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Motor imagery electroencephalography is widely used in the brain-computer interface systems. Due to inherent characteristics of
electroencephalography signals, accurate and real-timemulticlass classification is always challenging. In order to solve this problem,
amulticlass posterior probability solution for twin SVM is proposed by the ranking continuous output and pairwise coupling in this
paper. First, two-class posterior probabilitymodel is constructed to approximate the posterior probability by the ranking continuous
output techniques andPlatt’s estimatingmethod. Secondly, a solution ofmulticlass probabilistic outputs for twin SVM is provided by
combining every pair of class probabilities according to themethod of pairwise coupling. Finally, the proposedmethod is compared
with multiclass SVM and twin SVM via voting, and multiclass posterior probability SVM using different coupling approaches.
The efficacy on the classification accuracy and time complexity of the proposed method has been demonstrated by both the UCI
benchmark datasets and real world EEG data from BCI Competition IV Dataset 2a, respectively.

1. Introduction

Among different brain imaging techniques, electroenceph-
alography (EEG) is commonly used due to its noninvasive
acquisition, high temporal resolution, ease of use, and low
cost [1]. The motor imagery based noninvasive BCI systems
have provided users the ability to control movements of
a computer cursor and interactive robotic wheelchairs and
explore virtual environments [2]. The EEG measurement is
a high dimensional scalp measurement, and thus it reflects
the global cerebral electrophysiological activity. At the same
time, it results in two weaknesses [3]. On the one hand,
EEG is inherentlymultivariate and exhibits a high correlation
[4] between the measured potentials at different electrodes
(channels). On the other hand, the observed data are of low
amplitude and sensitive to noise of biological, environmental,
and instrumental origin. Due to these characteristics of EEG,
adequate signal processing techniques are required to handle
the problems of noise cancelation, feature extraction, and
classification of multichannel EEG.

One core part of motor imagery based BCI systems is
a pattern-classification process, where effective classification

methods are crucial to achieving high performance. Conven-
tional learning methods have been applied to binary classifi-
cation of EEG, such as Fisher linear discriminant, 𝑘-nearest
neighbor, artificial neural network, support vector machine
(SVM) [5], Bayesian classifier [6], and hiddenMarkovmodels
[7]. Owing to good generalization performance, absence of
local minima, and sparse representation of solution, SVMs
are combined with different feature extraction methods to
improve classification performance of EEG patterns, but
they do not provide posterior probability. They are actually
useful for constructing a classifier producing a posterior
probability instead of hard class labels, due to the fact they
can be suitable for postprocessing and correcting the error
introduced by wrongly labeled/noisy instances [8, 9]. Platt
proposed probability output methods for SVM and validated
its performance on three data-mining-style datasets [8].
Recently, Shao proposed the two-class probability estimates
for twin SVM (TSVM) by making use of its superiority over
SVM [10]. Different from SVMs in one fundamental way,
TSVMaims to generate two nonparallel planes by solving two
small size quadratic programming problems such that it is
approximately four times faster than SVMs [11].
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Consider the task of learning to recognize several motor
imagery tasks performed by a given subject. This is a mul-
ticlass recognition problem. As for the posterior probability
SVM based multiclassification, it is usually solved by using
their multiclass extensions via the single-machine approach
[9] and the multimachine approach [12].The former involves
directly solving a single optimization problem, while the
latter involves decomposing a multiclass problem to a set
of two-class problems via one-against-rest (OAR) and one-
against-one (OAO). For the OAR approach, the number of
data samples for a given task is a small fraction of the whole
data, and thus the sizes of the two classes in each binary
classification problem are unbalanced [9, 13]. By use of the
OAO approach, the probability estimates for multiclass SVM
have been proposed by combining all pairwise comparisons
[12] and demonstrated that it is more stable than existing
methods, that is, the voting scheme and the method in [14].

To the best of our knowledge, no previous work has been
done for twin SVMwith multiclass posterior probability out-
puts, or more specially multiclass posterior TSVMmodeling
by the ranking continuous output and pairwise coupling.
The main advantage of our work is that multiclass posterior
TSVMmodel can provide the posterior probability with high
classification accuracy and low time complexity as compared
with conventional SVM methods, and it is suitable for
BCI applications. In order to handle multiclass classification
of motor imagery EEG, a multiclass posterior probability
TSVM (PPTSVM) solution is proposed by combining two-
class PPTSVM with pairwise coupling in this paper. First,
two-class PPTSVM model is constructed to approximate
the posterior probability by the ranking continuous output
techniques [10] and Platt’s estimating method [8]. Secondly,
a solution of multiclass probabilistic outputs for TSVM
is provided by combining every pair of class probabilities
according to the method of pairwise coupling [12]. Finally,
the proposed method is compared with multiclass SVM via
voting, multiclass TSVM by voting, and multiclass posterior
probability SVMvia the coupling approach.The classification
accuracy and time complexity of the proposed method have
been manifested by both the UCI benchmark datasets and
real world EEG data from BCI Competition IV Dataset 2a.

This paper is organized as follows: Section 2 states the
multiclass posterior probability TSVM model including a
brief introduction to standard TSVM, two-class PPTSVM
formulation and its multiclass extension via pairwise cou-
pling. Section 3 presents some experimental results on both
benchmark datasets and motor imagery EEG datasets to
demonstrate the validity of the proposed method. Finally,
concluding remarks are given in Section 4.

2. Foundations for the Proposed
Model Description

2.1. Formulation of Twin Support Vector Machine. In a two-
class problem, the patterns to be classified are denoted by a
set of 𝑚 row vectors 𝐴

𝑖
∈ 𝑅
𝑛, where 𝐴
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= (𝐴
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, 𝐴
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, . . . , 𝐴
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),
and let y ∈ {−1, 1} represent the class to which the pattern
belongs. As compared with the classical soft margin SVM

classifier finding one hyperplane 𝑤
𝑇
𝑥 + 𝑏 = 0 that separates

patterns from the two classes, TSVM seeks two nonparallel
hyperplanes [11]. Let the number of patterns in classes +1 and
−1 be, respectively, given by 𝑚

1
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2
, where 𝑚

1
+ 𝑚
2

= 𝑚.
For simplicity of expression, the patterns of classes +1 and −1
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tively. In nonlinear discrimination, the TSVMwith nonlinear
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Here, 𝐶𝑇 = [𝐴 𝐵]
𝑇, and 𝐾 is an appropriately chosen kernel,
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mapping function.
The parameters of the two hypersurfaces are obtained

by solving the following pair of quadratic programming
problems:
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where the positive constants 𝑐
1
and 𝑐
2
are penalty parameters

and 𝑒
1
and 𝑒

2
are the vectors of parameters of appropriate

dimensions and ‖ ⋅‖ denotes the 𝐿
2
norm.The objective func-

tions have clear geometricmeaning; for example, function (2)
shows that the first term tends to keep the hypersurface close
to points of class +1, while the constraints require the hyper-
surface to be at a distance of at least 1 from points of class −1.

By introducing Lagrange multipliers and exploiting
Karush-Kuhn-Tucker (KKT) conditions, the Wolfe dual for-
mulation of the above optimization problem can be obtained
as follows [11]:
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of Lagrangian multipliers. Once the above dual formations
are solved to obtain the surfaces (1), a new sample 𝑥 ∈ 𝑅

𝑛 is
assigned to class 𝑖 (𝑖 = +1, −1), depending on which of the
two surfaces it lies closest to, given by
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where | ⋅ | is the perpendicular distance of the point 𝑥 from
the surface 𝐾(𝑥

𝑇
, 𝐶
𝑇
)𝑢
𝑘

+ 𝑏
𝑘

= 0, 𝑘 = 1, 2.

2.2. Multiclass Posterior Probability TSVM. The multiclass
extension to TSVM can also be modified to include pos-
terior probability estimates instead of hard labels. In this
section, multiclass posterior probability TSVM model is
established. Firstly, similar to [10], a continuous output value
is defined by calculating the distances from a sample to
two decision hypersurfaces of TSVM with nonlinear kernels.
Secondly, two-class posterior probability TSVM model is
constructed to approximate the posterior probability using
Platt’s estimatingmethod [8]. Here it is noted that the current
SVM probability models cannot be used directly due to the
different mechanism of TSVM and SVM. Finally, a solution

of multiclass probabilistic outputs for TSVM is provided by
combining every pair of class probabilities according to the
pairwise coupling method [12].

2.2.1. Two-Class PPTSVMModel. In TSVM binary classifica-
tion, once the surfaces (1) are obtained, the label of any sample
can be predicted. However, many applications require a
posterior class probability instead of predicting the hard label.
Since traditional TSVMs do not provide such probabilities, a
modelingmethod of two-class PPTSVM is constructed by the
following [8, 10].

To reflect the degree of new sample belonging to a certain
class, let a function 𝑓(𝑥) be the continuous output of a two-
class TSVM [10]
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where 𝛾 > 0 is a weight parameter and two relevant variables
𝑑min(𝑥) and 𝑑max(𝑥) denote the minimum and maximum
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Here, the probability of the sample 𝑥 belonging to class 𝑖 (𝑖 =

+1, −1) depends on the value of the output function 𝑓(𝑥) ∈

(−∞, +∞) whose value range is similar to the continuous
output in SVM. The larger the value is, the bigger the
probability of the sample 𝑥 belongs to class +1, and vice versa.

According to the posterior probability estimatingmethod
proposed by Platt [8], the posterior output of the two-class
TSVM can be approximated using a parametric form of
a sigmoid function which plays an important role in the
classification settings,

𝑝 (𝑦 = +1 | 𝑓 (𝑥)) =
1

1 + 𝑒𝑎𝑓(𝑥)+𝑏
,

𝑝 (𝑦 = −1 | 𝑓 (𝑥)) =
𝑒
𝑎𝑓(𝑥)+𝑏

1 + 𝑒𝑎𝑓(𝑥)+𝑏
,

(8)

where 𝑎 and 𝑏 are the fitting parameters which can be
determined using the maximum likelihood estimation. In
this way, the two-class PPTSVM model is established to
produce the posterior probability. Due to the fact that the
posterior probability at a point is the combined effect of a
number of neighboring samples, the advantage is that it can
give a chance to correct the error introduced by wrongly
labeled or noisy points.

2.2.2. Proposed Multiclass PPTSVM Model. In multiclass
pattern recognition, there are two conventional approaches
to extend the binary classification problem to the multiclass
one. The first method couples the constraints of having
multiple classes in a single formulation.The other one aims to
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convert the multiclass problem to a set of independent two-
class problems by different decompositionmethods. Pairwise
coupling is popular multiclass classification method that
combines together all pairwise comparisons for each pair of
classes [12]. In this section, a multiclass extension to TSVM
with probabilistic outputs is proposed based on pairwise
coupling due to its stability and effectiveness.

For the multiclass classification, a sample 𝑥 needs to
be discriminated to belong to one of 𝑀 > 2 classes and
the class label is denoted as 𝑦 = {1, 2, . . . , 𝑀}. The goal
is to estimate the class probabilities 𝑃(𝑥) = {𝑝

𝑖
(𝑥)}
𝑀

𝑖=1
,

and the decision rule is argmax
𝑖

𝑝
𝑖 , where 𝑝

𝑖
= 𝑝(𝑦 =

𝑖 | 𝑥), 𝑖 = 1, 2, . . . , 𝑀. Let 𝑟
𝑖𝑗
(𝑖 ̸= 𝑗) be the estimated

pairwise class probabilities, and let 𝜇
𝑖𝑗
be expectation of

𝑟
𝑖𝑗
; that is, 𝜇
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= 𝐸(𝑟
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) = 𝑝

𝑖
/(𝑝
𝑖

+ 𝑝
𝑗
) [12, 14]. Hastie

and Tibshirani proposed the pairwise coupling approach to
estimate the class probabilities by minimizing the Kullback-
Leibler (KL) distance between 𝑟

𝑖𝑗
and 𝜇

𝑖𝑗
[14]. Although the

method outperforms the traditional voting rule wherein it
only predicts a class label rather than a class probability [15],
the assumptions that the sampling mode is binomial and 𝑟

𝑖𝑗

are independent do not hold in the classification problem
as pointed out in [14]. To solve the problem, a more stable
method is proposed in [12]. The class probability vector 𝑃(𝑥)

is derived by the following optimization formulations:

Min
𝑃
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The objective function of (9) can be replaced by
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2
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(10)

where the matrix 𝑄 is positive semidefinite. Its solution can
be obtained by solving a linear-constrained convex quadratic
programming problem [12]. The practical iterative algorithm
is described as follows.

Input. It is the matrix 𝑄.

Output. It is the class probability vector 𝑃.

Process

Step 1. Set the iteration number 𝑡 = 0, and initialize the
threshold of the iterative error eps = 0.005/𝑀, the maximum
number of iterations itmax = 100, and 𝑃

𝑡
= 1.0/𝑀.

Step 2. Compute the matrix 𝑄𝑃
𝑡
and 𝑃
𝑡

𝑇
𝑄𝑃
𝑡
.

Step 3. Calculate the maximum deviation errmax =

max|𝑄𝑃
𝑡
−𝑃
𝑡

𝑇
𝑄𝑃
𝑡
|. If errmax < eps, then the iterative process

stops, and output the class probability vector 𝑃; otherwise go
to Step 4.

Step 4. Iteratively compute 𝑃
𝑡
according to the following

pseudocode:
for 𝑡 = 1 : 𝑀

{

Δ = (−𝑄𝑃
𝑡
+ 𝑃
𝑡

𝑇
𝑄𝑃
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)/𝑄
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𝑃
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2

for 𝑖 = 1 : 𝑀

{

𝑄𝑃
𝑖
= (𝑄𝑃

𝑖
+ Δ𝑄
𝑡𝑖
)/(1 + Δ)

𝑃
𝑖
= 𝑃
𝑖
/(1 + Δ)

}

}.

Step 5. If the iteration number is smaller than itmax, go
to Step 2; otherwise stop iteration and output the class
probability vector 𝑃.

In the implementation ofmulticlass PPSVM formulation,
the detailed steps are given as follows:

(1) There are 𝑀(𝑀 − 1)/2 binary PPTSVM models for
each possible pair of classes, and the corresponding
pairwise class probabilities 𝑟

𝑖𝑗
are estimated at each

sample 𝑥.
(2) Adopt the iterative method to solve the optimization

problem (10), obtaining the class probability vector
�̂�(𝑥) = {𝑝

𝑖
(𝑥)}
𝑀

𝑖=1
.

(3) The label of the test sample is discriminated according
to the decision rule as argmax

𝑖
𝑝
𝑖 , 𝑖 = 1, 2, . . . , 𝑀.

3. Results and Discussion

In this section, some experiments are conducted on UCI
benchmark datasets and BCI competition datasets to study
the performance of multiclassification approaches and verify
the effectiveness of our proposed method. Six algorithms are
used for multiclassification and separated into two groups.
The first group produces hard class labels, consisting of con-
ventional SVM and TSVM by voting [15]. The second group
estimate class probabilities, including posterior probability
SVMviaminimizing theKLdistance [14] (PPSVM HT), pos-
terior probability SVM by pairwise coupling [12] (PPSVM),
and the proposed posterior probability TSVM via minimiz-
ing the KL distance [14] (PPTSVM HT), as well as pairwise
coupling [12] (PPTSVM).

Multiclass posterior probability TSVM is constructed
based on the binary TSVM classification code (http://www
.optimal-group.org/Resource/TWSVM.html) provided by
Shao et al. [10] andmulticlass posterior probability SVMcode
can refer to the mcpIncSVM package (http://www-ti.infor-
matik.uni-tuebingen.de/∼spueler/mcpIncSVM/). For all the
six methods, Gaussian kernel function is chosen due to its
validity and stability in experiments. All the methods are
implemented in MATLAB 2013a environment on a PC with
a 2.5GHz processor and 4.0GB RAM.
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Table 1: Descriptions of benchmark datasets used in experiments.

Datasets
Total
class

number
Number of each class Feature

dimension
Training samples/
total samples

Testing samples/
total samples

Iris 3 [50, 50, 50] 4 96/150 54/150
Lineblobs 3 [118, 75, 73] 2 173/266 93/266
Square 1 4 [250, 250, 250, 250] 2 650/1000 350/1000
Zoo 7 [41, 20, 5, 13, 4, 8, 10] 16 66/101 35/101
Vowel gy 11 [48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48] 10 343/528 185/528

Table 2: Best model parameters and sigmoid parameters for five UCI datasets.

Datasets TSVM (PPTSVM) SVM (PPSVM)
𝑐
1
/𝑐
2

𝑔 𝑏/𝑎 𝑐 𝑔 𝑏/𝑎
Iris 0.25/0.25 2.25 0.4518/−8.1787 0.25 0.25 −0.0202/−4.0336
Lineblobs 0.25/0.25 0.25 0.0451/−79.2594 2.25 0.25 −0.1062/−4.8808
Square 1 0.25/0.25 3.25 −0.0967/−14.6328 1.25 1.25 0.0660/−4.9734
Zoo 0.25/0.25 0.25 0.7365/−15.2263 0.25 0.25 0.0884/−3.0649
Vowel gy 0.25/3.25 1.25 0.2548/−93.0990 2.25 0.25 −0.2565/−4.0580

3.1. Experiments on UCI Datasets. First, our proposed
method is evaluated on several multiclass datasets from the
UCI Machine Learning Repository [16]. In this experiment,
five datasets with multiple labels are chosen and the details
are listed in Table 1. It is shown that the number of classes
range from three to eleven, and the feature dimension is also
different from two to sixteen.

In classification process, each dataset is first divided into
training and testing sets with the ratio 65% : 35%. Secondly, 𝑘-
fold cross-validation and grid search techniques are used to
select the optimal kernel parameter 𝑔 and penalty parameters
𝑐, 𝑐
1
, 𝑐
2
for different methods, and then the sigmoid param-

eters 𝑎, 𝑏 are obtained. Multiple rounds of cross-validation
are performed using different partitions of training data in
order to reduce variability, and the partitions are randomly
generated by the “crossvalind” function in the MATLAB
Bioinformatics toolbox. To ensure a fair comparison between
different approaches, the same data partitions are used in
cross-validation. Next, the trained models from training sets
are applied to predict the testing sets. The classification
process is repeated 100 times, and the average of these
outcomes is the final classification rate. Table 2 lists the best
parameters for each benchmark dataset. For each dataset,
there are 𝑀(𝑀 − 1)/2 binary classification models. For Zoo,
a twofold cross-validation is conducted on the grid points
{2
−2

, . . . , 2
2
} in both TSVM and SVM models because its

minimum number of classes is 4. For all other four datasets,
the best model parameters are searching by tenfold cross-
validation from {2

−2
, . . . , 2

2
} in bothTSVMandSVMmodels.

The parameters 𝑔, 𝑐
1
, 𝑐
2
of PPTSVM were set to be the same

with TSVM, and the penalty parameters 𝑔, 𝑐 of PPSVM are
also set to be the same with SVM, as shown in Table 2.

The performance is evaluated in terms of average value
and standard deviation of the accuracy and cost time. Figure 1
shows the classification performances for each benchmark
dataset using PPTSVM, PSVM, TSVM, and SVM. It is shown

that the TSVM-type classificationmethods perform similarly
in all the five datasets, and the same is true for the SVM-
type approaches. At the same time, TSVM-type competitors
are consistently faster than SVM-type contenders due to
the fact that TSVM-type methods solve two smaller sized
quadratic programming problems instead of a single onewith
relatively larger size. The figure also indicates that TSVM-
type classification methods yield higher accuracy in 3 of the
5 datasets (Lineblobs, Zoo, and Vowel gy) and perform best
on Zoo, while SVM-type approaches perform slightly better
on two datasets (Iris and Square 1). Furthermore, PPTSVM
performs better on two datasets (Zoo and Vowel gy) than the
other algorithms, especially gaining about 15% improvement
over all the SVM-type contenders on the Zoo dataset. It
demonstrates the potential advantage of TSVM-type model
in dealing with smaller samples. However, all the classifica-
tion methods obtain worse performance on the Zoo datasets
because the number of its training datasets is comparatively
small, and additionally it belongs to the imbalanced data
in that it has seven classes with different class numbers.
As proposed in [17] recently, it is interesting to construct
corresponding TSVM-type models for the imbalanced clas-
sification problem although it is not the scope of this paper.

3.2. Applications in Classification of Motor Imagery EEG.
The availability of BCI data from past competitions is an
important contribution to stimulate the interdisciplinary
engagement of researchers. This paper selects BCI Compe-
tition IV Dataset 2a provided by the BCI research center
in Berlin, Germany [18]. Nine participants (e.g., A1∼A9)
were invited as experimental subjects. For each subject, four
different motor imagery tasks were executed, that is, left
hand, right hand, feet, and tongue. Two sessions on different
days were recorded for each participant and each session
was comprised of six runs separated by short breaks where
one run consists of 48 trails and thus there are a total of
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Figure 1: Comparisons of average and standard deviation of the classification accuracy and cost time onUCI datasets using differentmethods.

288 trials per session. The data were recorded using
22Ag/AgCl electrodes. The measured signals were sampled
with 250Hz and band-pass filtered between 0.5 and 100Hz.

Concerning the classification of motor imagery tasks, it is
involved with feature extraction of EEG.The common spatial
patterns (CSP) method is used to extract features since it
can construct new time series whose variances are optimal
for the discrimination of two populations of data [19], and
thus it has been applied successfully to the classification of
raw movement-related EEG. Standard CSP algorithm is pro-
posed for binary classification, and its multiclass extensions
contain using CSP within the classifier, one-versus-the-rest
CSP (OVR), and simultaneous diagonalization of covariance
matrices from the multiclass data [20]. The OVR approach
computes the CSP features that discriminate each class from
the rest of the classes [20]. CSP is extended for the multiclass
data using the OVR scheme in this paper. The detailed steps
of EEG processing are outlined in the following;

(1) Preprocess themultichannel EEG data using a 5-order
Butterworth filter, obtaining a band-pass filtered signal with
the frequency band 7–35Hz.

(2) Perform the CSP algorithm on the filtered EEG data
using the OVR scheme, getting the corresponding feature
vector:

𝑓
𝑝

= log(
var (𝑍

𝑝
)

∑
2𝐽

𝑗=1
var (𝑍

𝑗
)

) , 𝑝 = 1, . . . , 2𝐽, (11)

where 𝑍
𝑝
denotes the signals processed by CSP, var(⋅) is the

operation of computing vector variance, and 𝐽 represents
the number of spatial filters. For four-class data, there are 4
projection matrices, and the optimal 2𝐽 directions are taken
in each projection matrix. When 𝐽 = 2, the feature vector of
16 dimensions is obtained in the experiment.

(3) Recognize the classes of motor imagery tasks using
the different classifiers and compare their performances
evaluated in terms of mean kappa value and cost time. Used
as a performance measure in BCI competition, the kappa
coefficients consider the distribution of wrong classifications
and the frequency of occurrence is normalized [21]. The
kappa coefficient is denoted in the following equality:

kappa =
𝑝
0

− 𝑝
𝑒

1 − 𝑝
𝑒

, (12)

where 𝑝
0
, the overall agreement, is equal to the classification

accuracy and the chance agreement 𝑝
𝑒
equals the accuracy of

a trivial classifier. If the actual number of samples is equally
distributed across classes, the chance expected agreement is
𝑝
𝑒

= 1/𝑀, and the kappa coefficient is given by

kappa =
𝑀𝑝
0

− 1

𝑀 − 1
. (13)

For example, an accuracy of 50% in a two-class problem is
equivalent to an accuracy of 25% in a four-class problem, but
the kappa value is zero in both cases, and thus it can be used
to do a fair comparison of multiclass problems.

The experiment consists of two parts. In the first part,
each piece of training data from BCI Competition IV Dataset
2a is randomly divided into training and testing sets with the
ratio 65% : 35%, and tenfold cross-validations are performed
on the cross-validation training sets, and then the trained
models are applied to predict the cross-validation testing sets
(part of the training data). Similar to the parameter selection
process described in UCI datasets, the parameters 𝑔, 𝑐

1
, 𝑐
2

of PPTSVM were set to be the same with TSVM, and the
penalty parameters 𝑔, 𝑐 of PPSVM are also set to be the same
with SVM where the best model parameters are searching
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Table 3: Best model parameters and sigmoid parameters for each subject in BCI Competition IV Dataset 2a.

Subjects TSVM (PPTSVM) SVM (PPSVM)
𝑐
1
/𝑐
2

𝑔 𝑏/𝑎 𝑐 𝑔 𝑏/𝑎
A1 0.25/0.25 2.25 0.0021/−10.8360 1.25 3.25 0.5137/−3.1760
A2 2.25/2.25 2.25 0.1625/−143.8536 2.25 2.25 0.5102/−2.9896
A3 0.25/0.25 2.25 0.0550/−13.2102 0.25 1.25 −0.2401/−3.8991
A4 0.25/2.25 2.25 0.1680/−126.5687 1.25 1.25 −0.3945/−3.1796
A5 0.25/0.25 0.25 0.0059/−186.2766 3.25 1.25 0.6197/−3.5109
A6 0.25/2.25 1.25 0.1853/−85.6740 2.25 2.25 −0.4072/−2.6546
A7 0.25/0.25 2.25 0.0806/−21.3598 3.25 2.25 −0.1001/−2.9976
A8 0.25/1.25 1.25 0.5234/−229.3538 1.25 1.25 −0.5236/−3.7116
A9 0.25/0.25 2.25 −0.1761/−19.3798 2.25 2.25 0.3187/−3.3938
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Figure 2: Experimental results on the mean kappa value, cost time, and their standard deviations of 10 × 10-fold cross-validation on the
training data in BCI Competition IV Dataset 2a.

from {2
−2

, . . . , 2
2
} in both TSVM and SVM models. Table 3

summarizes the best parameters for each subject in BCI
Competition IV Dataset 2a.

Figure 2 provides the classification results using kappa
coefficient and cost timewithmean values and standard devi-
ations of 10 × 10-fold cross-validation. The results show that
the posterior probability TSVM-type classification methods
via different pairwise coupling techniques perform similarly
in terms of kappa value on BCI Competition IV Dataset 2a.
The same is true for different posterior probability SVM-type
approaches, and the results coincide with the demonstrations
in [12] when the number of classes is small; for example, it
is 4 in the BCI Competition IV Dataset 2a. All the TSVM-
type competitors have obvious superiority in the cost time
and achieve slightly higher kappa values for 5 subjects (1, 3,
4, 8, and 9) while the SVM-type contenders perform better
in 4 subjects (2, 5, 6, and 7). Over all the nine subjects,
the PPTSVM method yields higher averaged mean kappa
value (0.634) than TSVM (0.632) and PPTSVM HT (0.630),
but slightly lower than the best competitor SVM (0.658).
Comparedwith the results in [22] usingmulticlass extensions
of the CSP algorithm via the OVR approach and the näıve
Bayesian Parzen window (NBPW) classifier, our method

yields higher averaged mean kappa value over all the subjects
than the NBPW algorithm with CSP (0.538), but lower than
the NBPW algorithm with filter bank CSP approach (0.663)
that employs additional feature selection based on mutual
information with respect to the classical CSP algorithm.
On the other hand, it is almost four times faster than the
conventional SVM methods since the averaged cost time of
our method is 20.040 s while that of SVM is 80.593 s, and the
advantage in time complexity is helpful to BCI applications.

In the second part of the experiment, the trained models
from cross-validation training sets are applied to the whole
evaluation set. The classification results using average kappa
value for all the algorithms are plotted in Figure 3. It is shown
that the PPTSVM method achieves slightly higher mean
kappa values in 3 subjects (1, 3, and 9). By contrast, SVM
via voting yields the best averaged mean kappa value on the
evaluation data (0.480) over all the nine subjects, and the
PPTSVMmethod obtains higher averaged mean kappa value
(0.454) than TSVM (0.452) and PPTSVM HT (0.449).

Comparing the results of Figures 2 and 3, the results on
the evaluation data are consistently lower than the cross-
validation results for all six methods. Specially, PPTSVM
yields lower mean kappa value averaged over all the subjects
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Figure 3: Experimental results on the mean kappa value and
standard deviations of the evaluation data in BCI Competition IV
Dataset 2a.

on the evaluation data (0.454) than the cross-validation
results (0.634) in all the nine subjects.

4. Conclusions

In this paper, the posterior probability twin SVM is extended
to themulticlass case by the ranking continuous and pairwise
coupling. The performance of the proposed method has
been tested in terms of classification accuracy and cost time
on both the UCI benchmark datasets and real world EEG
data from BCI Competition IV Datasets and compared with
multiclass SVM/TSVM by the voting rule [15], multiclass
posterior probability SVM/TSVM via minimizing the KL
distance [14], and pairwise coupling in [12], respectively. The
experimental results have demonstrated that the proposed
method yields slightly higher averaged mean kappa value
than TSVM by voting and PPTSVM HT via the minimiza-
tion of theKLdistance on theBCICompetition IVDataset 2a.
In addition, it can achieve comparatively close performance
to SVM competitors with lower time complexity on the UCI
datasets and BCI Competition IV Dataset 2a. The decrease
in time complexity is valuable in BCI applications and also
its posterior probability output is useful for multimodal
information fusion.

Although our method can yield satisfactory classification
performance with low time cost, it is still designed in off-line
settings, and thus it is worthwhile to research a framework
for exact incremental learning and adaptation of multiclass
posterior probability TSVM in futurework. It is quite possible
to have multiclass machine learning problem where one or
more classes are rare compared with others, and constructing
the TSVM-type models for the imbalanced classification
problem is also part of the future work.
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