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ABSTRACT Mitotic count is an important diagnostic factor in breast cancer grading and prognosis.
Detection of mitosis in breast histopathology images is very challenging mainly due to diffused intensities
along object boundary and shape variation in different stages of mitosis. This paper demonstrates an
accurate technique for detecting the mitotic cells in Hematoxyline and Eosin stained images by step by
step refinement of segmentation and classification stages. Krill Herd Algorithm-based localized active
contour model precisely segments cell nuclei from background stroma. A deep belief network based multi-
classifier system classifies the labeled cells into mitotic and nonmitotic groups. The proposed method has
been evaluated on MITOS data set provided for MITOS-ATYPIA contest 2014 and also on clinical images
obtained from Regional Cancer Centre (RCC), Thiruvananthapuram, which is a pioneer institute specifically
for cancer diagnosis and research in India. The algorithm provides improved performance compared with
other state–of–the–art techniques with average F-score of 84.29% for the MITOS data set and 75% for the
clinical data set from RCC.

INDEX TERMS Breast histopathology, mitosis, support vector machine, random forest, multi-classifier
system, deep belief networks.

I. INTRODUCTION
Mitotic count is one of the most important prognostic factors
in breast cancer [1] grading as it gives an assessment of
the tumour proliferation. Usually, mitotic nuclei come out as
hyper chromatic objects without a clear nuclear membrane in
H & E stained breast histopathology images. Fig. 1 displays
four main evolution phases in the mitosis, namely prophase,
metaphase, anaphase, and telophase. The shape of nucleus is
quite different in different phases, just as in the telophase a
mitotic cell has two distinct nuclei. However, they need to
be counted as one single mitosis since they are not separate
cells. The detection process becomes time-consuming and
extremely difficult due to large variety of shapes, size and
low frequency of nuclei undergoing mitosis. In addition,
irregular illumination, non-uniform stain variation, and pres-
ence of lymphocyte nuclei makes the detection process more
challenging [2]. Currently, compared to conventional glass

slides, Whole Slide Imaging (WSI) together with Computer-
Aided Diagnosis (CAD) greatly improves the consistency
and objectivity of histopathology analysis results [3]. The
techniques already reported in the literature make use of hand
crafted features which specifies morphology and intensity of
mitotic nuclei. In such cases, accuracy of detection process
is reduced due to large shape variation and indiscriminant
nature of nuclei features. Though deep learning techniques
provide good recall rate compared to other methods, training
a CNN for a real world problem is very much computation
intensive and GPU is become a necessity to speed up the
training process [4]. Moreover, it demands huge samples of
annotated images to learn massive number of parameters.

The accuracy of mitotic evaluation depends up on specific
nature of detection, segmentation and classification proce-
dures employed in the processing framework [6]. This paper
attempts to obtain better performance matrices, by careful
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FIGURE 1. Samples of cells in four mitotic phases. The images are
snipped from the original image [5] acquired under 40X magnification.

design of algorithms at each stage starting from initial pre-
processing to final classification stage. At the start of mitosis
the chromosomes condense and the mitotic nucleus appears
denser than the non-mitotic nucleus [7]. At the end of
telophase, a furrow appears in the cell membrane which
deepens and finally splits the cytoplasm into two, thus pro-
ducing two new cells. But this changes can be manipu-
lated as good features for classification only if the cells
are precisely segmented. Hence, Localized Active Contour
Model (LACM) [8] is used for segmentation of cells to exploit
variation in cell size through the different phase of mitosis.
Since the ACMs are susceptible to initial curve placement,
an optimal multi thresholding technique based on Krill Herd
Algorithm (KHA) [9] is utilized for initializing the nuclear
region for accurate contour segmentation. The KHA exhibits
superior performance in optimizing nuclei regions by fast
convergence. Moreover, a Multi Classifier System (MCS)
further improves the predictions from various individual clas-
sifiers. Though MCS has been applied for various applica-
tions [10], they are seldom used for mitotic detection.

The organization of the paper is in such a way that
Section II gives a review of recent literature on mitosis
detection. Section III presents an illustration of MCS. The
proposed methodology in detail is conveyed in section IV.
Experimental results are presented in section V followed by
conclusion in section VI.

II. LITERATURE REVIEW
The earliest methods for mitosis detection were reported
more than two decades ago in Feulgen stained breast can-
cer sections with a semi-automatic algorithm [11]. With the
use of digital slides, a statistical approach was proposed
in [12] which model mitotic regions by a Gamma distribution
and non-mitotic regions by a Gaussian distribution. But it
demands a context based tuning in the classification stage to
reduce the number of false positives. In [13] Tek et al. have
used an ensemble of Adaboost classifier after rough local-
ization of cells with simple thresholding. The performance
is affected by illumination and chromatic filters since it uses
color based features. In [14], a graph-based multi-resolution
algorithm is developed for mitosis extraction driven by
unsupervised clustering of domain specific features. Ilastik
software is used to segment candidate cells in [15].
Sertel et al. [16] proposed an algorithm to identify mitotic
nuclei in neuro images based on probability based like-
lihood functions along with binary thresholding. Simple

thresholding provides very poor detection due to diffusion
of nuclei and background regions. Intensity, morphology,
and texture features were utilized for the mitosis prediction
in [17]. Irshad et al. [18] incorporated combination of tex-
ture and SIFT features for mitosis detection. The number of
colour channels and redundant feature values result in poor
classification performance. Moreover, the similarity in color
and shape attributes of other nuclei are mistakenly recognized
as mitoses by these features. S. Doyle et al. [19] utilized
gabor features along with statistical and texture features for
automatic grading of breast cancer. In [20], stain normalized
R component is used for nuclei detection in breast pathol-
ogy images. Veta et al. [21] segmented candidate objects
by the level set method and reported a true positive rate
of 59.5%. Fuzzy C-means (FCM) clustering algorithm is used
to detect mitosis index in [22], which is very slow for large
histopathology images. Hysteresis thresholding and morpho-
logical top-hat reconstruction is used for nuclei detection in
neuro images [23] as well as in breast histology [24] images.
This may detect almost all significant nuclei, but allows
too many false positives. Recently Paul and Mukherjee [25]
reported mitotic detection based on intensity features with an
average F-score of 73%.

Multispectral imaging, also has been used to detect
mitosis in breast histopathology images [26], [27].
Lu and Mandal [26] utilized linear discriminant analysis
for spectral band selection. Bayesian modeling and local
region thresholding is utilized to detect and segment the
nuclei regions. Mitotic nuclei are detected by using a multi
expert system with F-score of 47%. In [27] Irshad et al.
selected the spectral bands with relatively higher Mutual
Information (MI) for candidate detection. For each candi-
date in selected spectral bands, they compute morphological
& multispectral statistical features for object classification.
Wang et al. [28] performed initial segmentation of candidate
objects by computing Laplacian of Gaussian (LOG) response
of blue ratio images followed by local thresholding. Both
CNN and handcrafted features were extracted for each candi-
date region and independent classifiers were trained using the
two feature set. A third classifier, trained on the combination
of handcrafted features and CNN based features classify
the regions on which the two individual classifiers disagree.
Weighted averages of all the classifier outputs provide the
final prediction on mitotic cells.

In recent years mitotic detection is carried out with high
level features provided by deep learning networks [3], [4],
[29]. It requires a large number of labelled samples and
parameters for training the network that further increases the
computational complexity of the algorithm. Even though a
number of works have been published, there is still progress
to be made to achieve clinically acceptable results. Because
of divergent inputs and inadequate samples in biomedical
domain it is difficult to derive accurate detection procedures
with usual pattern recognition techniques. Researchers are
trying to reach highest quantitative results with hybrid tech-
niques. In this paper, one such model is introduced, where
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the idea is to incorporate local information for detection, and
segmentation techniques along with a multi-classifier system
for accurate labelling of mitotic cells.

III. MULTI CLASSIFIER SYSTEM
The Multi Classifier System (MCS) is a potential way
to upgrade the performance of various individual classi-
fiers. It integrates different models by ensemble learning
and provides improved predictive accuracy. According to
Kuncheva [30] an effective MCS system is governed by the
architecture, the fusion technique employed to combine the
individual classifiers and accurate selection of diverse clas-
sifiers. The combination function should reflect the power
of the individual classifiers, side step their limitations, and
improve classification accuracy.

The architecture includes serial topology in which clas-
sifiers are applied in sequence and parallel topology, which
involves parallel operation of multiple classifiers. However,
research is focused on parallel architecture since MCS based
on serial architecture is very specific to the particular applica-
tion. In parallel architecture, a combination function merges
the output of the individual classifiers. There are mainly
two approaches for combining different individual classifiers:
fixed rule and trained rule fusion [31]. The fixed rule strategy
includes the product rule, sum rule, min rule, max rule,
median rule, and majority voting. The trained rule strategy
signifies the fusion as a classification problem and takes the
outcomes of the individual classifiers as features to the fusion
technique.

Let F = {F1,F2, . . . ,FN } be a set of classifiers and
L = {1, 2, . . . , `} be the label set of L classes as given in [10].
For a given feature vector d ∈ Rn, the outcome of the ith

classifier is represented as

Fi(d) = [oi1(d)oi2(d) · · · ·oij(d) · · · oi`(d)]T (1)

where oij(d) is the grade provided by the classifier Fi to
the hypothesis that d comes from the class j. The classifier
outcomes are arranged in a matrix as follows

o11(d) . o1j(d) . o1`(d)
. . . . .

oi1(d) . oij(d) . oi`(d)
. . . . .

oN1(d) . oNj(d) . oN`(d)


Matrix row represents classifier outcome Fi(d) and col-
umn represents class j from classifiers F1,F2, . . . ,FN .
The combined output CO of the N base classifiers is
obtained as

CO(d) = S(F1(d),F2(d), . . . ,FN (d)) (2)

where S is the fusion rule. Among the fixed fusion
technique majority voting is the easiest rule to design and
implement.

1) MAJORITY VOTING (MV)
As per majority voting the classifier outcome is given by
eqn.(3).

oij=

{
1, oij=(oij)max ∀j ∈ {1, 2, . . . , d}
0, otherwise

(3)

To generate the final outcome, the grade chosen by more
than half of the classifiers are selected. MV requires no prior
training but is never optimal. Hence, to optimize the fusion
process trained fusion strategy is utilized.

FIGURE 2. Schematic representation of trained fusion technique.

2) TRAINED FUSION TECHNIQUE
In trained fusion technique, the fusion itself is regarded as
a classification problem. The outputs of various classifiers
are computed in vector form and given as input to the
fusion technique. In Fig.2, consider W = {w1,w2, . . . ,wN }
as the weights given to each classifier model in F =

{F1,F2, . . . ,FN }, and {o1, o2, . . . , oN } as their predictions.
In order to build a powerful combination function, theweights
given to theN classifiermodels have to be adjusted. Objective
function is formulated as

Maximize(
N∏
i=1

[(oi)`i ∗ (1–oi)1–`i ]) (4)

subject to the constraints

w1 + w2 + . . .+ wN = 1 (5)

O = w1 ∗ o1 + w2 ∗ o2 . . .+ wN ∗ oN (6)

where ` is the label for the observations. This paper proposes
a fusion technique, which further decides the right combina-
tion of classifier weights using Deep Belief Network (DBN)
based deep architecture.

A. DEEP BELIEF NETWORKS
DBN is a learning model constructed by stacking more
than one Restricted Boltzmann machines (RBMs) [33]. The
greedy training approach is used to train the DBN, by training
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each of the RBMs, one layer at a time. Normally, back
propagation is utilized to train neural networks with randomly
initialized weights. During the training process all weights
are updated from output layer to the input layer. The qual-
ity of weight updation is reduced by the vanishing gradi-
ent [34] problem. Hence, in order to initialize the weights,
unsupervised pre-training is carried out by using Restricted
Boltzmann machine (RBM) as discussed in the following
subsection.

1) RESTRICTED BOLTZMANN MACHINE
RBM contains only two identifiable layers, one visible layer
and one hidden layer. No connection exists between nodes on
the same layer that enables simultaneous updates of hidden
and visible units. The visible and hidden units together has
an energy function E as given in [32].

E(A,B) = −
∑
i

aiAi −
∑
j

bjBj −
∑
i

∑
j

AiBjWij (7)

where Ai and Bj represents binary state of visible unit i and
hidden unit j, respectively. Wij is the weight between units i
and j. Similarly, ai is the ith bias attached with visible layer
and bj is the jth bias attached with hidden layer. This energy
is related to their probabilities as per eq. (8)

ρ(A,B) α e−E(A,B) (8)

For p visible units and q hidden units,

ρ(A|B) =
p∏
i=1

ρ(A|B) (9)

Similarly,

ρ(B|A) =
q∏
j=1

ρ(B|A) (10)

Individual activation probabilities for hidden layer units can
be expressed as

ρ(Bj = 1|A) = σ (bj +6
p
i=1wijAi) (11)

Similarly, for visible layer units

ρ(Aj = 1|B) = σ (ai +6
q
j=1wijBj) (12)

As first step of the algorithm, input is mapped to the
visible layer of the first RBM. Then the RBM is trained using
contrastive divergence method [33] as shown in Algorithm 1.
After training, the weight matrixW is fixed for all the connec-
tions of first RBM. The second stack of RBM is attached over
the previous stack by adding a new hidden layer. Then a new
RBMmachine is formed with hidden layer of previous RBM
as input layer and repeats the same process of learning. After
that a fine tuning process is applied to tune all the weights in
the connection. The parameters γ = 0.1 and α = 0.0001 are
set by empirical estimation.

Algorithm 1 Training of RBM by Contrastive Divergence
Method
1: procedure :RBM Training
2: Step 1. Set the state of the visible units with first

sample of training data
3: Step 2. Update all the hidden units in parallel by

eq.11
4: Step 3. Reconstruct the visible units by using eq.12
5: Step 4. Update weights using the following equation

w(n)
ij =w

(o)
ij +γ ∗ (positiveE(i, j)−negativeE(i, j))

6: /∗positiveE(i, j)=ρ(Bj = 1|A) ∗/
7: /∗negativeE(i, j)=ρ(Ai = 1|B) ∗/
8: / ∗ γ is the learning rate ∗/
9: Step 5. Repeat steps 2 to 4 until required threshold

accuracy α is reached for all weights.

w(n)
ij − w

(o)
ij ≤ α

10: Step 6. Repeat steps 1 to 5 with all samples from the
training data.

11: end procedure

IV. METHODOLOGY
The proposed method involves mainly two stages such as

• Nuclei segmentation
• MCS based nuclei classification

A. NUCLEI SEGMENTATION
Significant stain variations exist between tissue samples of
the MITOS data set [5] and the clinical data set from RCC,
Thiruvananthapuram. Hence, stain normalization is done as
a pre-processing step before doing segmentation. An image
with ideal stain characteristics is selected as a reference image
for the stain normalization process. The algorithm modifies
the RGB color distribution of the input image to that of
the reference image by an image specific color deconvolu-
tion method [34]. A good contrast exists between the cell
nuclei and other cell structures in the R component of the
stain normalized image. Hence, it is selected for further pro-
cessing after color space decomposition. Adaptive Wiener
filtering [35] enhances the nuclei with feeble edges in the
R component. Algorithm 2 presents major steps in the pre-
processing stage. Precise segmentation may not achieve with
the shattered nuclear membrane. Hence, Localized Active
Contour Model (LACM) carries out segmentation of individ-
ual nuclei. Since the nuclear membrane starts to disappear in
early stages of mitosis, nuclei and background regions diffuse
each other, which makes it difficult to find a valid threshold
for the detection of cell nuclei.

The KHA based optimal thresholding provides a mask
image, which specifies the centroids of the nuclei regions.
Three threshold levels such as T1, T2 and T3 are selected
to discriminate nuclei from cytoplasm, background stroma
and vacuoles. The binary image, IB is obtained by quantis-
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Algorithm 2 Pre-Processing
1: procedure Stain Normalization [34]
2: G = exp(−SĜ) /∗ where G is the RGB color space, Ĝ is

the new color space and S is the stain matrix (absorption
factors related with each stain used on the tissue). ∗/

3: Ĝ(i) = S−1∅(i) /∗ the intensity of a pixel i in the new
color space Ĝ and ∅(i) is the optical density ∗/

4: ∅(i) = −log10(G(i))
5: (IR, IG, IB)← IRGB // color component selection
6: IW←IR //Wiener filtering
7: end procedure

ing the lower threshold values into one and others to zero.
Algorithm 3, given in appendix illustrates the key steps
involved in the multi thresholding process based on Kapur’s
entropy criteria [36] by mimicking motion characteristics of
the krill individuals. The bi-level image IB serve as a mask
which provides an initial contour to segment nuclei with
their exact boundaries by Localised ACM segmentation. The
LACM computes local energy along the nuclei neighborhood
with a specific radius r . Final segmentation is obtained by
fixing the optimal energy points around the nuclear region.
A detailed description of the LACM is given in appendix.

B. NUCLEI CLASSIFICATION
Classification phase mainly involves three stages such as
• Feature computation
• Feature selection
• Decision fusion of individual classifiers using multi
classifier frame work

FIGURE 3. (a) Input Image, (b) Zoomed version of a selected patch of
segmented nuclei region, (c) Nucleus patch.

1) FEATURE COMPUTATION
The different stages of mitosis exhibit significant variation
in texture, size and shapes. Fig. 3(a) shows the example
of an input image and Fig. 3(b) displays zoomed version
of a selected LACM segmented region. Useful features that
relate the size, shape and internal complexity of the cells
are extracted from the segmented nucleus patch shown in
Fig. 3(c). The intensity-based features include Median (M),
Variance (V), Kurtosis (K) and Skewness (S). The features

such as Area (A), Perimeter (P) and Solidity (SL) are the
shape-based features considered alongwith fourteenHaralick
texture features [37]. The algorithm computes texture fea-
tures from the Gray Level Co-occurrence Matrix (GLCM)
which describe how often pairs of a pixel with specific
values occur in an image. However, the GLCM matrices
can be estimated by taking any direction. Since adjacency
occur in horizontal (0◦), vertical (90◦), along 45◦ & 135◦,
the texture features are computed typically along the four
directions. By taking the average in all the four direc-
tions, fourteen texture features are computed that include
Angular Second Moment (ASM), Contrast (C), Corre-
lation (CR), Sum of Squares (SoS), Inverse Difference
Moment (IDM), Sum Average (SA), Sum Variance (SV),
Sum Entropy (SE), Entropy (E), Difference Variance (DV),
Difference Entropy (DV), Information Measure of Correla-
tion (IMoC) and Cluster Tendency (CT). For many nuclei,
the CT takes considerable time for computation and the mean
of SV equals zero. Hence, these two features are excluded
in later stages of analysis. The final feature vector contains
31 features which include mean and range of the 12 texture
features and 7 statistical features. With all computed features,
classifier outcomes were very poor. Hence, a classifier subset
evaluator finds best possible subsets among all the features.

TABLE 1. Selected subset of features extracted from the nuclei regions.

2) FEATURE SELECTION
The classifier subset evaluator selects a small subset of fea-
tures that give best discriminant information. In this tech-
nique, a greedy hill-climbing search [38] is performed in the
feature space for possible feature subset. Each new subset is
used to train a Random Forest (RF) classifier model, which
is tested on a holdout set. For each subset, the algorithm
computes a score based on the miscalculations made when
tested on the holdout set. Finally, the algorithm stops when
all the features are evaluated or when it achieves a certain
limit of random forest runs. The subset of features with the
highest score is selected as the best feature subset. Here the
selected subset includes 20 features as shown in Table 1. The
differences in the dynamic range of computed features are
solved by normalizing the feature values within a uniform
range. The normalized value D′ is given by eq. (13)

D′ =
D− Dmin

Dmax − Dmin
(13)

whereD is the actual feature value,Dmin andDmax represents
minimum and maximum feature values, respectively. Fig.4
shows a box plot of the normalized feature set displaying
the distribution of features for a set of 100 non-mitotic and
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FIGURE 4. Box Plot of the normalized feature set for non mitotic (blue) and mitotic nuclei (green).

mitotic nuclei. To show the discriminant nature of nuclei
features, first 10 features are considered in the box plot.

3) DECISION FUSION USING MCS
The Decision fusion consists of two stages. First, perform
classification with four traditional classifiers and two ensem-
ble classifiers separately. The traditional classifiers such as
Neural Network (NN) [39], Decision Trees (DT) [40], Linear
Discriminant (LD) [41] classifier, Nonlinear Support Vector
Machine (NLSVM) [42] and ensemble classifiers like Robust
Boost (RB) [43] and Random Forest (RF) [44] are used to
train nuclei features. The learned models predict the probable
class of detected nuclei in the test set. Several classifiers
give equal sensitivity but variable precision values. In such
cases, the proposed MCS combines the individual responses
and train a second-stage classifier, which provides improved
detection performance by regularizing the weights of initial
classifiers.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. DATA SET
The proposed technique uses the MITOS dataset [5] and the
clinical data set from Regional Cancer (RCC), Thiruvanan-
thapuram, India, for evaluation. The MITOS dataset includes
high power field (HPF) images of breast tissue scanned at
40X magnification by Aperio (AP) and Hamamatsu (HM)
scanners, with a resolution of 0.23 − 0.24 µm per pixel.
Location of mitotic nuclei are marked by senior patholo-
gists and provided along with the dataset. H & E stained
breast biopsy samples of three specimens from RCC are
also used for clinical evaluation. They are taken through
Leica digital image acquisition system attached with the
microscope. All images in the MITOS data set (MD) are
of 1376 × 1539 × 3 size and that of clinical data (CD) are

of 3264 × 2448 × 3 size. An experienced pathologist
manually assessed mitotic nuclei in clinical images. Out
of 242 HPF images (399 mitosis), 170 images (278 mitosis)
are used for training, remaining 72 HPF images (121 mitosis)
are used for testing. Since mitotic nuclei are less in num-
ber, selective sampling of non-mitotic nuclei and random
up sampling of mitotic nuclei are carried out to reduce the
skewness of data. Training set is prepared with 800 mitosis
and 3075 non-mitosis. Test set consist of 105 mitosis and
1000 non-mitosis from MITOS data set and 16 mitosis
and 268 non-mitosis from the clinical data set, respec-
tively. The experiments are simulated by using Matlab 2016
environment.

B. PERFORMANCE MEASURES
A detected mitosis is counted as correct detection if it is
located within a range of 8 µm from the centroid of a ground
truth mitosis [45]. The well-known validation measures such
as Sensitivity, Precision and F-score as given in eq. (14)–(16)
are used to assess the detection process by comparing with
manual detection done by the pathologists.

Sensitivity =
NTP

NTP + NFN
× 100 (14)

Precision =
NTP

NTP + NFP
× 100 (15)

F − score = 2×
Sensitivity× Precision
Sensitivity+ Precision

× 100 (16)

where NTP represents number of True Positives (TP-correctly
detected Mitosis), NFP number of False Positives
(FP- wrongly detected Mitosis) and NFN number of False
Negatives (FN- missed mitosis). We compare the proposed
method with recently reported approaches in [4] and [25].
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TABLE 2. Performance of NLSVM and RF classifier.

FIGURE 5. (a1), (a2) Sample images from Mitos data set and RCC data set
with stain variation, (b1) & (b2) Reference image, (c1) & (c2) Stain
normalized images.

FIGURE 6. Visual results of Segmentation. (a) Original image, (b) Labelled
nuclei by LACM segmentation, (c) & (d) Samples of the segmented nuclear
boundary (shown in Green contour) compared to manually labelled
nuclear boundary (Blue contour).

C. SEGMENTATION
The stain normalization improves the contrast between cell
nuclei and other cell structures. Fig. 5 displays sample images
with stain variation from original data set and corresponding
normalized images along with the reference image. Three
threshold levels such as T1, T2 and T3 provided by KHA
based optimal detection discriminates cell nuclei from other
cell structures. This image act as a mask for initial curve
placement in the LACM segmentation. Fig. 6. (a) & (b)
shows example of an original image and corresponding

FIGURE 7. Comparative results by the proposed MCS and the classifier RF.

labelled nuclei by the LACM technique. In Fig. 6. (c) & (d)
green contour denotes the segmented region boundary
realized by the proposed technique, which is very close
to the manually labelled one as shown in doted blue
contour. The technique reported a segmentation accuracy
of 93.79% with a Maximum Absolute Distance (MAD)
of 1.05 [46].

D. CLASSIFICATION
The proposed framework results in 100% accuracy in 5-fold
cross validation using the training sets. The trained classifiers
detect new unknown instances of mitotic and non-mitotic
classes from the evaluation set. With all computed features,
nonlinear SVM and Random Forest classifiers perform better
in terms of less number of False Positives (FP), but with less
number of True Positives (TP) as well. When selected subset
of features has used all classifiers offer better TP values
and result in a high value of F–score. The nonlinear SVM
uses the quadratic kernel and Sequential Minimal Optimiza-
tion (SMO) algorithm to map the training data into higher
dimensional kernel space. The RF classifier generates a group
of 500 trees that inspect

√
s random features, (s - the number

of features) for training. Table 2 presents classification per-
formance of nonlinear SVM and RF classifier with all the
computed features and selected subset of features. Table 3
shows the performance of all other selected classifiers on
MITOS dataset.

At first, majority voting takes all individual classifier out-
comes together but results in poor detection performance.
When classifiers such as RF, DT, NLSVM and LD clas-
sifiers are combined, results are close to the best classi-
fier, RF. The same combination is selected for DBN based
MCS (DBN-MCS) which outperformed the voting rule in all
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FIGURE 8. Visual results. (a1), (a2) Original image from clinical and MITOSIS data set, (b1), (b2) Initial
contour provided by KHA, (c1), (c2) Classification results (nuclei shown in Red circles: TP, Yellow circles:
FP, Blue circles: FN).

TABLE 3. Performance by individual classifiers.

trials. Fig. 7 shows comparison of the proposed MCS based
classification as well as majority voting based classification
on MITOS data set. The DBN architecture uses the learn-
ing rate as 0.2 and number of hidden layers as five. When
DBN-MCS is used, there is a substantial improvement in sen-
sitivity compared to precision, which is preferred in biomed-
ical applications. In Fig.8, (a1) and (a2) shows the original
images from clinical data and MITOS data set, respectively.
Fig.8 (b1), (b2) displays the mask image given by the KHA
based multi-thresholding and c1, c2 show rightly detected
mitotic nuclei (TP) in red circles. One nucleus in the blue cir-
cle shows the missed mitotic nuclei (FN) and nuclei shown in
yellow circles represents false mitosis (FP). The missed mito-
sis looks small and is very similar to lymphocytes. Table. 4
shows enhanced sensitivity and precision obtained with clin-
ical images by the proposed DBN based MCS. Since Mitotic
nuclei are very less compared to normal nuclei in clinical
images, there is skewness in the test data. MV based MCS
also shows increased performance in clinical data. Hence,
MCS is a superior technique for improving the performance
of individual classifiers.

Fig. 9 shows comparison of the proposed technique with
two recently reported techniques in the literature. The sensi-
tivity rate is low for the two techniques considered. All the

TABLE 4. Performance of the proposed MCS and the classifier RF on the
clinical dataset.

FIGURE 9. Comparison of F-scores with [4] and [25].

experiments in this work provide better results compared to
the detection results reported by Chen et al. [4], and Paul and
Mukherjee [25] who have implemented their algorithm using
the same MITOS data set. Use of LACM based optimal seg-
mentation provides accurate labelling of nuclei regions and
results in substantial improvement of all the classifiers used in
the algorithm. Moreover, careful computation of the Haralick
features and selection of feature subset also contribute to the
detection performance. Finally, the combination of different
classifiers by DBN MCS further enhances the sensitivity of
the algorithm, which can assists the pathologist in biopsy
analysis.
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VI. CONCLUSION
The paper proposes an effective and accurate framework to
carry out segmentation and classification of mitotic nuclei
in breast histopathology images. Since mitosis are generally
rare and seen well separated, they are very hard to discrim-
inate from non-mitotic nuclei. The proposed technique first
utilizes stain normalization process to reduce the complex-
ity in segmenting exact nuclei boundary in large clinical
images. The difficulty in segmenting exact nuclei boundary
is treated in an optimal way by the KHA based LACM.
A multi classifier based on deep belief network is utilized to
detect mitotic candidates from the contour segmented nuclei
regions. Sequential feature selection and feature normaliza-
tion also aid in enhancing the individual classifier outcomes.
The DBN-MCS significantly improves the sensitivity score
compared to majority voting based MCS, by optimizing the
weights of individual classifiers during the training period.
The proposed technique is evaluated on a publicly available
standard dataset and also on a clinical data set obtained
from a premier cancer research institute, Regional Cancer
Centre (RCC), Thiruvananthapuram, India. Senior patholo-
gists verified the results obtained by the proposed technique
on both data sets. Compared to the existing techniques, the
proposed framework results in better performance with high
sensitivity make it more realistic in clinical applications.
Future analyses aim to improve the precision of the detection
process by including more discriminant features extracted by
deep architectures and subsequent classification with GPU
optimization.

APPENDIX A
LOCALISED ACTIVE CONTOUR MODEL
For a curve c, the level set function, µ, satisfies the following
conditions as given in [47]
µ(x, y) > 0, if (x,y) is inside the curve c
µ(x, y) < 0, if (x,y) is outside the curve c
where x and y are spatial variables representing a single

point in the image. The zero level of µ(x, y) is taken as the
contour as given in eq. (17)

c = {(x, y) | µ(x, y) = 0} (17)

A characteristic function, B(x, y), is used to identify local
regions in terms of a radius parameter r .

B(x, y) =

{
1, ‖x − y‖ <= r
0, otherwise

(18)

Based on the localization radius r , a window N of size 2r
X 2r is selected for each pixel in the initial contour. LACM
computes local energy as local interior and local exterior
energy along the nuclei neighborhood. The energy functional
ε(c) for the curve c, can be written as

ε(c) =
∫
N(x,y)Eext (c)+ λΨ (19)

∇ε(c) =
∫
N(x,y)∇Eext (c)+ λΨ (20)

where Ψ is curvature of the closed curve c and λ is a
positive fixed parameter which determines the smoothness of
the contour. Local energies are computed by splitting the local
neighborhoods N(x,y) into local interior and local exterior by
the evolving contour as given in [48].

ε(c) = −1/2[(Iint − Iext )2]+ τΨ (21)

where, Iint and Iext are average intensity value inside and
outside the object region. If A1 and A2 are areas of the regions
inside and outside c, respectively, the gradient of external
force ∇Eext is expressed as

∇Eext (c)= (INint−I
N
ext )[

(I (x, y)N−INint )
2

AN1
−

(I (x, y)N−INext )
2

AN2
]

(22)

The optimal energy points around the nulear region in time
t is given by eq. (23)

∂µ

∂t
=| 5µ | ε(c) (23)

APPENDIX B
KHA BASED MULTI THRESHOLDING ALGORITHM

Algorithm 3 KHA Based Multi Thresholding
1: procedure Krill Heard Algorithm
2: KHA based multi thresholding
3: Step 1. Parameter Initialization.
4: Initialize the number of threshold values equal to the

number of Krill individuals.
5: Initialize KHA motion parameters & lower and upper

boundaries of the threshold.
6: Maximum number of iterations.
7: Step 2. Position Calculation.
8: Position of the krill individuals were set by the threshold

values between 0 & 255.
9: Step 3. Objective Function Evaluation
10: Fitness of current position is calculated using Kapur’s

objective function as in [36]

f ([k1, k2, . . . kn]) = H0 + H1 + ....+ Hn

where, [k1, k2, . . . , kn] are the optimal thresholds and
H0 − Hn are corresponding entropy values.

11: Step 4. Update threshold values using position of the
Krill individuals through the interval [t, t+1t] [9]

Xi(t+1t)=Xi(t)+1t
dXi
dt
,

dX
dt
=Nk+Fk+Dk

where, Nk is the motion induced by the presence of other
individuals, Fk - Foraging activity and Dk - Random
diffusion.

12: Step 5. If maximum iterations reached, select the best
thresholds and generate binary mask image IB.

13: Otherwise, repeat the process from Step 3.
14: end procedure
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