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Abstract

In modern cancer epidemiology, diseases are classified based on pathologic and molecular traits,
and different combinations of these traits give rise to many disease subtypes. The effect of
predictor variables can be measured by fitting a polytomous logistic model to such data. The
differences (heterogeneity) among the relative risk parameters associated with subtypes are of
great interest to better understand disease etiology. Due to the heterogeneity of the relative risk
parameters, when a risk factor is changed, the prevalence of one subtype may change more than
that of another subtype does. Estimation of the heterogeneity parameters is difficult when disease
trait information is only partially observed and the number of disease subtypes is large. We
consider a robust semiparametric approach based on the pseudo-conditional likelihood for
estimating these heterogeneity parameters. Through simulation studies, we compare the robustness
and efficiency of our approach with that of the maximum likelihood approach. The method is then
applied to analyze the associations of weight gain with risk of breast cancer subtypes using data
from the American Cancer Society Cancer Prevention Study Il Nutrition Cohort.
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Introduction

While disease trait information has been used in understanding survival of patients,
relatively less research has been done on incorporating disease trait information into
etiologic investigations. In this paper, we propose a new pseudo-conditional likelihood
approach that can handle partially missing disease traits and use it to analyze data from the
American Cancer Society’s Cancer Prevention Study (CPS) Il Nutrition Cohort [1]. The
goal of the data analysis is to investigate whether the association between weight gain and
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risk of breast cancer varies among different disease trait subtypes in women not using
postmenopausal hormones, adjusting for important risk factors. If the association of a
predictor variable varies across the subtypes, we examined how much of this variation is due
to each of the disease traits. Understanding etiologic heterogeneity” of a risk factor sheds
light on the pathogenesis of disease [2]. In the CPS-11 Nutrition Cohort, there are 5 tumor
characteristics, including stage (2 levels), histology (3 levels), estrogen receptor (2 levels),
progesterone receptor (2 levels), and grade (3 levels), leading to 72 (i.e., 2x3x2x2x3)
different disease subtypes.

To examine the effect of risk factors on different disease subtypes, we consider the
polytomous logistic regression, which is commonly used for handling multinomial data [3—
5]. There are two variants of the model: one for nominal and one for ordinal scale outcomes
[6], and this paper focuses on modeling nominal outcomes. Hence, for each disease subtype,
we have a set of disease-predictor association/regression parameters and a set of nuisance
intercept parameters. The etiologic heterogeneity will be measured via differences among
the regression parameters across subtypes. The number of regression parameters is large due
to several disease characteristics (traits) while each trait has multiple levels. In this context,
a second-stage model was proposed to reduce the dimension of the heterogeneity parameters
when all disease traits are observed [7]. In the CPS-I1 Nutrition Cohort data, the missingness
percentages for the five traits are 23.2%, 21.2%, 0.0%, 30.0%, and 33.6%, respectively. In
particular, among the cases, approximately 45.5% had at least one missing trait.

While estimation of the heterogeneity parameters was considered in the Cox regression
model in the presence of partially missing disease traits [8], the same issue has not been
considered before in the context of polytomous logistic model, which will be considered in
this paper. We propose to estimate the heterogeneity parameters using a pseudo-conditional
likelihood. We would like to point out the distinction between Chatterjee [7] and our
approach. Here we adopt the the secondstage model in a polytomous logistic regression
setup in the presence of partially missing disease traits and develop a robust method of
inference. In particular, Chatterjee [7] did not consider the missing data issue. As a result,
his pseudo-conditional likelihood function was free of the nuisance intercept parameters. In
contrast, we deal with partially missing disease trait data, and consequently our pseudo-
conditional likelihood involves the nuisance intercept as well as the main log-odds ratio
parameters. For estimating these nuisance parameters, we use a different type of pseudo-
conditional likelihood. For handling the large dimension of the nuisance parameters, we
adopt another second-stage model, and estimate them from another objective function. The
idea of using two objective functions, one for the main parameters of interest and the other
for the nuisance parameters, was inspired by Goetghebeur and Ryan [9]. Consequently the
related theory is not a straightforward extension of the theory presented in [7].

Alternative to the proposed approach, one could consider a maximum likelihood based
inference for the heterogeneity parameters using the full likelihood of the data. However,
misspecification of the model for the intercepts will have less bearing on our inference than
on the full likelihood based approach. Simulation studies clearly indicate this robustness
property of our approach. Our inference is based on an artificially constructed pseudo-
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conditional likelihood function. To show its validity, we derive the large sample properties
of the resulting estimator.

A brief outline of the remainder of the article is as follows. Section 2 contains the model and
assumptions. In Section 3, we describe the proposed estimation methodology. The results of
some simulation studies are described in Section 4. As an illustration, our method is applied
to analyze the CPS-1I Nutrition Cohort data in Section 5. Some concluding remarks are
given in Section 6.

The Appendix contains the general methodology, the asymptotic properties, and the details
of the simulation designs.

Model and Notation

For each subject in a cohort of n subjects, when no missingness occurs we observe (D,Y,X),
where D takes on one or zero according to whether the subject is diagnosed with the disease
or not during the follow-up period. For the sake of simplicity and easy understanding, we
shall consider only two disease traits (i.e., K=2) and assume that X is a scalar covariate (i.e.,
P=1) in Sections 2 and 3. The general case of K= 2 and P = 1 is described in Appendix A.
Thus, Y=(Y1,Y»)T carries information on 2 disease traits. For a disease-free subject, we have
D=0 and Y=(0,0)". If the k-th trait has M, levels, then there are a total of M=M;xM, disease
subtypes. Our model is

) =pr(D,;,=1,Y,= X )= XP( Uy, yg) Ty u9) Xi)
Pi,(y1,92) pr(Di=1,Yi=(y1, ZJ2)‘ i) 1+21:(y1ﬂu)exp(a(w’y2)+ﬂ(y1,y2)Xi)’
pr(D;=0|X;)=

1+Z(yl‘y2)e"?<o‘(y1 w2) HB(yr y0) X))

ey

fori=1,...,n, where /4y, y,) denotes the log-odds ratio parameter of the disease subtype
(Y1.Y2) for the covariate, ay, y,) denotes the nuisance intercept parameter, and ¥y, y,) means
summing over all M subtypes of the disease.

For a scalar continuous covariate scenario, there are M main regression (log-odds ratio)
parameters of interest along with M intercept parameters, which are not the main interest
here. Etiologic heterogeneity is measured via the differences among the regression
parameters for a given covariate, and our focus is on estimation of the heterogeneity
parameters.

Second-stage model

To measure heterogeneity and reduce the dimension of subtype-specific regression
parameters, following Chatterjee [7] we use the following second-stage model for the log-
odds ratio parameters in model (1):

1 1 2
,%1m):a(m+0§(;])+eg(32)+0§2{y1m), @

where 0©) s the regression coefficient corresponding to the reference subtype of the disease,
and the first-order and second-order parameter contrasts are respectively represented by
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9,22,”, k=1,2, and 0@(%@. By assuming certain contrasts to be zero, we can reduce the
number of parameters. In addition, these assumptions can be tested. Assuming the second-

and higher-order contrasts are equal to zero, which we call a second-stage additive model,

052)—052*) tells us the degree of etiologic heterogeneity with respect to the first trait,

regardless of the levels of other traits. For identifiability, we set 9%):‘953):0 and

652;)(1,y2)=0§?(y1,1)=0. More elaborately, the heterogeneity of the log-odds ratio parameters
- . . 1
due to the first trait can be measured via the contrasts 95(%)7 e ,‘9]((1;,1).

By assuming the second-order contrast parameters to be zero [7], we reduce the dimension
of regression parameters from M1xM to 1+ M;—1+My-1=M+M,—1. In addition, in this
case, the first-order contrast parameters directly measure etiologic heterogeneity. Usually
the etiologic heterogeneity is measured via differences among the log-odds ratio parameters
[10,11]. Chatterjee [7] first introduced the idea to express the log-odds ratio parameters in
terms of different order contrast parameters, and this new idea has not been explored much.
Importantly, the assumption regarding the contrast parameters are testable, provided data
contain enough information regarding those parameters.

To simplify the notation in the second-stage model, we use a design matrix 5 to relate the
coefficient Sthat contains all the /4y, y,) parameters of the unstructured polytomous model to
T

the parameters ¢ of the log-linear model (2) as = & 6. In particular, By, y») =%y, y2)?;
where «%’ahw) denotes the row of & corresponding to disease subtype (y1,y»). Also, using a

second-stage model we can write a= A, where a is a length-M vector of all ay, y.)
parameters. We use & to denote the second-stage parameters for the nuisance parameters. For

clarity, we write a(yhyz):xzf(T )€, where ﬂf(T

1.2 v1,y2) denotes the row of 4 that corresponds to
disease subtype (y1,y2).

Note that the use of the second-stage model for the regression parameters is not just for
dimension reduction. More importantly, these second-stage model parameters are our main
interest. As mentioned previously, these parameters directly measure the heterogeneity in
the log-odds ratio parameters due to each of the disease trait. For the purpose of dimension
reduction we set second and higher-order contrasts to be zero. However, this is not the only
way of reducing dimension. For instance, one may keep all the second-stage model
parameters, and then adopt the LASSO technique [12] to choose the important second-stage
model parameters.

Missingness mechanism

We introduce non-missing value indicator variables, R=(Ri1,R»)T, where Ry =1 (k=1,2) if
the k-th trait is observed for diseased subject i and O otherwise. Since for a non-diseased
subject there is no relevance of disease traits, for all non-diseased subjects we set R=(1, 1)7
for convenience. Note that there are at most 22 types of missing data patterns: (0, 0), (0, 1),
(1, 0), and (1, 1). For example, (1, 0) represents the case when the first trait is observed but
not the second one. We assume that the probability of observing missingness pattern r,
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pr(R=r|Y,X)=(r,X), does not depend on the disease traits. However, we not only allow the

missingness probabilities to depend on X (a case of missing at random, MAR, [13,14]) but

also allow the missingness indicators of different traits, Ry and R», to be dependent on each
other.

We introduce some additional notations to be used in the next sections. For the i-th subject,
whose missing data pattern is r, we partition its vector of disease traits into the observed

traits y¢~ and the missing traits . Similarly, we will use Zy;nr to sum over all the
possible values of . For example, if Y=y but Y5 is missing, then r=(1, 0), y°r =y, y™ =
Y, Whose value is missing, and Xymr means summing over all the terms corresponding to
(Yi=y1, Y2=1), (Y1=Y1, Y2=2),...,( Y1=Y1, Y2=My). When both traits are observed, Zymr just
uses the term corresponding to (Y1=yy, Yo=Y»).

Estimation Methodology

Maximum likelihood method in the context of missing data

To estimate 0, one can use the maximum likelihood estimator (MLE), which is obtained by
maximizing the full likelihood

n 1 1-D; Zy;”"'eXp (JZ{(Z”T - §+Xi% o mT)G)

L=]1[{ }oox e
i:l_Il 13 (41,02) P T (4 ) X BT (31 1) 6) 1:1 1+Z(y1,y2)6XP( o STX B, )

The resulting score functions for 6 and & can be compactly written as

i=1

(y1,92)

Olog(L B
So = g( = Z {D Xi ZI( i=") ;:T'@( A ?/:M)w(y‘v’".y?'“:x,) —Xi X (y1:y2)piv(ylvy2)} )
yz 2 T ’ 2

Olog(L
SE = Ogg( ) Z {DZ;I (RZZT) ;TJZ{(ygr7y;nq-)w(y?ry. ymr Xv)_ Z e5y(y1 7y2)pi,(y1,y2)} ’
Y; ¢

i=1 T (y1,y2)

where

T X; BT
exp( (1/07 Jm, )E+ ( OT y m-,) )
(yoT Y mr X5) Z erXP(J/ 01 m7 )§+X J?( o-, m7> )’
i = exP(g/w §5)) £+X j(m 1/2)9)
,(Y1,Y
s H—Z(y 2 eXp(O{m yz)E+X i

w

(u1l/))

If the model assumptions (see Appendix B) hold, then under standard regularity conditions
given in Theorem 5.41 of [15], the MLE 7= (67, &N)T asymptotically follows a normal
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distribution with mean 7= (&', £N)T, and the asymptotic variance can be consistently

. Nely - g — (ST ST)T

estimated by {-(0S,/077')"*} =, Where on={>0,>¢ | ,
0y _ ¥~ X2

06T

74

| —

. I = o me\ W T . N my T . N
Dl; (Ri r)y;rgg(yﬁyi ") F oy x) ‘@(u‘?’,y;’“) Zyi '@(yfﬂyl”’) g™ X5)
i

- > %yl,yz Pi(y1,y2) {%(q;l,yz)_(yz )@(7?;17y2)pi,(y1,y2)}:| 5

(y1,92)

2Y2

655_859
96T — 9T — Z Xi

Di ZI(P”_T) Z Q{(y‘" v wer g x) {'@(m Ty Z’@( T g mr)}

i

= 2 Dy )Pi(y1,y2) {'@al,yz)_(y% )ﬂal,yz)piv(yhyz)}] )
1,Y2

(y1,92

)

my
i

e |
:i; LDZXT:I( —T’)yz % or mT)w o' m7 X)) {vd(y:?r’yﬁlr Zw Or ,m, X )d(yfr7y;nT

= 2 Dy o)Pi(yr.v2) {“2((51,112)_ > )%(Zl,yﬂp@(ywz)}]'

(y1,92) (1,92

As evident from the above discussion, the inference of the heterogeneity parameters, 6,
depends on the intercept parameters a and their model a= A&.. Next we discuss an
alternative inference for the heterogeneity parameters, which is more robust against the
misspecification of the second-stage model for a.

Pseudo-conditional likelihood in the context of missing data

In order to form pseudo-conditional likelihoods (PCL), for every subject with disease, we
define a matched set s consisting of the subject itself and all subjects without the disease.
Thus, if D=1, then § = {i}U{j: D; =0}. If there are ny controls, then the cardinality of < is
(ng + 1). We form the pseudo-conditional likelihood ¢~ such that the i-th subject has a
disease of subtype (y¢", ") given that there is only one subject with disease ( y¢~,3!™) in
the set <:

I(R;=r)D;
jeZi\ i}

Z ‘> Z mr P (Dr=1,Y=(y;" ,y"LT)|Xk)H (D;j=0[X;)

€S\ {k }

3 BT e E4XeT 0 mr 0) I(Ri=r)D;

=11 gzo e GG :
ZﬁyZ ol e )

Z,

PCL,i

ke

pr(D;i=LY;=(y;" .y IX)] ] FO\X*)
H

Then the pseudo-conditional likelihood is defined as the product of <. over i, i.e.,

Lrer H Zper, and the estimating functions are defined as the derivatives of log( <)
with respect to 0:
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dlog (%,
Suna = M) S DI (Rimr) § X5 B e e,
Z X Z ,"7 exp(;f( Or mT)E+X J< nT ym’r)0> %(yor y:nr)) } —0

JEZ, i
mr 97 - X AT, i
Z7€5ﬂ Z eXP( vy r)§+ WS T 0)

Note that - is free of £(or ay) if there are no missing disease traits for any of the diseased
subjects. Therefore, <~ contains somewhat limited information regarding &. Hence, we shall
estimate & from another set of estimating equations. Goetghebeur and Ryan [9] first
introduced two different sets of estimating equations in the context of missing causes of
failure in the competing risk model. Here, to estimate & we consider another pseudo-
conditional likelihood <’ such that the i-th subject has a disease of subtype ( y¢", y/") given
that there is only one diseased subject in < without specifying the observed disease subtype.
Itis given as

o I(Ri=r)D;
H Z pr(Di=1,Yi=(y;" yi" )| Xl ., Pr(D;=0/X}) '
T Sy D=L Y= (5 g XOIL, pr(D,=0/X,)

Hence, by defining -2, H;li”;cu, the estimating equations for & are

Alog(

PC’L)

n
:ZD’L { ZI(Rl:T') Z%:r 7yznrw :r7ym'r
=1 T 7_Tbr

_Zjey Z(y1 y2) exp( (y1 Y2) £+X % (Y1,92) )"Q((Zl,m) —0
Z7€/ Z (Y1, w)exp(szfy uz)§+X gg(ul uz)g)

We estimate 0 and é by solving Sgg,p=0 and Sgg =0 simultaneously. Denote the resulting
estimates as 77 = (GT §T)T The estimating equations are asymptotically unbiased, as is shown
in Appendix B. The asymptotic distribution of the estimators is multivariate normal with the
asymptotic covariance of néonsistently estimated by a sandwich estimator. The middle
component of the sandwich estimator is obtained via a linearization technique applied to the
estimating equations. The left and right multipliers of the sandwich estimator are the
derivative of the estimating equations with respect to the parameters. See Appendix B for
the general case.
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Simulation Studies

Simulation design

One of the main goals of this numerical investigation was to show how robust our method is
towards a misspecification of the intercept model in the presence of partially missing disease
traits. We simulated cohort data of size n=5,000 by simulating (X,Y,D). The scalar covariate
X was simulated from the Normal(0,1) distribution. We considered two scenarios each with
3 traits. First with 8=(2x2x2) disease subtypes, and second with 30 (=2x3x5) disease
subtypes. For each scenario we considered a correctly specified (denoted by a) second-stage
model and a misspecified one (denoted by b) for the intercepts. We created missing values
in each trait where missingness probabilities depended on X. Two mechanisms were used:
M) the missingness probabilities were dependent on X but the missingness of different traits
was independent; and M) the missingness probabilities were dependent on X and the
missingness of different traits was dependent. Overall disease probability lies between 6%
and 9%.

For scenario 1, we considered three disease characteristics each with two levels, resulting in
2x2x2=8 disease subtypes. Assuming that the second- and higher-order contrasts for the
relative risk parameters are negligible, we write

,3(1,171) 1 0 0 O

ﬂ(1,1,2) 1 0 0 1

ﬂ(17271) 1 010
_ _ | Baz2 _ 101 1 o 0 o0 o) o\
F=20.5=1 5oy P71 11 0 0 0=(0,610), 640,050

/8(27172) 1 1 0 1

B22.1) 1110

| Braos) | 111 1

and we chose 6=(0.35, 0.15, 0, 0.5)T. Thus the disease subtypes were generated using the
model pr(Y=(y1,y2,¥3)X) = exp(cyy,yp y3)*Ayry2y NI+ Zy1y2.y3)
exp(a(yl,y2,y3)+ﬂ(y1,y2,y3)X)}‘1.We chose a(y; y,.ys) t0 follow the same model as Ay, yo.y3)
with A= 5 and £=(-5,0,0,0) (scenariola). In addition, to study the robustness of the
approach against the misspecification of the model for the intercepts (scenario 1b), we used
a=(-5.193,-4.477,-5.297,-5.033,-5.170,-5.160,—4.340,-5.330) T by adding vector
(-5,-5,-5,-5,~5,-5,-5,~5) T in the column space of &, which is the correctly specified part,
to vector (-0.193,0.523,-0.297,-0.033,-0.170,-0.160, 0.660,-0.330)T perpendicular to the
column space, which is the misspecified part.

Finally, we created missing values in the diseases traits using two mechanisms. For My, the
missing probabilities for each of the traits were allowed to depend on X through the logistic
function exp(-1.5+0.5X) {1+exp(-1.5+0.5X)} 1, resulting in missingness probabilities of
around 0.2 for each disease trait. For My, 3 traits had 23=8 possible missingness patterns.
For each case subject these patterns were generated from a multinomial distribution with the
following probabilities pr{R=(1,0,0)|X}=dlexp(y1+0.5X); pr{R=(0,1,0)|
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X}=d~Lexp(y+0.5X); pr{R=(1,1,0)|X}=dtexp(y3+0.5X); pr{R=(0,0,1)|
X3=d~lexp(ys+0.5X); pr{R=(1,0,1)|X}=d"exp(y5+0.5X); pr{R=(0,1,1)|

7
X3=d~Llexp(ys+0.5X); pr{R=(1,1,1)[X}=d"lexp(y7+0.5X), where d=1+Zi:1exp(%+0.5X)
and vy1,...,y7 were chosen so that marginally each trait had about 20% missing values.

For scenario 2, we considered three disease traits with numbers of levels 2, 3, and 5,
resulting in 2x3x5=30 disease subtypes. With the corresponding 4= 5 defined by the
second-stage additive model, we took 6=(0.35,0.15,0,0.5,0.35,0.15,0,0.5)T and
£=(-5,0,0,0,0,0,0,0)T (scenario 2a). For scenario 2b, we chose a the same way as in scenario
1b.

Finally, we created missing values in the disease traits. For mechanism one, the missingness
probabilities were allowed to depend on X through the logistic function exp(yx+0.5X)
{1+exp((ykt0.5X)} 1, where v, was chosen to be (-1.5,-1.5,-0.85)7, resulting in missing
probabilities of around 0.2, 0.2, and 0.3 for the three disease traits, respectively. For
mechanism two, we allowed the missingness probabilities to depend on each other in a
similar pattern as in scenario 1.

Method of analysis

Results

Each of the simulated datasets was analyzed by the maximum likelihood approach (MLE)
and by the pseudo-conditional likelihood method (PCL). Furthermore, we analyzed the data
considering only the subjects without any missing disease traits using the maximum
likelihood approach, and we refer to it as the complete-case maximum likelihood estimator
(CMLE). In all these analyses, we adopted the second-stage additive models for the
regression and intercept parameters, f= 56 and a= A&. We present mean, median, median
absolute deviation (MAD), empirical standard errors (Emp. SE), estimated standard errors
(Est. SE), 95% coverage probabilities, and root mean square errors (RMSE) of all the
methods based on 2,000 replications. To assess asymptotic bias, we present

B.score= v/2000(mean estimate—truth)/Emp.SE.

To save space, in both scenarios we omit the results for missingness mechanism two, which
are very similar to those for mechanism one. Also, we leave out results for the correctly
specified intercept model case in scenario two. The conclusions that could be drawn from
the results not presented were not different from those presented here. We would be happy
to provide these omitted results upon request. The results for scenarios 1a (top panel of
Table 1) indicate that when the intercept model is correctly specified: (1) all three methods
are asymptotically unbiased; (2) the standard errors of the PCL method were slightly larger
than that of the MLE method, but smaller than that of the CMLE method, which suggests
that the PCL’s efficiency is close to that of the MLE method; (3) similar to the standard
errors, the RMSEs of the PCL method were slightly larger than that of the MLE method, but
smaller than that of the CMLE method; (4) the estimated standard errors of the PCL method
were close to that of the empirical standard errors; and (5) all methods’ coverage
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probabilities were close to the nominal level (95%). The trend of the results remains the
same for scenario 2a.

The results for scenarios 1b (bottom panel of Table 1) and 2b (Table 2) indicate that when
the intercept model is misspecified: (1) the biases of both the MLE and the CMLE methods
were prominent, but the biases of the PCL method were far less serious; (2) the comparisons
of the three methods in terms of standard errors, RMSEs and estimated and empirical
standard errors agreement were similar to those in the model with correctly specified model
for the intercepts; and (3) the coverage probabilities of the MLE and the CMLE methods
deviated from the nominal level, but the coverage probabilities of the PCL stayed close to
the nominal level. Finally, the PCL method was almost as efficient as the MLE method in all
scenarios. The bias of the CMLE method can be attributed to model misspecification of the
model for the intercepts and ignoring the subjects with missing traits. However, the main
source of bias in the MLE method is due to model misspecification.

Following a referee’s comment we conducted additional simulation to study the
performance of the three methods in the presence of non-null second-order contrasts in the
true data generating process. As in Scenario 1, we used 2x2x2=8 disease subtypes, the
missingness probabilities were made depended on X, and the intercept model was
misspecified. But in addition to the original 6=(0.35, 0.15, 0, 0.5)T, the true values of the

2 2 2
second-order contrast parameters were taken as 03@2):0, 953)(272) =-0.2, 023)(2@ =0.2, We

call this Scenario 1c. For Scenario 1c, we first analyzed the simulated datasets assuming a
second-stage additive model, meaning second- and higher-order contrast were set to zero.
Then, we analyzed the datasets adopting a second-stage model keeping all first- and second-
order contrasts parameters but setting third- and higher-order contrast parameters to zero.
For the misspecified additive model (top panel of Table 3), the PCL method’s biases were
much smaller than either MLE or CMLE for all but one parameters, and its RMSE’s were
smaller than CMLE and sometimes smaller than MLE. With the second-order contrasts
included in the model (bottom panel of Table 3) the PCL method also performed well with
the smallest biases.

Data Example

The CPS-11 Nutrition Cohort is a prospective study of cancer incidence and mortality in
86,402 men and 97,786 women and has been described in detail elsewhere [1]. Briefly, the
Nutrition Cohort is a subgroup of the approximately 1.2 million participants of the CPS-11
Cohort, a prospective study of cancer mortality established by the American Cancer Society
in 1982 [16]. Nutrition Cohort participants resided in 21 states with population-based cancer
registries, were aged 50-74 years, and completed a 10-page confidential, self-administered
mailed questionnaire at enrollment in 1992 or 1993.

Excluded from this analysis were Nutrition Cohort participants who were men (n=86,402);
women who were using hormone replacement therapy (n=33,407), not post-menopausal
(n=3,514), lost to follow-up (i.e., alive at the first follow-up questionnaire in 1997 but did
not return the 1997 or any subsequent follow-up questionnaires) (n=2,178), reported a
personal history of cancer other than non-melanoma skin cancer in 1992 (n=9,520), reported

J Biom Biostat. Author manuscript; available in PMC 2014 December 18.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

Miao et al.

Page 11

a diagnosis of breast cancer on the first survey that could not be verified through medical or
cancer registry records or an in situ breast cancer (n=174), or the subjects with missing
values in any of the predictor variables or whose weight gain was more than 100 Ibs
(n=7,979). Included in the analysis were 41,014 women. There were 1,555 incident cases of
breast cancer (International Classification of Disease for Oncology, Second and Third
Editions site code C50) that occurred between the date of the baseline questionnaire and
June 30, 2007.

The risk factor of interest in the analysis was total weight change since age 18 to 1992 (WG)
as it has been shown to be related to risk of breast cancer in previous studies (e.g., [8], [17],
and [18]). WG was transformed to be between 0 and 1 for numerical stability. Using (y,
...,y5) to represent levels of the five traits, stage (2 levels), histology (3 levels), estrogen
receptor (2 levels), progesterone receptor (2 levels), and grade (3 levels), we can write the
polytomous logistic model and the corresponding second-stage additive model as

Pr(D=L Yim(yn, -y X =y pesal Dm0
b ( ’| ) 1+Z(y(l,___,y5)exl’(a(y1-»--ays)""fa(ylwvys)Xi)’
By =0 0D 14y +0M 5,) +0 W5,y 00 1y +60W 505,

for i=1,...,n. Contingency tables for the disease configurations can be found in Table 4. We
used the second-stage additive models for both the intercepts and regression (log-odds ratio)
parameters for all three methods. For the MLE and PCL methods we used all 1,555 cases
while for the CMLE approach we used 848 cases whose disease traits information was
complete.

The results are presented in Table 5. Since the PCL approach is more robust towards
misspecification of the intercept model, we interpret the corresponding results here. Under
the PCL method, we conclude that (1) the estimate of () due to weight gain is positive and
statistically significant at the 5% level. The odds ratio for the incidence of breast cancer with
well differentiated grade, localized stage, histology ductal, ER status positive and PR status
positive for the 3rd quartile (45 Ibs, re-scaled to be 0.476) of weight gain versus 1st quartile
of weight gain (15 lbs, re-scaled to be 0.190) is 1.356 (exp{(0.476 — 0.190) x 1:066}, 95%
confidence interval (CI): 1.164-1.580); (2) the PCL method produced statistically

significant estimates of 9;;)7 9&;), 95&%), and 0&;) for the covariate weight gain, which can

be interpreted as follows. For a women who gained 45 pounds versus one who gained 15
pounds, the odds ratio of the disease with distant tumor is 1.260 (95% CI: 1.089-1.459)
times the odds ratio of the disease with localized tumor, keeping all other traits fixed; the
odds ratio of the disease with lobular histology is 0.822 (95% ClI: 0.694—0.974) times the
odds ratio of the disease with ductal histology, keeping all other traits fixed; the odds ratio of
the disease with ER— status is 1.287 (95% CI: 1.006-1.646) times the odds ratio of the
disease with ER+ status, keeping all other traits fixed; the odds ratio of the disease with PR—
status is 0.705 (95% CI: 0.577-0.862) times the odds ratio of the disease with PR+ status,
keeping all other traits fixed.
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Following a referee’s suggestion, we conducted a model assessment for the data example.
There are 72 log-odds ratio parameters, and as will be discussed in the last paragraph of this
section, not all of these parameters are estimable. Now, we consider a second-stage model
where all third- and higher-order contrast are zero. In this setup we test Hg: all second-order
contrasts are zero against Hy: at least one of the second-order contrasts is non-zero. For this
purpose we fit the model with all first- and second-order contrast parameters using the
proposed PCL approach. The test statistic is T =(A0)T (A% AT)™L A9, where A is a 19 x 27
matrix partitioned as A=(019xg: |19) With |19 being an identity matrix of order 19, and ©
stands for the asymptotic variance covariance matrix for 6. Under Ho, T approximately

follows the 2, distribution. The corresponding p-value was smaller than 0.001, indicating
that some second-order contrast parameters significantly (at the 5% level) differ from zero.
Please see Table 6 for the new analysis with the second-stage model containing all first- and
second-order contrast parameters. Although complex due to the presence of some non-null
second-order contrast parameters, the model parameters of Table 6 can be interpreted. For

R 2
example, we interpret 6’§4>(372) as follows:

oxp {0ts )

_ {pr(G=Poor, ER=—|X+1) /pr(G=Well, ER=—|X+1)}/{pr(G=Poor, ER=—|X) /pr(G=Well, ER=—|X) }

~ {pr(G=Poor, ER=+|X+1)/pr(G=Well, ER=+|X+1)}/{pr(G=Poor, ER=+|X) /pr(G=Well, ER=+|X) }

Where G stands for Grade. Here the numerator is the odds ratio for Grade being Poor vs.
Well associated with one unit increase in weight gain when ER status is —, whereas the

denominator is the same odds ratio when ER status is +. Here '93)(372) is non-zero, so the
odds ratio varies with the change of ER status. Also, due to estimation of more parameters,
the standard errors of the estimators have substantially increased (please see the standard
errors of the first-order contrast parameters in the PCL method in Table 5 vs. Table 6. This
entire testing procedure demonstrates one of the good features of the proposed method that
we can formally test our assumptions regarding the contrast parameters.

Prompted by a reviewer’s comment, here we discuss the issue of configurations with few or
no subjects. There are no subjects in 23 out of the 72 possible disease subtypes. That means
that a simple polytomous logistic model cannot be fit to this data with all 72 disease
subtypes. The second-stage additive model, on the other hand, can enable us to make use of
the cross classification structure and thus achieve sharing information across subtypes. The
proposed method with second stage additive model still works when some subtypes have no
cases observed. We require some cases for every level of each trait, which is easier to have
than requiring cases for each subtype. Moreover, in the data example, our method works
when the second-stage model contains all first- and second order contrast parameters. In
fact, one may add more higher-order contrast parameters in the second-stage model, but
these additional parameters may not be estimable from the data. For example, the third- and
higher-order contrast parameters involving ER-, Grade Well, and Stage Distant are not
estimable as the corresponding cell frequency is zero (the third panel of Table 4).
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Discussion

The two-stage model is an efficient and flexible way to measure heterogeneity of the odds
ratios. It allows a sensible way to dimension reduction. For parameter estimation of the
second-stage model, one can use the MLE, PCL, or the CMLE methods. Compared with the
MLE method, our method reduces the effects of the intercepts on the estimation of the
regression parameters, and thus it is more robust against the misspecification of the model
for the intercepts.

When the model is correct, the PCL method is asymptotically unbiased. In addition, our
simulations suggest (1) when the second-stage model for the intercepts is misspecified, our
bias is usually smaller than that of either the MLE method or the CMLE method, and (2)
with either correctly specified or misspecified model for the intercepts, our method can
usually achieve efficiency that is very close to the MLE method.

Analysis of the Cancer Prevention Study (CPS)-I1 Nutrition Cohort data represents the first
effort that the authors are aware of to simultaneously examine the effect of multiple
covariates on the outcome. We hope that it not only is a demonstration of the method but
also sheds light on the etiology of breast cancer.
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Appendix
A General Methodology

Suppose that X = (Xq, ... Xp) is a vector P of covariates, Y = (Y1, ... Yk) and carries
information on K disease traits, and M = M1 x My x ... x M is the total number of disease
subtypes, based on all possible combinations of the various traits. We will use y for (yy, ...
Yk)- Our model is

P
piwy = pr<D1:]" }/;:y‘X'b):eXp (ay+21):1ﬂ?§p)Xz7p> {1+Z eXp (ay+z *1ﬁ( )X >}

and Pr(Di=0]Xi)=1/ {HZ exp (ay+2 NS 4)) } fori =1, ... n. For M disease

subtypes, we have M x P main regression parameters of interest along with M intercept
parameters. The log-linear model for the log-odds ratio parameter is

() _ alp) _p(0)® K ) (2) (P) (k) (P)
ay’ _ﬁ(fl ----- yK>_0 +Zk:10 yk>+zk 1Zk >k0 k' (Yoo, HToe o 12K (y1,vg)

Suppose that AP) is the set of log-odds ratio parameter corresponding to Xp, then the second-
stage model can be written as AP) = s» ¢P). From here on, we denote (AU, ... dPT by 0,
For each subject we introduce a vector of binary variables R= (R, ... Rg)T, where Rg = 1 if
the ki trait is observed and 0 otherwise. For our convenience, we set R=(1, ... 1)T fora
non-diseased subject. Using our methodology the estimating functions for Gare

EE,0(P)

Y Y;

a lo pCL
= Qoo (Tocy) ZD SI(Ri=) {X”, > ,z( e ) )

nO_lZy:,ﬂr CXP(J/(I;NT ,y:f'br ) 5+211::1Xi’p332?;; oy ) 0(1’) )XZ PJg(p)r y Tm« +. %(1) (QOn)

Y; Yi Yi

ng! Y exp (y/(i; or ) g+zlexi,p%?;>o{ ) e(m) +///;§L L(Qon)

i i

where for k=0, 1,
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— Rk
A Q=g S (@l o ST X B 0D Jp;@;’_il,ygm

Yi P je /i Y, Y Y; Y, i

Syt (o T Xp B ) 60) (X, 20, ) Q0 (X),

and QOn(I):nglzzlzll(Di:Oy X;=z) denotes the empirical distribution function of X
among the controls which converges in probability to the true distribution of X among the
controls denoted by Qu(X). Here a®k =1, a, aa! for k=0, 1, 2, respectively. We want to

clarify that + in Sgg gp) signifies a summation over all possible values of the indicator
vecto r. If there are three traits, then the possible values of r are (0, 0, 0), (1, 0, 0), (0, 1, 0),
(1,1,0),(0,0,1),(1,0,1), (0,1, 1) and (1, 1, 1).

The estimating functions for £are
S 0 log ( PCL)
EE,. — T

n
:Zi:1Di {ZI (Ri=r) y;nrAyf Ty
T

P
ny 'S exp <%T5+2Xw9975”w@) AT+N D (Qon)
p=1

)

ny 'Y exp (ﬂTngZX AP o) ) + 4 © (Qoy)

p=1

where for k=0, 1,

A B Qo) =ng S, o Sy (AT X, BT T00)) a7k
=Y jexp (ST Y0 X, BT 60W)) 7P dQy,, (X).

We estimate P), p=1, ... P, and &by solving Sgg. op) = P, Sgs=0
simultaneously. Denote the resulting estimator as 7= (67, §T)T

B Asymptotic Properties

In this section, we discuss the large sample properties of n.AWe show that n‘lgEﬁ(p) —0(p
=1,..P)andn! SE ¢ — 0in probability, i.e., the estimating equations are asymptotically
unbiased.
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Regularity conditions

_ . —1/aT T T T
Let Sn(n)—n ( EE6’ " U ERe(P)’ EE,E)
C1  The parameter space for 7 is a compact subset of an Euclidean space.

Cc2
0<exp (Z X, B ) < forall 4P and y.

C3 O<exp(4<ooforall fandy.

C4  The elements of the second-stage design matrices 5 and 4 remain uniformly
bounded in absolute value by constants, say ¢ and ¢, respectively.

C5  The information matrix Hy, is positive definite.

C6  The deterministic equation E{S,(7)} = 0 has only one root in the neighborhood
of the true parameters.

Conditions C1-C4 are required for uniform convergence, i.e.,

sup, [|Sn(n)—E {Sn(m)} | £, 0. condition C5, C6 (identifiability) and the asymptotic
unbiasedness of S,(7) for zero (to be proved) together imply convergence of the estimator in
probability towards the true value (Theorem 5.9 of [15]).

Asymptotic Unbiasedness

Here we first show that "ﬂsEE,g@) 0 as n — oo at the true parameter value. Due to the
law of large numbers, n‘lsEEyg(p) converges to its expectation. In order to calculate this
expectation, we shall use the conditional probability that the i-th subject has disease of type
y=(y{",y;"") given that there is one diseased subject in the matched set © with this disease
type. Hence,

i

T yorkeS; > je, E ’”rexP(g{( or mr)§+2p 1XJP@< )ymr)a(p>)

iy exp(/T P P »
E (SLE e(p)) _E|Y [ % Z/ exp( (2. Tmr)@rzp,le ,,/?(Jnr o )9 PV (r, X )

3 exp (M(Ty {,Tyym)&zf:lxk,pz(ynr ymr)em)xk‘pe (s0ramr) Ao (Qo)

) (Qo)

X
Zyi""’ exp <A7("y or ’ymr)g+zf - Xk,p,@zy or ) e@)) v

dpr (y27) | +o(1).

Now, the first term on the right hand side above is
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Zymrexp<dTW . §+Z;’:1X’“>PQT R 0(?)>W(T,Xk)
E | ZTfyf’Zkeyi i (yq, i ) (yz i )

jeS;

Zy;nr exp <'%(’Z;/{Jr o ) §+Z::1Xk*P‘@zy0r o ) o) X Xk,pgg(ynr 1/mr)
k2 T2 k2

; Ty
i 7 @

Zy;nr xp (‘Q//(’];?r Ly ) £+E::1 kail"‘@zyor s ) 9(?))

PR

dp (y;")
Zy;”r P <&{(j;/‘.’r sy ) 5+Z§:1 %Eﬂy‘.” T ) o)

Zy?”"‘ exp(&/(T or ymT_)E-i-Zf:le,pf%Eﬂyor yzﬂf-)e(p))xk’pf%(y?r ymT)TF(T,Xk-)

ke i 774

i

SN DSy RN S PR

ke

=E {z,fyfr dp (y; T)} ;

and the second term is

e, Xy €XD <,gf( o ,,Lr)g+zp 1Xk7p.@(T o mr)e(l))) 7(r, Xp) ///;33 ,(Qo)
X —7 dp (y;")
©0) i
Y e, Sy exp< (e mr)§+Z 1X,p,@< or ymr)(?@) //lyf,.yp(Qo)

=k Zr‘fyi

The difference between the two terms is easily seen to be asymptotically the expected

weighted conditional covariance between 7(r, X) and X. p B, ,mr) with weight

exp( (Or mr)f‘f'zp 1X i, (Or mT)Q(P))
Z Zy;nrexp (o, m,)f-FZp 1 _],p ( J"yy:""‘)e(p)).

ke

Let
covw{ (r, ), X.p Byor vy
exp (Méor 17nr)£<l>z: XJP’B O'r mr )>
= X, ' 7, X r, X
jeS Yi Z Z mrcxp or §+Zp 1XJPQT 0(17)){ ( ) ( )}
i, ) )
ﬂ%i
x Xj,p@(% ymr) T //,@T
where

exp< (uer mr)f-i-zp_l ip (y?hym)e(?)> w (r, X;)
jes YT Zjey’ > erXP( (uor m,)g—'_zp—l ip ( or ,”7)9(1’)>

Yi Y Yi oY;
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Then, we can write
ShE‘ 0
E (—) [Z [y or COU {71'(7‘, X)aX-,p«@(ygr,y;w)} du (yf’)} +o(1)=0(1),

where the last equality follows due to the fact that X 7(r, X) = 1

Similarly, due to the law of large numbers, n‘l%E,ée converges to its expectation. In order to
calculate this expectation, we shall use the conditional probability that the i-th subject has
disease of type y=(y{", y."*") given that there is one diseased subject in the matched set ¢ but
without specifying any disease subtype information. Hence,

3 [ Z mrexp< §+Z X, p BT o(p)
S v ( or ymr) p=1 (yur'ym,r)
E(ME )=E| 03, %, (1 X i
n fyL Ti~kes; ( k) § : Z eXP(J/Tf+ZP IXJ pngg(;u))

JjES
> mTeXp< ( )f—l—zp lep,Z( 9(1’)),;2{ or
oqunT‘ y;’r,y;"'r) (yi Y, ) JV(I)(QO) o
8 > — ey ( I (57)| +o(1)
Zy;m.exp J?/(ygrymr)fﬁLz Xk pE(JOT ymr)g P
T P #T (») or
| BB O B\ A o SR T )0 Yl )
2 s, Do (AT Xi A0
P
Zrzk /(1 Xi)= f 072 mr €XP T or §+2ka S 0@ | du(y?r)
s€ ( W ) = (l v ) ©
} x ey | +o
P ? o
Z Zyexp g/yT§+ZXj,p@g€<P>
JES p=1
Zrzke/ ™ TvXk)ZyCXp (LQ%T£+Z;):1XI%P%§0(P>){dy
e, Lo (MT§+Z ijp.@ge(m)
. P
Z Z 7r(r X ZycxP(MyTHZ :1Xk’p%§0(z)>) . A D(Q0) o)
Z.e > Eﬁxp(y/f E+Y 0 X 0BT e(m) A O1(Qo)
J 7 =

Now using the facts that X, 7(r, Xi) = 1 and

Zke./ Z exp (M §+Z 1ka,@ 0( )> % P ,/1/ 1) (QO)
Zjey. Zyexp (%T€+zp:1Xj7p%50(P>) N (0) (QO)’

we obtain that n= 'S, Lo
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Asymptotic Normality

Note that for large n

) (l/f' X, ) //4(82 (QO )

. . M) (Qon)
TESEE’H(p):%ZzLZIDiZTI (Rzzr) Xi,PZyimr'@( or y;mr e ———— +0(1)

7

) M) Qo) MG (Qo)
— i D I (Ri=r) § — +op(1)-

M) (Qon) //%21 L(Qo)

- (Qo)
_TZ P {Xi,pzy;nr,@( frvym)w@:r,ymr’x) m}

N 1 2 0
Let ai://l;?,), » (Qon) and biz//f;g)-,p (Qon). Then using the fact that

6 a_ti—a_ai (g e
b b b b ; (bi=ti) +o, (7172,
the summand of the second term of (B1) is

A (Qon) %/%l ,(Qo)
/zfi?i (Qon) ///21 @) //421 (Q)

M (Q())
vy —1/2
X { @( or m,.) /Z(gl p(Qo) } +0p (n ) .

Plugging (B2) into (B1) and changing the order of the two summations in the second term,

we have
) _— A (@)
TSm0 = v i1 2L (Bi=1) Di ¢ Xiphy rv@( or ’"T)‘”(y;v-,y;m-,xi)_W

~ LT (-D)LTIL S, (B=r) D, Sy exp( @l o

//{<22 (Qo) i

p " ) ///((1;2« ,(@0)
—1Xip, 6'\p X; ey — .
+ZP—1 %Pz,p‘@(y;?ryyg_%”) > <%(J Y ) //{;g)r’p(QO) +OP(]‘)
J

Finally, applying the strong law of large numbers and the Slutsky’s Theorem, we obtain

nfl/ZSEE’U@) = 71/22 ®; 9 (0,€) asymptotically. Similarly, for large n,
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) ' AV (Qon)
T SeEeT \FZ 122 (Ri=r) D; {ny'lrw(y?,y?r,xl')d( )T /‘/(O)(Qg”) } Foll)

B
_ " _ 2 (Q n - D (Qon) A D@ (
R i) D (s ) P8 ) TS () D, {8} 0

Employing the same technique as that used in (B2), we can write
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Plugging (B4) into (B3) and changing the order of the two summations in the second term,
we have
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The last equality follows due to the application of the strong law of large numbers and
Slutsky’s Theorem. Thus we have shown that Sgg gand Sgg - are approximately a sum of
asymptotically independent random variables whose means are zero. Now,
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and the asymptotically independent terms are
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where Qg represents the true distribution of X among the controls.

Therefore, the asymptotic covariance of 7 can be consistently estimated by

where éfg(é, &) and @Zg(é, £) are obtained by replacing the expectations by the empirical
averages, Qg by Qgn, and the true parameters by their consistent estimators.
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