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ABSTRACT

Motivation: Mass spectrometry (MS) instruments and experimental

protocols are rapidly advancing, but de novo peptide sequencing al-

gorithms to analyze tandem mass (MS/MS) spectra are lagging

behind. Although existing de novo sequencing tools perform well on

certain types of spectra [e.g. Collision Induced Dissociation (CID)

spectra of tryptic peptides], their performance often deteriorates on

other types of spectra, such as Electron Transfer Dissociation (ETD),

Higher-energy Collisional Dissociation (HCD) spectra or spectra of

non-tryptic digests. Thus, rather than developing a new algorithm for

each type of spectra, we develop a universal de novo sequencing

algorithm called UniNovo that works well for all types of spectra or

even for spectral pairs (e.g. CID/ETD spectral pairs). UniNovo uses an

improved scoring function that captures the dependences between

different ion types, where such dependencies are learned automatic-

ally using a modified offset frequency function.

Results: The performance of UniNovo is compared with PepNovoþ,

PEAKS and pNovo using various types of spectra. The results show

that the performance of UniNovo is superior to other tools for ETD

spectra and superior or comparable with others for CID and HCD

spectra. UniNovo also estimates the probability that each reported

reconstruction is correct, using simple statistics that are readily ob-

tained from a small training dataset. We demonstrate that the estima-

tion is accurate for all tested types of spectra (including CID, HCD,

ETD, CID/ETD and HCD/ETD spectra of trypsin, LysC or AspN

digested peptides).

Availability: UniNovo is implemented in JAVA and tested on Windows,

Ubuntu and OS X machines. UniNovo is available at http://proteomics.

ucsd.edu/Software/UniNovo.html along with the manual.

Contact: kwj@ucsd.edu or ppevzner@ucsd.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

De novo peptide sequencing by tandemmass (MS/MS) spectrom-

etry is a valuable alternative to MS/MS database search. In con-

trast to the database search approach that utilizes the

information from proteome, the de novo sequencing approach

attempts to identify peptides only using the information from

the input spectrum. Hence, most de novo sequencing algorithms

are based on the prior knowledge of the fragmentation

characteristics (e.g. ion types and their propensities) of MS/MS

spectra (Frank, 2009; Frank and Pevzner, 2005; Ma et al., 2003).
The fragmentation characteristics are highly dependent on the

fragmentation method used to generate the spectrum. Among

several fragmentation methods available, the collision-induced

dissociation (CID) is the most commonly used method.

Accordingly, the fragmentation characteristics of CID have

been well studied compared with recently introduced fragmenta-

tion methods, such as electron transfer dissociation (ETD) and

higher-energy collisional dissociation (HCD) (Barton and

Whittaker, 2009; Breci et al., 2003; Huang et al., 2005;

Johnson et al., 1987; Tabb et al., 2004; Wysocki et al., 2000).

As a result, many de novo sequencing algorithms have been intro-

duced for CID spectra; for example, PEAKS (Ma et al., 2003)

and PepNovoþ (Frank, 2009; Frank and Pevzner, 2005) are the

state of the art de novo sequencing tools for CID spectra.
Other fragmentation methods like ETD and HCD have a

great potential for de novo sequencing. For example, for highly

charged spectra, ETD provides better fragmentation and thus is

better suited for de novo sequencing than CID (Swaney et al.,

2008; Zubarev et al., 2008). Also, more complete fragmentation

of peptide ions (especially in low mass regions) in HCD provides

a better chance to obtain more accurate de novo reconstructions

than CID (Chi et al., 2010; Olsen et al., 2007). Furthermore,

modern mass spectrometers (e.g. LTQ-Orbitrap Velos) allow

the generation of paired spectra (e.g. CID/ETD or HCD/ETD

spectral pairs). Since CID (or HCD) and ETD spectra provide

complementary information for peptide sequencing (Datta and

Bern, 2009; He and Ma, 2010; Savitski et al., 2005), such spectral

pairs (or even triplets) enable more accurate de novo sequencing.
Several de novo sequencing algorithms were recently presented

to take advantage of those new fragmentation methods. For in-

stance, Liu et al. (2010) proposed a de novo sequencing algorithm

for ETD spectra, which is used by PEAKS. For HCD spectra,

Chi et al. (2010) introduced a de novo sequencing tool, pNovo,

that not only takes advantage of the high precision peaks in

HCD spectra but also uses the information of abundant immo-

nium and internal ions. In case of spectral pairs, Savitski et al.

(2005) proposed a greedy algorithm (for CID/ECD spectral

pairs) that significantly boosts the performance of de novo

sequencing. Datta and Bern (2009) presented Spectrum Fusion,

a de novo sequencing algorithm for CID/ETD spectral pairs.

Spectrum Fusion constructs a combined spectrum from the

input CID/ETD spectral pair using a Bayesian Network. It gen-

erates multiple de novo sequences using the combined spectrum

and score them by the scoring function in ByOnic (Bern et al.,

2007). He and Ma (2010) also presented a de novo sequencing*To whom correspondence should be addressed.
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algorithm, ADEPTS, for CID/ETD spectral pairs. Given a CID/

ETD spectral pair, ADEPTS first finds 1000 candidate de novo

sequences from each spectrum, using PEAKS. The total 2000

candidate sequences are then rescored against the input spectral

pair, and the best-scoring peptide is reported.
While the above tools perform well for the spectra generated

from the fragmentation method(s) that each tool targeted, they

often generate inferior results for the spectra from other frag-

mentation methods. Moreover, if alternative proteases (e.g. LysC

or AspN) are used for protein digestion, these tools may produce

suboptimal results because different proteases often generate

peptides with different fragmentation characteristics (Kim

et al., 2010).
In case of the database search approach, Kim et al. (2010)

recently introduced a universal algorithm MS-GFDB

that shows a significantly better peptide identification per-

formance than other existing database search tools such as

MascotþPercolator (Käll et al., 2007; Perkins et al., 1999).

However, a universal de novo sequencing tool is still missing.
We present UniNovo, a universal de novo sequencing tool

that can be generalized for various types (i.e. the combinations

of the fragmentation method and the protease used to digest

sample proteins) of spectra. The scoring function of UniNovo

is easily trainable using a training dataset consisting of thou-

sands of annotated spectra. All information needed for de novo

sequencing are learned from the training dataset, and the run-

ning time for training is 55h in a typical desktop environ-

ment. Currently, UniNovo is trained for CID, HCD and ETD

spectra of trypsin, LysC or AspN digested peptides. We show

that the performance of UniNovo is better than or comparable

with PepNovoþ, PEAKS and pNovo for various types of

spectra.

One of the biggest challenges in de novo sequencing is to esti-

mate the error rate of the resulting de novo reconstructions.

Unlike MS/MS database search tools that commonly uses the

target-decoy approach (Elias and Gygi, 2007; Nesvizhskii, 2010)

to estimate the statistical significance of the peptide identifica-

tions, de novo reconstructions have rarely been subjected to a

statistical significance analysis in the past.
Several de novo sequencing tools report the error rate of amino

acid predictions (e.g. confidence scores in PEAKS), but this is

often not sufficient because the overall quality of the sequence

cannot be easily determined by the error rates of individual

amino acid predictions. To our knowledge, only PepNovoþ re-

ports the empirical probability that the output peptide is correct.

PepNovoþ predicts the probabilities using logistic regression

with multiple features of the reconstructions such as length and

score, which are extracted from a training dataset consisting of

hundreds of thousands of annotated spectra (Frank, 2009).

However, PepNovoþ does not include an automated training

procedure (that would allow to easily extend PepNovoþ for

newly emerging mass spectrometry approaches) and is currently

trained only for CID [Extending PepNovoþ beyond CID spectra

requires training complex boosting-based re-ranking models for

predicting peak ranks and rescoring peptide candidates.

PepNovoþ training includes several manual steps and the avail-

ability of a very large corpus of training spectra (Ari Frank,

personal communication, October 5, 2012)]. Thus, in case of

non-CID fragmentation methods, it remains unclear how to
obtain accurate error rate estimation for de novo reconstructions.
UniNovo estimates the probability that each reported recon-

struction is correct, using simple statistics that are readily ob-

tained from a small training dataset. We demonstrate that the
estimation is accurate for all tested types of spectra (including

CID, HCD, ETD, CID/ETD and HCD/ETD spectra of trypsin,
LysC or AspN digested peptides). This allows UniNovo to auto-

matically filter out low quality spectra.

2 METHODS

Similar to Kim et al. (2009a), we first describe the algorithm on a

simplified model that assumes the following:

� the masses of amino acids are integers (e.g. the mass of Gly is 57).

� the m/z (mass to charge ratio) of peaks (in spectra) are integers.

� the intensity of all peaks is 1.

� only N-terminal charge 1 ions are considered (e.g. b, c, or b�H2O

ions, but not y-ion series).

� the parent mass (the mass of the precursor ion) of a spectrum equals

to the mass of the peptide that generated the spectrum.

While such a simplified model is impractical, we chose to introduce our

algorithm on this model for better understanding of the algorithm on a

more complex and realistic model. The algorithm on a more realistic

model is described in the Supplementary section S2.

2.1 Terminology and definitions

Let A be the set of amino acids with (integer) masses m(a) for a 2 A. A

peptide a1a2 � � � ak is a sequence of amino acids, and the mass of a peptide

is the total mass of amino acids in the peptide. We represent a peptide

a1a2 � � � ak with mass n by a Boolean vector P ¼ ðP1, . . . ,PnÞ, where

Pi ¼ 1 if i ¼
Pj
t¼1

at for 05j5k, and Pi ¼ 0 otherwise. If Pi ¼ 1, we call

a mass i a fragmentation site. For example, suppose there are two amino

acids A and B with masses 2 and 3, respectively. Then, the peptide ABBA

has the mass of 2þ 3þ 3þ 2 ¼ 10 and is represented by a Boolean

vector (0,1,0,0,1,0,0,1,0,0). The fragmentation sites of this peptide are,

thus, 2, 5 and 8.

A spectrum is a list of peaks, where each peak is specified by an m/z.

We represent a spectrum of parent mass n by a Boolean vector

S ¼ ðS1, . . . ,SnÞ, where Si ¼ 1 if the peak of m/z i (or simply the

peak i) is present and Si ¼ 0 otherwise (Representing peptides and spec-

tra as vectors allows us to represent the generation of spectra from pep-

tides by simple vector operations.).

A peptide-spectrum match (PSM) is a pair ðP,SÞ formed by a peptide

P and a spectrum S. Given an integer � called an ion type and a PSM

ðP,SÞ, we say a peak i is a �-ion peak (with respect to P) if i� � is a

fragmentation site, that is, Pi�� ¼ 1. In this model, the ion type can be

any integer. In the connection to the experimental MS/MS spectra, ion

types can represent common singly charged N-terminal ions; for example,

the ion types 1 and �27 represent b and a ions, respectively.

Given an integer f called a feature and a spectrum S, we say that a peak

i satisfies f if another peak iþ f is present in the spectrum, that is,

Siþf ¼ 1. For instance, a peak 30 satisfies a feature f ¼ �18, if

S30�18 ¼ 1. In experimental spectra, various ions are often observed

along with neutral losses (e.g. b-ion and b�H2O-ion) or with related

ions (e.g. b-ion and a-ion). A feature describes the relation (the shift of

m/z values in this simplified model) between two peaks that may corres-

pond to a neutral loss or a mass gain/loss between related ions. For

example, since we are dealing with only charge 1 ions, a water loss
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(from any ions) is represented by the feature f ¼ �18, and the mass gain

from a-ion to b-ion is represented by the feature f ¼ þ27. The possible

interpretations of selected features are found in Supplementary Tables

S5–S37 in the Supplementary section S12.

2.2 Peptide-spectrum generative model

We model how a peptide P of mass n generates a spectrum S. Apart from

a 1-step generative model in Bandeira et al. (2008) or Kim et al. (2009a),

we introduce a more adequate 2-step probabilistic model in which the

dependency between different ions can be described.

Assume that we are given the set of ion types (the ion type set �) and

the set of features (the feature set F). For simplicity, we consider the case

where only one ion type � ¼ 0 is in � and one feature f is in F. Given a

peptide P, a partial-spectrum s is generated per each element Pi of P as

follows: The probability that si ¼ 1 is given by � if Pi ¼ 1 or by � other-

wise (the first generation step). This first step can be characterized by a

2� 2 matrix called the ion type matrix (Fig. 1). When si ¼ 1, the prob-

ability that siþf ¼ 1 (i.e. the peak i satisfies f) is given by � if Pi ¼ 1 or �

otherwise (the second generation step). The second step is characterized

by the feature-ion type matrix (Fig. 1) (Given si ¼ 0, the probability that

siþf ¼ 1 is assumed to be 0.). The second step can describe the depend-

ency between different ions (or an ion and its neutral loss) from the same

fragmentation site. If multiple ion types and multiple features are con-

sidered, the ion type matrix should be defined per ion type, and the

feature-ion type matrix per ion type and per feature. The spectrum S is

generated by taking elementwise OR operation for the generated partial-

spectra s.

2.3 Training UniNovo

Since the ion type matrices and feature-ion type matrices fully describe

the generation of a spectrum, in the training step, UniNovo learns these

matrices from the training dataset (a set of PSMs). To define these matri-

ces, the ion type set � and the feature set F should be formed. Using the

offset frequency function introduced in Dancik et al. (1999), we collect

frequently observed ion types and form the ion type set �. To form the

feature set F, we define the feature frequency function with which one can

count how many times each possible feature is observed in the training

dataset (see the Supplementary section S1.2). Using the feature frequency

function, we collect frequently observed features and form the feature set

F. From here on, we only consider ion types in the ion type set � and

features in the feature set F.

Next UniNovo learns the ion type and feature-ion type matrices that

characterize the generative model of the PSMs in the training dataset. For

example, � ¼ Prðsi ¼ 1jPi ¼ 1Þ can be empirically determined if partial-

spectra s are given. However, it is not clear how to decompose a spectrum

S into partial-spectra s (since partial spectra may share peaks in the

spectrum). As a compromise, we learn PrðSi ¼ 1jPi ¼ 1Þ for estimation

of �. Other probabilities are also empirically determined similarly by

substituting the partial-spectra by the spectrum.

We emphasize that all the above probabilities can be learned from a

small set of PSMs (e.g. 5000 PSMs per charge state are often sufficient to

avoid overfitting; see the Supplementary section S15) even if there are

many ion types in � and features in F because each probability is asso-

ciated to an individual ion type or a combination of an ion type and a

feature, not a combination of multiple ion types and multiple features.

Lastly, we compute the probability that a random element of a peptide

vector is a fragmentation site, i.e., PrðPi ¼ 1Þ [When masses of amino

acids are rounded to integers, PrðPi ¼ 1Þ � 1
121:6. However, if we consider

more accurate amino acid masses (for the spectra of high resolution), this

probability should be learned from the training dataset.]. This probability

is called the prior fragmentation probability and denoted by p. The de-

tailed description of UniNovo training is given in the Supplementary

section S1.

2.4 How to infer fragmentation sites from a spectrum

Given a spectrum S of parent mass n, our goal is to predict the frag-

mentation sites of the (unknown) peptide P that generated S. For

simplicity, assume that there exists a single ion type � ¼ 0 is in the ion

type set � (but multiple features in the feature set F). Given a peak i,

define H as the set of features that the peak i satisfies. Then the fragmen-

tation sites are predicted by solving the following Bayesian inference

problem.

Fragmentation inference problem: Given the set of features H and Pi

such that PrðPi ¼ 1Þ ¼ p (the prior fragmentation probability), derive the

posterior probability PrðPi ¼ 1jSi ¼ Siþf ¼ 1 for f 2 HÞ.

Since we assumed that there is only one ion type, we have only one ion

type matrix. On the other hand, per each feature we have a feature-

ion type matrix. Let �f and �f denote � and � associated to the fea-

ture f, respectively. If we can assume that all features are independent

(a) (b)

Fig. 1. (a) The generation of a partial-spectrum s for Pi. One ion type � ¼ 0 and one feature f are considered. The probability that si ¼ 1 is given by � if

Pi ¼ 1 or by � otherwise. When si ¼ 1, the probability that siþf ¼ 1 (i.e., the peak i satisfies f) is given by � if Pi ¼ 1 or by � otherwise. The spectrum is

generated by taking elementwise OR operation for generated partial-spectra for all elements of P. (b) The calculation of the fragmentation probability

vector FPV from a spectrum S (without knowing the peptide P that generated S). We consider one ion type � ¼ 0 and two features f1 and f2. The events

‘a peak satisfies f1’ and ‘a peak satisfies f2’ are assumed to be independent. To derive FPV i, first we examine which features the peak i satisfies in the

spectrum S. Denote the features the peak i satisfies by H. Second, given H, we calculate the probability that Pi ¼ 1 [using the probabilities given in ion

type matrix and feature-ion type matrix—see the equation (1)]
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(i.e., the events ‘Si ¼ Siþf ¼ 1 for f’ are independent for f 2 H), we

obtain

PrðPi ¼ 1jSi ¼ Siþf ¼ 1 for f 2 HÞ ¼

�
Q
f2H

�f

�
Q
f2H

�f þ ð1� �Þ
Q
f2H

�f
: ð1Þ

where � ¼ PrðPi ¼ 1jSi ¼ 1Þ ¼ p��
p��þð1�pÞ�� (see the Supplementary section

S3 for derivation). Denote the obtained probability in (1) as �i. We define

a fragmentation probability vector (FPV) as a vector with n elements

such that

FPV i ¼
�i if Si ¼ 1
0 otherwise

�
ð2Þ

for i ¼ 1, . . . , n� 1, and FPVn :¼ 1 (see Fig. 1b). FPV i is an estimated

probability that Pi ¼ 1 (see Supplementary Figs S3 and S4, blue bars).

We use FPV for the generation of de novo reconstructions.

The equation (1) is based on a simplified model in which a single one

ion type and multiple independent features are used. However, some

features are known to be strongly dependent on each other (e.g. a feature

describing a single water loss and a double water losses), and usually

multiple ion types are present in the ion type set. Thus, in practice, per

each peak, UniNovo automatically selects a small number of features

(510 out of thousands of features in the feature set) that are weakly

correlated yet effective to determine the ion type of the peak. Assuming

that the selected features are mutually independent, FPV is calculated

per ion type using the equation (1), and then the final FPV is given by a

weighted summation of the FPV’s of different ion types. Note that there

are many possible combinations of features due to the large number of all

the features in the feature set (even if the number of the features to cal-

culate FPV per peak is510). Since different combinations of features are

selected for different peaks, UniNovo is able to use more diverse relations

between different ions as compared with other tools that typically use

fixed dependencies between ions (e.g. PepNovo). The detailed description

and an example of the feature selection method and the calculation of

FPV are given in the Supplementary section S3.

2.5 Generating de novo reconstructions

To generate de novo reconstructions, we first construct a spectrum graph

(Dancik et al., 1999). Given a spectrum S of parent mass n from an

unknown peptide P, the spectrum graph GðV,EÞ is defined as a directed

acyclic graph whose vertex set V consists of 0 (the source), n (the sink)

and integers i such that FPV i40. Two vertices i and j are connected by

an edge ði, jÞ if j – i equals to the mass of an amino acid or the total mass

of multiple amino acids (a mass gap). Any path from 0 (the source) to n

(the sink) in a spectrum graph corresponds to a peptide (possibly con-

taining mass gaps). We say that a vertex i is correct if Pi ¼ 1 and an edge

ði, jÞ is correct if both vertices i and j are correct. We also say that a path r

is correct if all vertices in r are correct. The length of a reconstruction is

defined by the total number of amino acids and mass gaps in the

reconstruction.

To score a de novo reconstruction, we use an additive (i.e., the score of

a path is the sum of scores of vertices of the path) log likelihood ratio

scoring [similar to Dancik et al. (1999)]. Given a vertex i, let FPV i ¼ x.

The likelihoods of the following two hypothesis for the outcome

FPV i ¼ x are tested: (i) the vertex i is correct and (ii) the vertex i is

incorrect. Let PrðPi ¼ 1jFPV i ¼ xÞ ¼ x. Then, we have

LðPi ¼ 1jFPV i ¼ xÞ

LðPi ¼ 0jFPV i ¼ xÞ
¼

PrðFPV i ¼ xjPi ¼ 1Þ

PrðFPV i ¼ xjPi ¼ 0Þ
¼

x

1� x
�
1� p

p
: ð3Þ

The score of the vertex i with FPV i ¼ x is defined by

ScoreðiÞ :¼ ½log x
1�x �

1�p
p � where ½�� denotes the rounding to the nearest

integer. Given a path r, the score of the path r is defined by
P
i2r

ScoreðiÞ.

Since an additive scoring is used, top scoring reconstructions can be

efficiently generated using a dynamic programming as in Dancik et al.

(1999). We did not exclude symmetric paths in the spectrum graph that

usually correspond to incorrect reconstructions. Considering only the

antisymmetric paths would further enhance the performance of

UniNovo (Chen et al., 2001).

After generating the reconstructions, a probability that each recon-

struction is correct (termed the accuracy of the reconstruction) is pre-

dicted, using Hunter’s bound (Hunter, 1976) (see the Supplementary

section S4 for the definition of the accuracy of reconstructions).

Hunter’s bound can be calculated from relatively simple statistics that

are readily learned from a small set of PSMs (about 5000 PSMs).

Supplementary Figures S2 and S3 (green bars) in the Supplementary

section S9 show that the accuracy of a reconstruction is a conservative

estimate of the empirical probability of the reconstruction being correct.

3 RESULTS

3.1 Datasets

To benchmark UniNovo, we used 13 different datasets with di-
verse fragmentation methods (CID/ETD/HCD), digested with

diverse proteases (trypsin, LysC and AspN), and having diverse

charge states (see Table 1). We re-analyzed the spectral datasets

(original datasets) from Albert Heck’s and Joshua Coon’s labora-

tories that were previously analyzed in Kim et al. (2010), Swaney

et al. (2010) and Frese et al. (2011). The CID and ETD spectra in

these original datasets were acquired in a hybrid linear ion trap/

Orbitrap mass spectrometers (high MS1 resolution and low MS2

resolution). The HCD spectra have high MS1 and MS2 reso-
lution. All spectra in the original datasets were identified by

MS-GFDB (ver. 01/06/2012) (Kim et al., 2010) at 1% peptide-

level FDR without allowing any modification except the carba-

midomethylation of Cys (Cþ 57) as a fixed modification [In the

Supplementary section S13, we also re-analyzed the dataset

reported in Kim et al. (2009b) that contains doubly charged

CID spectra identified using Sequest (Eng et al., 1994) and

PeptideProphet (Keller et al., 2002).]. Out of all identified spec-

tra, we selected 1000 spectra (or pairs of spectra) from distinct

peptides randomly and formed the 13 datasets listed in Table 1.
The unselected identified spectra (about 5000 to 20 000 spectra

depending on the type of spectra) were used for the training of

UniNovo. The peptide contained in the training dataset were not

contained in the above 13 datasets. See the Supplementary sec-

tion S10 for the detailed description of these datasets.

3.2 Benchmarking UniNovo

We benchmarked UniNovo, PepNovoþ (ver. 3.1 beta) (Frank,

2009), PEAKS (ver. 5.3, online) (Ma et al., 2003) and pNovo

(ver. 1.1) (Chi et al., 2010) using the datasets in Table 1. For each

tool, we generated N de novo reconstructions per each spectrum

for N ¼ 1, 5 and 20. We say that a spectrum is correctly
sequenced if at least one of N reconstructions generated from

the spectrum is correct. To evaluate the performance of each

tool, the number of correctly sequenced spectra and the average

length of correct reconstructions were measured for each tool

(Since mass gaps are allowed for reconstructions, often multiple

correct reconstructions were reported for a spectrum. To calcu-

late the average length of correct reconstructions, only the top

scoring correct reconstruction was counted per a spectrum.).
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For UniNovo, the maximum number of mass gaps in a recon-

struction was set to 2. UniNovo was tested for all datasets. For

PepNovoþ, also N top scoring reconstructions were generated

per spectrum. PepNovoþ was used for CID2, CIDL2, CIDA2,

HCD2 and HCD3 datasets. In case of PEAKS, we first gener-

ated 500 top scoring reconstructions per each spectrum. Then,

for each reconstruction we converted amino acids with the local

confidence 530% into mass gaps. Such conversion is adopted

because PEAKS generates reconstruction without mass gaps

while UniNovo and PepNovoþ generate reconstructions with

up to two mass gaps. In this procedure, multiple reconstructions

without mass gaps were often converted into the same recon-

struction with mass gaps. The score of a converted reconstruc-

tion is defined as the highest score of the reconstructions before

conversion. Out of the converted reconstructions, N top high

scoring (distinct) ones were chosen and used for further analysis.

PEAKS was tested for all datasets except for HCD2 and HCD3

datasets. For pNovo, N top scoring reconstructions were gener-

ated per a spectrum (pNovo also generates reconstructions with-

out mass gaps. However, the conversion of reconstructions as in

PEAKS could not be applied to pNovo because pNovo does not

report any local score.). Only HCD2 and HCD3 datasets were

analyzed by pNovo. The parameters of each tool for each dataset

is provided in the Supplementary section S8.
We also indirectly compared UniNovo with MS-GFDB (Kim

et al., 2010), as both tools were developed to analyze diverse

types of spectra. We replaced the scoring function of UniNovo

with that of MS-GFDB and generated reconstructions using the

replaced scoring method. More precisely, the spectrum graph

was generated by MS-GFDB per each spectrum, and the recon-

structions were generated by UniNovo on that spectrum graph

(instead of the spectrum graph generated by UniNovo). This

generation method is specified by MS-GFDBScore. All experi-

mental parameters for MS-GFDBScore were the same as for

UniNovo.
Figure 2 shows the comparison results for different datasets.

UniNovo found the largest number of correctly sequenced

spectra among all the tested tools in most datasets. In particu-

lar, for ETD spectra, UniNovo reported significantly more

correctly sequenced spectra than PEAKS. For example, in

case of ETD2 or ETDL4 dataset, the number of correctly

sequenced spectra was more than twice for UniNovo than

for PEAKS.
For CID spectra, UniNovo and PepNovoþ showed similar

results. When N¼ 1, UniNovo and PepNovoþ found about

the same number of correctly sequenced spectra in CID2 and

CIDL2 datasets, but UniNovo found about 35% more correctly

sequenced spectra than PepNovoþ in CIDA2 dataset.
While trypsin and LysC-digested peptides generate the spectra

of similar fragmentation characteristics, AspN-digested peptides

generate spectra with distinct fragmentation propensities.

UniNovo worked well with AspN-digested peptides, but

PepNovoþ showed suboptimal results for the spectra of

AspN-digested peptides [Training of the parameters for the

Bayesian network of PepNovo (Frank and Pevzner, 2005) for

the CID spectra of AspN- or LysC-digested peptides would lead

to better results; however, as mentioned above, the re-ranking

models of PepNovoþ (Frank, 2009), which are crucial for the

superior performance of PepNovoþ for CID tryptic spectra (see

the Supplementary section S14), cannot be readily trained.]. The

length of correct reconstructions for PepNovoþ was slightly

longer than for UniNovo.
The results on HCD spectra also demonstrate that UniNovo

finds the largest number of correctly sequenced spectra in gen-

eral. The reconstructions reported by pNovo were, however,

longer than those by UniNovo (and PepNovoþ) by two to

three amino acids. This suggests that UniNovo still has room

for improvement for HCD spectra (e.g. introducing features

better reflecting the high mass resolution and information from

immonium or internal ions).

The results from UniNovo were superior to MS-GFDBScore

in both terms of the number of correctly sequenced spectra and

the average length of the correct reconstructions in all datasets.
For each dataset, we drew the Venn diagrams of the correctly

sequenced spectra (Fig. 3 and Supplementary Figs S5–S12) to

see the overlaps of the spectra between different tools. For all

datasets, the overlaps between different tools increase as N

grows, as expected. Relatively small overlaps are observed for

ETD spectra (as compared with CID or HCD spectra). It indi-

cates that UniNovo may have been using some valuable features

Table 1. Summary of the datasets used for benchmarking

Dataset CID2 CIDL2 CIDA2 ETD2 ETD3 ETDL3 ETDL4 ETDA3 ETDA4 HCD2 HCD3 CID/ETD2 CID/ETD3

Fragmentation CID CID CID ETD ETD ETD ETD ETD ETD HCD HCD CID/ETD CID/ETD

Charge 2 2 2 2 3 3 4 3 4 2 3 2 3

Enzyme Tryp LysC AspN Tryp Tryp LysC LysC AspN AspN Tryp Tryp Tryp Tryp

Average pep.

length

12.6 11.4 12.3 12.5 16.4 12.5 18.7 12.8 18.9 10.5 14.5 12.3 17.1

UniNovo * * * * * * * * * * * *

PepNovoþ * * * N/A N/A N/A N/A N/A N/A * * N/A N/A

PEAKS * * * * * * * * * * * N/A N/A

pNovo N/A N/A N/A N/A N/A N/A N/A N/A N/A * * N/A N/A

Note:Number of spectra (or spectral pairs) is 1000 for each dataset. While UniNovo is applicable to all datasets, other tools are only applicable to (or optimized for) datasets

marked by ‘*’. PEAKS was not tested for HCD datasets.
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of ETD spectra missed by PEAKS (and vice versa) and suggests

that combining UniNovo and PEAKS results may potentially

lead to a promising de novo sequencing approach.
While the above results measure the sequence level accuracy,

they do not directly show the amino acid level precision or

recall. To measure the amino acid level precision and recall,

the top scoring reconstruction was generated per spectrum for

each tool (i.e. N¼ 1). For this experiment, MS-GFDB was not

tested, and the reconstructions of PEAKS were not converted

using the local confidence. From the generated reconstructions,

the number of (predicted) fragmentation sites and the number

of correct fragmentation sites are counted. Also, since the spec-

tra are annotated, we can count the number of all

fragmentation sites in test sets. The precision and recall are

defined by

precision ¼
#correct fragmentation sites

#predicted fragmentation sites
ð4Þ

recall ¼
#correct fragmentation sites

#all fragmentation sites in test sets
: ð5Þ

Figure 4 shows the precision and recall values of the

tested tools for different datasets. For all datasets, UniNovo

showed the highest precision value. But the recall values

of UniNovo tended to be lower than others in particular

for CID spectra. For ETD2 and ETDL4 datasets, UniNovo

(a) (b)

(c) (d)

(e) (f)

Fig. 2. Comparison of de novo sequencing tools [as well as a database search tool MS-GFDB (Kim et al., 2010) tweaked for de novo sequencing]. Per

each spectrum, N top scoring reconstructions were generated by UniNovo, PepNovoþ (Frank, 2009; Frank and Pevzner, 2005), PEAKS (Ma et al.,

2003), pNovo (Chi et al., 2010) and MS-GFDBScore. MS-GFDBScore provides UniNovo with MS-GFDB’s scoring function. The number of reported

reconstructions per a spectrum (N) is set to 1, 5 and 20. A reconstruction is correct if all the fragmentation sites of the reconstruction are correct, and a

spectrum is classified as correctly sequenced if at least one of the reconstructions generated from the spectrum is correct. Figures on the left side (a, c and

e) show the number of correctly sequenced spectra in each dataset, and figures on the right side (b, d and f) show the average length of the correct

reconstructions
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had higher precision and recall than PEAKS. These observa-

tions are consistent with the sequence level results above;

higher precision of UniNovo resulted in more accurate re-

constructions, and lower recall resulted in shorter

reconstructions.

Both the sequence level and amino acid level results suggest

that specific types of spectra are more suitable for de novo sequen-

cing than others. For instance, in general, HCD spectra generated

more accurate and longer reconstructions (or higher precision and

recall in amino acid level) than ETD spectra. Further evaluation

Fig. 3. The Venn diagrams of the correctly sequenced spectra for CID2 (a–c), ETD3 (d–f) and HCD2 (g–i) datasets. For all datasets, the overlaps

between different tools increase as N grows, as expected. Relatively small overlaps are observed for ETD spectra when compared with CID or HCD

spectra. The Venn diagrams for other datasets are found in Supplementary Figures S5–S12 in the Supplementary section S11

(a) (b)

Fig. 4. Comparison of de novo sequencing tools in terms of amino acid level precision (a) and recall (b). The definitions of precision and recall are given

in (4) and (5), respectively
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of the scoring function (i.e., spectrum graph) of UniNovo for

different spectrum types is found in the Supplementary section

S14, where we also compared the spectrum graphs from

UniNovo, PepNovo and MS-GFDB for CID2 dataset.

3.3 De novo sequencing of paired spectra

UniNovo also can be used to sequence paired spectra (e.g. CID/

ETD spectral pairs). Given multiple spectra from the same pre-

cursor ion, UniNovo first generates a spectrum graph from each

of the spectra and next merges the spectrum graphs into a com-

bined spectrum graph, on which the reconstructions are gener-

ated (refer to the Supplementary section S5 for the spectrum

graph merging algorithm).
To benchmark UniNovo in de novo sequencing of paired spec-

tra, CID/ETD2 and CID/ETD3 datasets were analyzed by

UniNovo. From CID/ETD2 dataset, two additional datasets

were generated: CID/etd2 and cid/ETD2 datasets. CID/etd2

dataset was formed by taking only CID spectra, and cid/ETD2

dataset by taking only ETD spectra in CID/ETD2 dataset. CID/

etd3 and cid/ETD3 datasets were generated similarly. For each

dataset, we generated N ¼ 1, 5 and 20 top scoring

reconstructions.
The results are shown in Figure 5. When precursor ions were

doubly charged, the performance boost from the paired spectra

was very modest. For N ¼ 1, 5, and 20, UniNovo reported 5%

more correctly sequenced spectral pairs in CID/ETD2 datasets

than in CID/etd2 dataset. The average length of correct recon-

structions for CID/ETD2 dataset was slightly longer than for

CID/etd2 dataset.

In contrast, for triply charged spectra, the use of paired spectra

was highly beneficial for generating more accurate reconstruc-

tions. For example, when N¼ 1, UniNovo reported 100 and

50%more correctly sequenced spectral pairs in CID/ETD3 data-

set than in CID/etd3 and cid/ETD3 datasets, respectively. The

length of correct reconstructions typically increases by 1–2 amino

acids by using the CID/ETD paired spectra.

3.4 De novo sequencing with quality filtering

Given a set of reconstructions generated from a spectrum,

UniNovo estimates the probability that at least one reconstruc-

tion in the set is correct (i.e., a probability that the spectrum is

correctly sequenced) based on the accuracies of reconstructions.

The estimated probability is called the set accuracy (When mul-

tiple de novo reconstructions are reported, it is important to guar-

antee that one of them is correct.). Denote the set of

reconstructions by R ¼ fr1, . . . , rNg. If the events ‘ri is correct’

for i ¼ 1, . . . ,N are independent, the set accuracy is simply given

by 1�
QN
i¼1

ð1� AccuracyðriÞÞ. However, since the reconstructions

are often similar to each other, the dependency between recon-

structions should be taken into account. To model this depend-

ency, we assume Markov property between the events ‘ri is

correct’ for i ¼ 1, . . . ,N and compute the set accuracy. The

derivation of the set accuracy is given in the Supplementary

section S6.
When the parameter N is set, one may want to choose N re-

constructions with the highest accuracies to maximize the set

accuracy. However, such a selection often results in a set of

short reconstructions (because short reconstructions have rela-

tively high accuracies). Since short reconstructions are not very

useful in many cases (e.g. in follow-up homology searches),

UniNovo uses a greedy algorithm to select long and accurate

reconstructions. The inputs to the algorithm are the parameters

SetAccuracyThreshold and N. The algorithm tries to form an

output set of N reconstructions of set accuracy higher than

SetAccuracyThreshold while maximizing the minimum length

of the reconstructions (see the Supplementary section S7 for

the description of the algorithm). If UniNovo fails to generate

a set of N reconstructions with the set accuracy higher than

SetAccuracyThreshold, it filters out the query spectrum.
We set SetThreshold ¼ 0:8 and reanalyzed the datasets in

Table 1. The maximum number of mass gaps per each recon-

struction was set to 10. For each dataset, we measured

the number of unfiltered spectra (termed qualified spectra) and

the percentage of qualified spectra that were correctly sequenced

(which is expected to be 80% since SetAccuracyThreshold ¼ 0:8).
The average length of correct reconstructions was also measured.

(a)

(b)

Fig. 5. De novo sequencing of paired spectra. CID/ETD spectral pairs

were analyzed by UniNovo (in CID/ETD2 and CID/ETD3 datasets). To

see if the spectral pairs are beneficial for de novo sequencing, CID/etd2

(cid/ETD2) dataset was generated from CID/ETD2 dataset by collecting

only CID (ETD) spectra in CID/ETD2 dataset. Likewise, CID/etd3 and

cid/ETD3 datasets were generated from CID/ETD3 dataset. (a) the

number of correctly sequenced spectra (or spectral pairs), (b) the average

length of correct reconstructions for each dataset. The spectral pairs

resulted in more accurate and longer reconstructions, in particular for

triply charged spectral pairs
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The results are given in Figure 6. For all datasets, the number

of qualified spectra increases sharply as the number of reconstruc-

tionsN grows (Fig. 6a). For example, UniNovo reported only few

qualified spectra (55) from CIDA2 dataset when N¼ 1. When

N¼ 20, it reported4900 qualified spectra from the same dataset.

In contrast to the dramatic changes in the number of qualified

spectra, the percentage of qualified spectra that were correctly

sequenced hardly changed across the datasets and the values of

N (Fig. 6b). As expected, the percentage was around 80% for all

cases (including the datasets containing CID/ETD spectral pairs),
which shows that the set accuracy reported by UniNovo is reli-
able. Figure 6c shows the average length of correct reconstruc-

tions. As N decreases, the average length also decreases. This is
because shorter reconstructions (with higher accuracies) are
chosen by UniNovo when N is small to achieve high set accuracy.

4 CONCLUSION

We presented a universal de novo sequencing tool UniNovo that
works well for various types of spectra. UniNovo can be easily

trained for different types of spectra using only thousands of
PSMs that typically can be obtained from a single MS/MS
run. The experimental results show that UniNovo generates ac-

curate and long de novo reconstructions from spectra of CID,
ETD, HCD and CID/ETD fragmentation methods and spectra
of trypsin, LysC or AspN digested peptides. We also showed that

UniNovo is better than or comparable with other state of the art
tools.
As pointed out by Ma and Johnson (2011), de novo sequences

not only are valuable for the analysis of the novel peptides that
are not present in proteome databases but also can facilitate the
homology-based database searches. Since the reconstructions re-

ported by UniNovo contain mass gaps representing the total
mass of multiple amino acids [termed gapped peptides (Jeong
et al., 2011; Kim et al., 2009b)], MS-BPM algorithm (Ng et al.,

2011) can be used for fast exact or homology searches
(UniNovo�MS-BPM). MS-BPM enables searches against a se-
quence database using gapped peptides as queries. Currently MS-

BPM takes gapped peptides generated by MS-GappedDictionary
(Jeong et al., 2011) (MS-GappedDictionary�MS-BPM).

However, the reconstructions from UniNovo are usually longer
than those from MS-GappedDictionary (8–9 versus 5–6). Since
the search time of MS-BPM strongly depends on the length of

gapped peptides—the longer gapped peptides, the shorter search
time—the running time of UniNovo�MS-BPM is smaller than
MS-GappedDictionary�MS-BPM by an order of magnitude in a

blind search against the IPI Human proteome database ver.3.87
(Kersey et al., 2004) (data not shown).
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