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Abstract

Motivation: Random sampling of metabolic fluxes can provide a comprehensive description of the capabilities of a
metabolic network. However, current sampling approaches do not model thermodynamics explicitly, leading to in-
accurate predictions of an organism’s potential or actual metabolic operations.

Results: We present a probabilistic framework combining thermodynamic quantities with steady-state flux con-
straints to analyze the properties of a metabolic network. It includes methods for probabilistic metabolic optimization
and for joint sampling of thermodynamic and flux spaces. Applied to a model of Escherichia coli, we use the meth-
ods to reveal known and novel mechanisms of substrate channeling, and to accurately predict reaction directions
and metabolite concentrations. Interestingly, predicted flux distributions are multimodal, leading to discrete hypoth-
eses on E.coli’s metabolic capabilities.

Availability and implementation: Python and MATLAB packages available at https://gitlab.com/csb.ethz/pta.

Contact: joerg.stelling@bsse.ethz.ch

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Constraint-based models (CBMs) aim to characterize the metabolic
capabilities of an organism, potentially at genome-scale, by predict-
ing metabolic fluxes based on constraints arising, for example, from
the structure of the metabolic network and the steady-state assump-
tion (Orth et al., 2010). Because many degrees of freedom exist for
the network’s (potential, if not practical) operation, a central object
of the analysis is the flux space. Formally, the flux space F of a
metabolic network with n reactions and m metabolites is the set of
flux distributions v 2 R

n that satisfy steady state and additional flux
constraints:

S � v ¼ 0; lb � v � ub; (1)

where S 2 R
m�n is the stoichiometric matrix (encoding the network

structure) and lb 2 R
n and ub 2 R

n are measured or assumed lower
and upper bounds on fluxes (encoding, e.g. reaction reversibilities).

The most common approaches to analyzing F predict particular
flux solutions, for example, by assuming cellular objectives in flux
balance analysis (FBA) (Orth et al., 2010). To explore and charac-
terize all possible solutions that lead to observed phenotypes or
desired goals, uniform sampling (US) (Haraldsdóttir et al., 2017;
Price et al., 2004) and its extensions in the form of loopless
(Desouki et al., 2015; Saa and Nielsen, 2016) and non-uniform sam-
pling (Binns et al., 2015; Heinonen et al., 2019; Keaty and Jensen,
2020) provide a comprehensive description of the flux space.

Compared to characterizations by metabolic pathway analysis
(Terzer and Stelling, 2008), sampling predictions directly relate to
experimental flux distributions.

However, available constraints often restrict the flux space insuf-
ficiently. Different -omics data from high-throughput measurement
technologies can in principle be used to derive additional con-
straints, but data integration is challenging and the resulting con-
straints are condition-specific (Ramon et al., 2018). In contrast,
constraints based on thermodynamics derive from first principles;
they are absolute and independent of specific kinetic properties or
regulatory mechanisms. Therefore, modeling thermodynamic laws
has the potential to reveal the options available to the cell.

In a metabolic model, thermodynamics quantifies the favorabil-
ity of a set C of c reactions (excluding unbalanced pseudo-reactions
such as biomass and exchange reactions) with Gibbs reaction ener-
gies DrG

0 2 R
c:

DrG
0 ¼ DrG

0� þ RT � S>C � ln c; (2)

where c 2 R
m are the compartment-specific metabolite concentra-

tions, DrG
0� 2 R

c the standard Gibbs reaction energies [corrected for
pH, ionic strength and transport between compartments
(Haraldsdóttir et al., 2012)], R the gas constant, T the temperature
and S>C is the transpose of the stoichiometric sub-matrix correspond-
ing to C. The second term of (2) (here called the activity term) maps
the contribution of metabolite concentrations to the reactions they
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participate in. Reaction energies constrain fluxes via the second law
of thermodynamics, which implies that positive (negative) net flux
can only occur if the free energy of a reaction is negative (positive).
This ensures that biochemical processes result in net energy
dissipation.

How well thermodynamics constrain a model depends on the
precision of the estimates of the variables in (2). Standard reaction
energies can be estimated from measured equilibrium constants
(Goldberg et al., 2004) by the group contribution method and its
extensions (Du et al., 2018a; Jankowski et al., 2008; Noor et al.,
2013). Because multiple reactions may affect the same chemical
groups, their estimates are often linearly dependent and thus lie in a
lower-dimensional subspace (Fig. 1A). Metabolomics data can pro-
vide precise estimates or approximate distributions (Park et al.,
2016) for metabolite concentrations (Fig. 1B).

Thermodynamics-based Metabolic Flux Analysis (TMFA)
(Henry et al., 2007) integrates thermodynamics into CBMs with (i)
a set of linear constraints describing (2) and bounds on its quantities
and (ii) integer constraints enforcing the second law of thermody-
namics. TMFA has been used to predict metabolite concentrations
(Henry et al., 2007; Park et al., 2016) and pathway favorability
(Chiappino-Pepe et al., 2017; Du et al., 2018b). However, it
describes the uncertainty by independent error bounds for each vari-
able. This facilitates the construction of optimization problems, but
also over-approximates the uncertainty. Figure 1C illustrates a space
of thermodynamic variables in TMFA: independent constraints on
ln c and DrG

0� constrain DrG
0 as well. In addition, the steady-state

condition (1) excludes orthants that imply directions without a feas-
ible flux distribution in F . This approach discards any correlation
between the DrG

0
i
� of different reactions and the probability of a

particular solution.
The common construction of CBMs for pure flux-based analysis

poses a further challenge. Model curators or automatic pipelines
regularly need to prevent unrealistic internal or ATP-generating
cycles (Schilling et al., 2000). Because the flux balance framework
does not resolve this problem consistently, assumptions or condi-
tion-specific biological knowledge are employed to assign reaction
reversibilities. Importantly, missing knowledge or inaccurate irrever-
sibilities can impose false thermodynamic constraints that do not af-
fect flux balance and thus remain undetected.

To address these challenges, here we propose Probabilistic
Thermodynamic Analysis (PTA), a framework in which the uncer-
tainty of free energies and concentrations is modeled with a joint
probability distribution (Fig. 1D). We develop optimization and
sampling methods based on PTA and show their application to pre-
dict substrate channeling, reaction directions and metabolite concen-
trations, as well as to explore the capabilities of the metabolic
network.

2 Materials and methods

2.1 The steady-state thermodynamic space
To account for correlations between the uncertainties of reaction
energies of different reactions, we assume that metabolite concentra-
tions follow a log-normal distribution based on measurements or an
assumed physiological distribution (Park et al., 2016)

ln c � Nðlc;RcÞ : (3)

From the estimates of a group contribution method (Noor et al.,
2013), we obtain a normal distribution for the standard reaction
energies

DrG
0� � N ðl� ;R� Þ : (4)

From (2), it follows that the reaction energy estimates are also
normally distributed as

DrG
0 � N

 
lr ¼ R � lc

l�

� �
; Rr ¼ R � Rc 0

0 R�

� �
� R>

!
; (5)

where R ¼ ½RT � S>C ; I�. For computational convenience, we define

the vector t ¼ ½ln c;DrG
0�;DrG

0�>. It is again normally distributed

with mean lt ¼ ½lc; l� ; lr�> and covariance matrix

Rt ¼
Rc 0 RT � Rc � SC

0 R� R�
RT � S>C � Rc R� Rr

2
4

3
5 : (6)

We use this distribution to constrain t to values that are compat-
ible with the estimated concentrations and standard free energies up
to a confidence level a, such that

ðt� ltÞ> � Rt
þ � ðt� ltÞ � v2

q;a ; (7)

where Rt
þ is a pseudo-inverse of Rt, of rank q ¼

rankðRt
þÞ ¼ rankðRtÞ and v2

q;a is the a-quantile of the v2-distribution

with q degrees of freedom. We exploit that q is much smaller than
the dimension of t by using a q-dimensional standard normal distri-
bution to express t as

t ¼ lt þQ �m ; (8)

where Q ¼ Rt
1=2 is a matrix square root such that Rt ¼ QQ>.

Lastly, we enforce the second law of thermodynamics and re-
quire that all reactions in C have a well-defined direction, that is,
non-zero flux. For each i, 1 � i � c:

vCðiÞ � DrG
0
i < 0 : (9)

Note that this requires reactions that are structurally blocked
(e.g. by involving dead-end metabolites) to be removed in advance;
they would conflict with (9).

We define the steady-state thermodynamic space (or short:
thermodynamic space) T as the set of t that fulfill (7) and satisfy the
steady-state constraints (1), (9). In other words, T defines the pos-
sible reaction energies and metabolite concentrations at steady-state.

2.2 Probabilistic metabolic optimization (PMO)
The definitions of F and T allow us to extend the FBA framework
to include thermodynamic quantities similar to TMFA. We translate
(1) and (7) into linear and quadratic constraints and rewrite (9) with

A

C D

measured

assumed

B

Fig. 1. Integration of thermodynamics in CBMs. (A) Group contribution methods

provide estimates of standard reaction energies. The uncertainties of multiple esti-

mates may be correlated and lie in a lower dimensional subspace. (B) Probability

distributions of metabolite concentrations can be constructed from measured or

assumed data. (C) The space of reaction energies and metabolite concentrations

defined by TMFA, with regions that are not feasible at steady-state removed (red).

The space is defined by independent bounds on each variable of ln c and DrG
0�,

leading to an overapproximation of the uncertainty. (D) PTA models the complete

uncertainty information probabilistically, leading to a joint probability distribution

over the reaction energies of the entire network. Steady-state flux constraints restrict

it to feasible orthants

Probabilistic thermodynamic analysis 2939



integer constraints in the big-M formulation (Williams, 2013). The
resulting Mixed-Integer Quadratically Constrained Program
(MIQCP) can be used to perform FBA-like analyses under thermo-
dynamic constraints.

Since we know the probability distribution of t, we can also de-
termine the most probable reaction energies and metabolite concen-
trations by setting a quadratic objective that maximizes the
probability of t under steady-state constraints:

m	 ¼ argmin
m;v

kmk2
2

s:t: Eq: ð1Þ; Eq: ð7Þ; Eq: ð9Þ:
(10)

We call t	 ¼ lt þQ �m	 the mode of the distribution of t.

2.3 Thermodynamic assessment of metabolic models
Structural assessment aims to detect thermodynamic inconsistencies
in a model, that is, groups of reactions that, given their irreversibility
annotation, cannot satisfy thermodynamic constraints with any as-
signment of concentrations and standard free energies. For example,
two stoichiometrically equivalent paths can be irreversible in oppos-
ite directions; then, all non-zero flux solutions contain a thermo-
dynamically infeasible internal cycle.

To resolve such cases, we first block all reactions related to
exchanges, biomass and ATP maintenance and enumerate all intern-
al Elementary Flux Modes (EFMs) (Terzer and Stelling, 2008).
Next, we select all the forced internal cycles, that is, the internal
EFMs that must be active in all non-zero flux distributions. We find
these cycles using linear programming to verify that changing any of
the signs of an EFM in the original model always results in an un-
feasible problem. We then inspect the reactions in the forced internal
cycles to find and resolve inconsistent irreversibilities.

Quantitative assessment of a model aims to find features in
PMO predictions indicative of knowledge gaps or model inaccura-
cies. First, we construct a condition-specific model with available
flux and concentration constraints from a base model and use PMO
to estimate t	. Next, we compute the z-score zi for each predicted
value t	i , which measures the deviation between t	i and li in units of
standard deviation (see Supplementary Information). We focus on
metabolite concentrations and classify predictions with jzij greater
than a threshold h (or ci 
 10mM for non-intracellular metabolites)
as anomalies and investigate whether those indicate missing or un-
known mechanisms or model inaccuracies. Finally, we curate the
base model with the results of the search. The values in t	 represent
the unlikely case in which predicted standard free energies are as
close as possible to the mean estimate and reactions can operate
close to the thermodynamic equilibrium. Because the predicted devi-
ations likely underestimate the true deviations, we use a conservative
h¼1. We repeat this process for a selected set of representative con-
ditions. Note that curation actions are applied to the base model—
further condition-specific models can be constructed without need-
ing to curate each condition manually.

2.4 Thermodynamics and flux sampling (TFS)
We use sampling to characterize T in terms of probability distribu-
tions of metabolite concentrations as well as probabilities for the dif-
ferent flux modes (see algorithm 1). Geometrically, T is the
intersection between an ellipsoid and the orthants with at least one
steady-state flux distribution satisfying flux and thermodynamic
constraints. This space cannot be defined explicitly, and is usually
neither convex nor connected. In fact, an n-dimensional space has
2n orthants, each corresponding to a possible combination of reac-
tion directions in a metabolic network. Clearly, the enumeration—
let alone verification of the steady-state condition—of all orthants
of T is infeasible with many reversible reactions. We therefore devel-
oped a Markov Chain Monte Carlo (MCMC) method based on the
Hit-and-Run sampler for General Target Distributions (Bélisle et al.,
1993) to sample T (Fig. 2).

Choice of initial points. For MCMC simulations it is generally
advised to simulate multiple chains, choosing the starting points

from an over-dispersed distribution, to detect if the chains explore
the entire space. For each reversible reaction, we use PMO to find
two sets of reaction directions over the network: one that maximizes
the flux through the reaction, and one that minimizes it. Then, again
using PMO, for each set of directions we search for a point si in T
that satisfies the directionality constraints. We require each si to
have maximal distance from the boundary of the respective space to
reduce the risk of numerical errors. Finally, we start simulating one
chain from each si.

Finding the intersection I. At each step of Hit-and-Run we first
intersect the ray with the ellipsoid defined by (7) and a set of linear
inequalities constraining the signs of free energies of irreversible
reactions. Without a close-form description of the boundary of the
space, finding the orthants that allow steady-state flux solutions is
challenging. Despite the exponential number of orthants, a ray in an
n-dimensional space only crosses at most nþ1 of them. Thus, at
each step, we identify all orthants intersected by the ray and discard

A Mode Probability
+++ 0.75

0.25
0

- - -
others

B

CB
A C

D

Fig. 2. Overview of TFS. (A) Example network, where left-to-right fluxes are posi-

tive. At steady state v2 ¼ v1 and DrG
0
3 ¼ DrG

0
1 þ DrG

0
2: (B) We sample the thermo-

dynamic space using a modified Hit-and-Run algorithm. At each step, we limit

sampling to portions of the space that allow steady-state flux distributions (orange).

(C) As a result, we estimate the probability of each mode. (D) Finally, we sample the

flux space drawing from each mode a number of samples proportional to its

probability
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those that do not allow a steady-state flux distribution. We verify
the steady-state condition with a linear program that checks the ex-
istence of a flux distribution satisfying (1) and the directionality con-
straints of the orthant. For each feasible orthant, we add its
intersection with the ray to I.

Sampling from I. We sample the next point along a ray propor-
tionally to the target probability distribution, which is a
Multivariate Normal (MVN). First, we restrict the MVN to a nor-
mal distribution along the 1-dimensional ray. We then compute the
Cumulative Distribution Functions (CDFs) for each valid segment of
I to determine its weight, sample a valid segment according to these
weights and finally sample a point in the segments according to the
associated truncated normal distribution on the segment. We op-
tionally store the sample and the samples count for the selected
orthant to estimate the orthant’s probability.

Reducing the dimensionality. Our method for sampling T so far
neglects that only reaction free energies determine flux directions,
and that free energies are determined only by concentration ratios,
not absolute concentrations. Thus, we can reduce the dimensionality
of the problem by not representing metabolite concentrations expli-
citly and solving (4) using lr and Rr instead of lt and Rt. This allows
faster convergence of the chains. Afterwards, for each sample of
DrG

0
i, we sample the corresponding ln c and DrG

0� from the distribu-
tion of t conditioned on DrG

0
i. This distribution can be constructed

from the Schur complement of Rr in Rt and has the form of an
MVN, which can be sampled efficiently:

ln c
DrG

0�

� �
jDrG

0
i�N

lc

l�

� �
þBRr

�1ðDrG
0
i�lrÞ;

Rc 0
0 R�

� �
2BRr

21B>
� �

;

(11)

where B¼½RTRcSC R� �> is a submatrix of Rt.
Convergence. Since each sampled orthant is full-dimensional and

all orthants are reachable, asymptotic convergence to arbitrary tar-
get distributions is guaranteed (Bélisle et al., 1993). However, there
is no theoretical bound on the convergence rate. We therefore asses
the quality of the sampled chains using recommended criteria on the
chains’ Potential Scale Reduction Factor (PSRF) and Effective
Sample Size (ESS) (Gelman et al., 2013). Several hit-and-run sam-
plers reformulate the problem in isotropic parametrization to im-
prove convergence (Haraldsdóttir et al., 2017). Since the
distribution of m is a standard MVN, the parametrization already
has a potentially high isotropy but this may not be optimal because
flux constraints exclude parts of the solution space. To improve con-
vergence, we initially run shorter chains and compute the PSRF of
each reaction energy. We then adjust the parametrization such that
the space is better explored along dimensions showing high PSRFs.

Flux sampling with thermodynamic prior. Finally, we sample the
flux space using the estimated distributions of reaction directions as
prior. We assume that the probability of an orthant is determined by
its probability in the thermodynamic space, for which we already
obtained estimates. For each direction sample di 2 f�1; 1gc, one can
easily construct and sample the flux space defined by (1) and con-
strained by di using Coordinate Hit-and-Run with Rounding
(CHRR) (Haraldsdóttir et al., 2017). However, this is computation-
ally prohibitive for models with millions of thermodynamically real-
istic orthants. We therefore approximate the distribution in flux
space by selecting no random orthants according to their relative
probability. For each orthant, we then use CHRR to draw a number
of flux samples proportional to its probability.

2.5 Data, models and implementation
We validated our methods on data for Escherichia coli growing on
different carbon sources (Gerosa et al., 2015) with models based on
iML1515 (Monk et al., 2017). The dataset contains measured
growth rates, uptake and secretion rates for 10 metabolites, absolute
concentrations for 42 metabolites and 13C estimates for 26 fluxes in
core metabolism. Measurements were performed in minimal media
with eight different carbon sources. iML1515 did not admit solu-
tions satisfying the measured rates on galactose and gluconate,

potentially due to its fixed biomass composition and ATP mainten-
ance. Thus, we only performed simulations on acetate, fructose, glu-
cose, glycerol, pyruvate and succinate.

We generated models in three steps: (i) We used
NetworkReducer’s lossy reduction (Erdrich et al., 2015) to simplify
the subsystems related to lipids and cofactors metabolism. (ii) We
applied the results of the thermodynamic curation and integrated
condition-specific constraints such as media composition and meas-
ured growth, uptake and secretion rates. The distribution of each
intracellular metabolite was set to the log-normal distribution of all
metabolites in the acetate and glucose conditions. We used the same
mean, but a 5-fold larger standard deviation, for periplasmic and
extracellular metabolites (except the ones provided in the media, for
which we used the actual concentrations). Measured intracellular
concentrations were added only for thermodynamic assessment and
when specified in Results. (iii) We applied NetworkReducer’s loss-
less compression and manual simplifications to obtain a reduced
model. We focused on keeping carbon, amino acid and nucleotide
metabolism untouched; hence we will refer to the generated models
as iML1515-CAN. The models used for TMFA and US simulations
were generated with the same approach, but without integrating the
results of thermodynamic curation. For PTA and TMFA simula-
tions, the set of thermodynamically constrained reactions C con-
sisted of all reactions except for biomass, exchange, water transport
and export of all metabolites other than CO2. The dimensions of
the models were 881 � n � 883; 500 � m � 503 and
715 � c � 721.

We implemented the TFS and CHRR (used also for comparisons
against US) samplers in Cþþ and validated them against established
approaches (see Supplementary Information). We provide Python
and MATLAB (Mathworks, Natick, MA) interfaces for all methods,
using COBRApy (Ebrahim et al., 2013) and the COBRA Toolbox
(Heirendt et al., 2019) for model manipulation and the Gurobi
Optimizer (Gurobi Optimization, Beaverton, OR) to solve PMO
problems.

3 Results

3.1 Thermodynamic assessment of iML1515-CAN
First, we searched for inconsistent irreversibilities in our reduced
version of the E.coli model iML1515 (Monk et al., 2017; see
Section 2). Seven irreversible reactions had to be set to reversible to
make the model thermodynamically feasible. Manual inspection of
the standard reaction energies confirmed that all these reactions
could be reversed at physiological conditions. For example, we iden-
tified a forced internal cycle in propionate metabolism (Fig. 3A),
which we addressed by making acetate-CoA ligase (ACCOAL) and
propanoyl-CoA: succinate CoA-transferase (PPCSCT) reversible and
by allowing secretion of propionate, as it must be themodynamically
favorable.

After resolving the remaining reversibility conflicts, we searched
for quantitative anomalies. We selected one glycolytic (glucose) and
one gluconeogenic (actetate) growth condition and applied PMO to
the corresponding models constrained by the measured
concentrations.

We identified 36 unique anomalies in the two models, summar-
ized in Table 1 and detailed in Supplementary Information. The
most common reason for anomalies (16 metabolites) is the possible
occurrence of substrate channeling. Thermodynamics-based model-
ing assumes a well-mixed system. If two or more enzymes catalyzing
consecutive steps of a pathway assemble in a complex, reaction
products may find themselves close to the binding pockets of the
subsequent enzymes, which increases the reaction probability. In
such cases, the intermediate is said to be channeled between the two
enzymes, breaking the assumption of homogeneity. As a result, reac-
tions that would require unusually high or low concentrations of a
reactant can become feasible even at unfavorable intracellular con-
centrations. An example highlighted by PMO are the first two steps
of proline synthesis, ProB and ProA (Fig. 3D). Constrained by the
measured concentrations of glutamate and energy cofactors, PMO
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predicts a best-case maximum concentration of 14lM for the inter-
mediate glutamate-5-phosphate, 1.4 standard deviations below the
mean estimate. Thus, we hypothesized that glutamate-5-phosphate
is channeled between ProB and ProA, relieving the thermodynamic

constraint on its intracellular concentration, which is consistent
with literature (Marco-Marı́n et al., 2007). Consequently, we
updated the model by replacing the two steps with a single net
reaction.

We predicted and found literature support for substrate channel-
ing in several other pathways (see Supplementary Information for
details). Most interestingly, with available metabolomics data, four
steps of gluconeogenesis (phosphoglycerate mutase, phosphoglycer-
ate kinase, triose-phosphate isomerase and fructose-biphosphate
aldolase) appear unfavorable, suggesting enzyme complexes with
more favorable steps (phosphoenolpyruvate carboxykinase and fruc-
tose-bisphosphatase) that promote substrate channeling. This is con-
sistent with 13C and kinetic studies showing channeling of
glycolytic compounds (Abernathy et al., 2019; Rakus et al., 2004).

In addition, two anomalies revealed that the first step of serine
synthesis, phosphoglycerate dehydrogenase, is unfavorable with
NAD as cofactor. It is known that a more complex mechanism cou-
ples the oxidation of 3-phosphoglycerate to the reduction of ubi-
quinone, which is more favorable (Zhang et al., 2017). We
attributed 15 anomalies to inaccurate DrG

�
estimates, inaccurate ir-

reversibility annotations and cases in which dilution effects likely
dominate the steady-state constraint. Only three anomalies were
false positives in which concentrations far from the average are
expected, as for intracellular oxygen. Overall, 91.7% of the metabo-
lites flagged after PMO reflected model inaccuracies or knowledge
gaps, leading to the curation of 45 reactions, 6.2% of the reactions
with thermodynamic constraints.

3.2 Sampling modes and directions in iML1515-CAN
We used TFS to sample the thermodynamic space of iML1515-CAN
in different growth conditions, both with (Mþ, all conditions) and
without (M�, all conditions except glucose and acetate, where
metabolomics data have been used to curate the model) integrating
metabolomics data. Specifically, we collected 108 samples of
orthants and 105 samples of DrG

0. In each condition, PMO success-
fully found initial points and the sampler reached convergence to the
target distribution according to common metrics (see Section 2).
Interestingly, TFS only needed 401 variables to represent DrG

0 of the
717 reactions in C. In models constrained only with measured
growth and exchange rates, we discovered 16:5� 106 orthants, out
of which 11:5� 106 suffice to cover 95% of the thermodynamic
space. These numbers decreased to 11:3� 106 and 7:2� 106 once
we integrated measured metabolite concentrations. Overall, this rep-
resents a substantial reduction over the average theoretical max-
imum number of orthants (computed from the number of reversible
reactions) in the TMFA-constrained models (M�: 5:8� 1022; Mþ:
3:1� 1020). Hence, correlations in thermodynamic space may im-
pose important constraints on possible combinations of flux
directions.

We compared the predicted reaction directions of TFS, TMFA
and US on TMFA-constrained models and validated them against
13C estimates. For TFS and US, a prediction was considered irre-
versible when at least 95% of the samples represented the same dir-
ection. On average, TMFA could only constrain a small fraction of
the models’ 71–79 reversible reactions, in particular without metab-
olomics data (Fig. 4A). US yielded the most constrained predictions,
while TFS predicted irreversibilities for about half of the 102–105
reversible reactions in the PMO-curated models. Despite having the
highest precision, US also showed the lowest accuracy: it incorrectly
predicted the direction of part of the 11–15 reversible fluxes with
available 13C estimates. Incorrect predictions focus on two main
pathways in gluconeogenic conditions: upper glycolysis, where US
systematically prefers fructose 6-phosphate aldolase over fructose-
bisphosphate aldolase, and the non-oxidative pentose phosphate
pathway. In one condition, these choices result from TMFA incor-
rectly predicting fructose-bisphosphate aldolase to be irreversible. In
all conditions, the irreversibilities predicted by TFS were consistent
with the 13C estimates.

Beyond the validated fluxes, we found cases (M�: 11–18, Mþ:
9–13) where both US and TFS predicted a reaction to be irreversible,
but in different directions, mostly for reactions that can participate

Table 1. Summary of the anomalies in the concentrations predicted

by PMO and the resulting modifications to the model in the cur-

ation (third column: number of reactions added, removed or con-

verted to lumped reactions)

Reasons for anomalies Anomalies Reactions

Substrate channeling with literature support 9 16

Substrate channeling in gluconeogenesis 3 10

Substrate channeling without literature support 4 0

Incomplete stoichiometry 2 2

Inaccurate irreversibility annotations 6 9

Inaccurate group contribution estimates 4 3

Artifacts of steady-state constraints 5 5

False positives 3 0

Total 36ð7:2%Þ 45ð6:2%Þ

Note: Percentage values are relative to m and c, respectively.
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Fig. 3. Thermodynamic assessment of iML1515-CAN. (A) Forced internal cycle in

propionate metabolism (orange). The irreversibility of ACCOAL conflicts with the
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in internal cycles and when alternative paths exist for the synthesis
of the same compound. For example, 5-phospho-alpha-D-ribose 1-
diphosphate is generally synthesized directly from ribose 5-phos-
phate (as predicted by TFS), but US predicts a conversion in the op-
posite direction and 5-phospho-alpha-D-ribose 1-diphosphate
synthesis through a longer and stoichiometrically equivalent path
via ribose 1-phosphate and ribose 1,5-diphosphate. While literature
suggests that the directions predicted by TFS are correct (see
Supplementary Information), the available data does not allow for a
systematic validation. These differences highlight the effect of using
different spaces to determine reaction directions. In US, the prob-
ability of a direction is determined by the fraction of flux space that
allows it; this favors directions that impose minimal constraints on
the rest of the network. In contrast, TFS predicts directions based on
the probability of having a favorable reaction energy.

3.3 Exploration of metabolic modes
Using the samples of orthants and their weights we sampled the flux
space of 104 orthants for each condition. TFS predicted millions of
modes in iML1515-CAN, but focusing on the predicted flux distri-
bution of individual reactions one observes fewer than 100 marginal
modes, which have simpler interpretation. An example are the two
modes defined by the direction of glycine hydroxymethyltransferase
(GHMT2r) (Fig. 4B). Physiologically, serine is used to synthesize
glycine and feed 1C-metabolism, required for purine synthesis. US
only predicts this path. TFS predicts an additional mode where gly-
cine and 1C are synthesized from threonine. This threonine bypass
is not commonly used by E.coli, likely because of higher resource
requirements. However, it has been successfully used to enhance
PHB production (Lin et al., 2015). Interestingly, most reactions in
glycolysis and the TCA display several marginal modes, depending
on the direction of reactions in the rest of the network. While the ef-
fect of reversing a reaction on the fluxes can be analyzed with clas-
sical FBA or US, TFS provides additional information: the
probability (and feasibility) of each direction and the correlation be-
tween the direction and the thermodynamic quantities. In the case of
GHMT2r, the two modes can be better distinguished by the activity
term—more precise estimates of DrG

0� would contribute little infor-
mation about the reaction direction (Fig. 4C). Conversely, knowing
the direction of the reaction would constrain the ratio of serine and
glycine, and thus their concentrations. We computed Cohen’s d for
the distribution of DrG

0� and of the activity term in the two modes
for each reversible reaction (Fig. 4D). In most cases, the modes are
better separated by the activity term, suggesting that uncertainties in
the standard reaction energy estimates have limited impact.
Additional measurements of absolute metabolite concentrations will
likely constrain more reaction directions.

3.4 Prediction of metabolite concentrations
Finally, we compared the metabolite concentrations predicted by
TFS and TMFA to the experimentally measured values in the four
M� conditions. TFS predictions generally agree with the measured
values and highlight strong thermodynamic constraints in the con-
centrations of some metabolites, such as the NAD/NADH ratio and
organic phosphate (Fig. 5A). The mean concentrations predicted by
TFS correlate with the experimental measurements (r¼0.32,
Fig. 5B). For several metabolites, the predicted distribution was very
close to the prior distribution [Kullback-Leibler divergence (KL)
smaller than 0.2], suggesting that they participate in reactions that
are always favorable. Reducing the coverage of the predictions to
metabolites with KL 
 0:2 led to a higher correlation (r¼0.63),
showing that their concentration is thermodynamically constrained.
When we focused on the 95% Confidence Interval (CI) of the sam-
ples and compared them to the ranges predicted by TMFA (with
95% CI on the distributions of DrG

0� and ln c), TFS always pre-
dicted narrower ranges (Fig. 5C), with an average 4.5-fold reduction
(0.65 on the log 10-scale). We quantified the overlap of the predicted
distributions (uniform within the predicted interval for TMFA) with
the distribution of the measurements using the Hellinger distance
(Fig. 5D). In 66% of the cases, TFS agreed better with the measure-
ments than TMFA, further supporting its overall higher predictive
power for metabolite concentrations.

4 Discussion

Realistic models must obey the laws of thermodynamics: quantita-
tive observations inform on the model structure, and mechanistic
knowledge constrains parameters. Here, we show how this connec-
tion can be exploited in both directions to analyze metabolism. Our
PTA framework for thermodynamic-based modeling includes opti-
mization and sampling methods for the evaluation and exploration
of metabolic networks. As demonstrated for E.coli, it allows to com-
bine metabolic models with experimental data to discover quantita-
tive and structural model inaccuracies and generate hypotheses on
mechanisms such as substrate channeling. We expect this capability
to be particularly important for less well-characterized organisms.
Conversely, we showed that the stoichiometry of a network, coupled
with thermodynamic constraints and few physiological observations
can significantly reduce the space of feasible metabolic modes and
metabolite concentrations.

In contrast to other methods, PTA interprets uncertainties in the
thermodynamic parameters probabilistically to account for correla-
tions between uncertainties of multiple estimates. Moreover, we re-
quire all reactions to have a well-defined direction. The model
cannot silently resolve thermodynamic inconsistencies by setting a
flux to zero as in TMFA—problems are visible to the modeler,
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guiding model curation and the formulation of novel hypotheses.
Using the thermodynamic space as prior for sampling the flux space
changed the exploration principle from the one used by US. Instead
of using the volume of the flux space only, TFS determines the prob-
ability of a mode based on the probability of having a set of reaction
energies allowing it. This excludes thermodynamically infeasible
cycles from the solution. It also prevents distributed thermodynamic
bottlenecks (Mavrovouniotis, 1993) and highlights feasible modes
that would be missed by US, such as the threonine bypass.

However, PTA comes at the cost of higher computational com-
plexity. Enforcing non-zero flux for each reaction makes optimiza-
tion problems more difficult to solve, and sampling the non-convex
thermodynamic space requires long simulation times; the asymptotic
complexity is potentially exponential. Here, we successfully ana-
lyzed models with up to 880 reactions. For each condition, enumer-
ation of internal EFMs and solution of PMO required less than five
minutes, while sampling took approximately one day. To make
larger models tractable, PTA can trade speed for coverage by limit-
ing thermodynamic constraints to compartments or subsystems of
interest.

To discover new biology, PMO proved effective at identifying
occurrences of substrate channeling. While TMFA suggested such
occurrences (Chiappino-Pepe et al., 2017), predictions were limited
to cases where predicted concentrations in an essential pathway ex-
ceed physiological ranges. Most of our predictions were supported
by at least another source in E.coli or other organisms, and we also
obtained novel hypotheses. That gluconeogenesis appears unfavor-
able is puzzling: several observations suggest channeling of glycolyt-
ic compounds. Yet, this observation could be attributed to
inaccurate estimates of standard reaction energies, for example, be-
cause magnesium ions, which affect the thermodynamics of glycoly-
sis (Vojinovi�c and von Stockar, 2009), are insufficiently accounted
for. Additionally, the analysis showed that the curation of reaction
directions for FBA applications leads to thermodynamic inaccura-
cies. As coverage and precision of standard reaction energies and
metabolite concentrations increases, we therefore encourage to
model thermodynamics explicitly.

Finally, while TFS predicts significantly fewer modes than con-
tained in the flux space, these modes cover a wide range of behav-
iors. Thermodynamics alone does not determine what a cell does,
but it restricts what options are available to achieve a certain pheno-
type. The final choice probably follows from other constraints or
principles such as enzyme cost and minimal resource usage, whose
integration could further increase the predictive power of thermo-
dynamically constrained models.
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