consistent with a previous 
study where myricetin induced apoptosis in colon cancer 
cells by increasing the ratio between Bax and Bcl-2 protein 
levels (Kim et al. 2014).

P53 is a tumour-suppressor protein which plays a vital 
role in several cellular processes including apoptosis 
and angiogenesis (Darcy et al. 2008). In the presence of 
DNA damage, P53 inhibits the proliferation of damaged 
cells by different regulatory processes (Haupt et al. 2003; 
Haupt and haupt 2017). In a number of human cancers, 
this house-keeper gene is inactivated by mutation lead-
ing to unmonitored cell growth. The alterations in the 
P53 gene are connected with failure in chemotherapy 
and radiotherapy in various human cancers (Kong et al. 
2012). Reintroduction of wild-type P53 into cancer cells, 

Fig. 2   OTM data showing the effect of bulk and nano forms of myri-
cetin on lymphocytes DNA from healthy individuals. The figure 
shows the mean of experiments in six individuals, counting 100 cells 
each for four different groups of treatments; an untreated lymphocyte 
group (NC), positive control (PC) 50 µM H2O2, myricetin bulk (MYR 
B 10 µM) and myricetin nano (MYR N 20 µM). All treatment groups 
were compared to the NC group. (***P < 0.001; ns means not signifi-
cant analysed by one-way ANOVA. The mean control value was 0.7 
and the PC had the maximum mean value of 11.0

Fig. 3   OTM data showing the effect of bulk and nano forms of myri-
cetin on lymphocytes DNA from myeloma patients. The figure shows 
the mean of experiments in six individuals, counting 100 cells each 
for four different groups of treatments; an untreated lymphocyte 
group (NC), positive control (PC) 50 µM H2O2, myricetin bulk (MYR 
B 10 µM) and myricetin nano (MYR N 20 µM). All treatment groups 
were compared to the NC group. The mean control value was 2.7 and 
the PC had the maximum mean value of 9.3 (*P < 0.001; ns means 
not significant) analysed by one-way ANOVA
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which possess its mutant form, leads to either apoptosis or 
cell cycle arrest (Martinez et al. 1991; Kim et al. 2013). 
Increasing the amount of P53 may be a new strategy for 
treating cancer, as it regulates the intrinsic apoptosis 
pathway such as Bax (Kuo et al. 2006).

Therefore, we examined P53 protein to verify if myri-
cetin bulk and nanoparticles mediated effects in lym-
phocytes of myeloma patients through this protein. We 
found (Fig. 4a, b) that the P53 protein was up-regulated 
in the lymphocytes of both investigative groups. However 
its induction was higher in lymphocytes from myeloma 
patients to 2.2-fold and 3.2-fold after treatment with MYR 
B and MYR N, respectively. Increased in vitro expression 
of P53 in lymphocytes, when exposed to myricetin, indi-
cates that myricetin exhibits apoptotic potential.

Myricetin and ROS production

A variety of stimuli trigger cytochrome C release and 
apoptosis through ROS production. However, ROS also 
play a mitogenic role by inducing proliferation and pro-
tecting cells against oxidative stress-induced apoptosis 
(Kim et al. 2001; Kops et al. 2002; Kim 2017). Hence, 
data suggest a dual function of ROS. In our study, the 
mitochondrial-dependent regulation of apoptotic proteins 
in lymphocytes from myeloma patients was also dependent 
on ROS production, as ROS levels increased with myri-
cetin bulk and nano-treatment to a significant level when 
compared to the untreated control and healthy control 
group (Fig. 6).

Fig. 4   The effect of myricetin bulk and nanoparticles on apoptosis-
related proteins in lymphocytes from healthy individuals. a Immuno-
blot analysis of the P53, Bax and Bcl-2 proteins in lymphocyte from 
healthy individuals treated with MYR B and MYR N. P53 and Bcl-2 
expression was increased, while Bax expression decreased. GAPDH 
was used as an internal control protein to normalise the data. b Bar 
graphs exhibiting fold changes in protein expression levels. Data 
are represented as the mean ± SE of three experiments. (*P < 0.01; 
**P < 0.002;, ***P < 0.0001)

Fig. 5   The effect of myricetin bulk and nanoparticles on apoptosis-
related proteins in lymphocytes from myeloma patients. a Immuno-
blot analysis of the P53, Bax and Bcl-2 proteins in lymphocyte from 
MM cancer patients treated with MYR B and MYR N. P53 and Bax 
expression was increased, whereas Bcl-2 expression was decreased. 
GAPDH was used as an internal control protein to normalise the 
data. b Bar graphs exhibiting fold changes in protein expression 
levels. Data are represented as the mean ± SE of three experiments. 
(*P < 0.01; ***P < 0.0001; ns, not significant)
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Conclusion

In conclusion, myricetin bulk and nano forms have exhib-
ited anticancer potential and pro-oxidant activities in vitro 
in lymphocytes from MM cancer patients. It up-regulated 
the expression of Bax protein while down-regulating Bcl-2 
expression. These effects were mediated by P53 and some-
how dependent on ROS production.

This is indicative of the potential of myricetin as an anti-
cancer drug for MM. Moreover, MYR N has collectively 
shown more effective responses than its larger particles (i.e. 
MYR B) in lymphocytes from both investigated groups.
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