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Pain research traverses many disciplines and methodologies. Yet, despite our

understanding and field-wide acceptance of the multifactorial essence of pain as a

sensory perception, emotional experience, and biopsychosocial condition, pain scientists

and practitioners often remain siloed within their domain expertise and associated

techniques. The context in which the field finds itself today—with increasing reliance

on digital technologies, an on-going pandemic, and continued disparities in pain

care—requires new collaborations and different approaches to measuring pain. Here, we

review the state-of-the-art in human pain research, summarizing emerging practices and

cutting-edge techniques across multiple methods and technologies. For each, we outline

foreseeable technosocial considerations, reflecting on implications for standards of care,

pain management, research, and societal impact. Through overviewing alternative data

sources and varied ways of measuring pain and by reflecting on the concerns, limitations,

and challenges facing the field, we hope to create critical dialogues, inspire more

collaborations, and foster new ideas for future pain research methods.

Keywords: pain, ecological momentary assessment, language, visual reports, Internet of Things, neuroimaging,

machine learning, multidisciplinary

INTRODUCTION

In 2020, the International Association for the Study of Pain (IASP) updated its over 40-year-old
definition of pain, officially conceptualizing it as “an unpleasant sensory and emotional experience
associated with, or resembling that associated with, actual or potential tissue damage.”1 Along
with this definition, six key elements were added to further contextualize the experience of pain,
including: the simultaneous influence of biology, psychology, and society on pain perception, pain’s
differentiation from nociception, pain’s learned elements, pain’s ability to be both adaptive and
maladaptive, that subjective pain reports should always be respected, and that there are multiple
ways to show or be in pain. While terminology updates may not seem monumental, these changes

1International Association for the Study of Pain (IASP).Definition of pain. In: Terminology (2020). Available online at: https://
www.iasp-pain.org/resources/terminology/.
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were seen by many as crucial in moving pain research forward,
representing a field-wide consensus of just how multifactorial,
bidirectional, and personal the experience of pain is, something
that had been debated, contested, or ignored for years (1–4).

Yet despite this acceptance and a growing commitment to
studying and treating pain more holistically, the pain field is
still relatively fractured, with scientists and clinicians largely
remaining within and relying on their domain expertise and
utilizing practices and techniques which don’t always reflect
the multidimensional or nuanced nature of pain. This dearth
of collaboration and the continuation of disciplinary siloes
is detrimental and ultimately unsustainable in the context in
which the field finds itself today. Perhaps foremost in mind is
the ongoing COVID-19 pandemic, which not only subjected
millions of pain patients to postponed procedures, reduced
access to medications, and exacerbated pain levels (5–9) but
also further laid bare the rampant systemic inequity within
many healthcare systems, effects which were compounded by
discrimination within pain management more specifically2 (10,
11). Simultaneously, the speed of translating methods and data
into digital formats is increasing not only the amount of data
gathered but also the diversity of data streams collected—there
is a need to be able to makes sense of all this information
quickly to share insights and scale associated innovations in pain
management. In turn, machine learning and other data science
methods are increasingly being relied upon both in basic research
and clinical settings. Together, the rising adoption of digital
infrastructures, an increasing reliance on machine learning and
big data, and an existing backdrop of the global pandemic and
ongoing pain care disparities all necessitate a fundamental change
in the ways we conceptualize, measure, monitor, analyze, and
manage pain, as well as how and where we collaborate across
research and care efforts.

It is with this in mind that we write this review. As
researchers in the field of pain neuroscience and responsible
technology, we ask—what does it mean to conduct pain research
conscientiously and to create accountable pain science and pain-
related technology that produces impacts which are minimally
harmful to society’s most vulnerable and mutually beneficial to
the multiple constituents involved. We hold the responsibility to
not only educate our fellow researchers and clinical colleagues
on the technical advancements in existing and emerging pain
methods, but also on their limitations and potential negative
consequences. In this way, the paper is as much a call-to-action
as it is an overview of pain research. We first summarize the
state-of-the-art across emerging or strengthening areas of pain
methods. Within each area, we describe the different data signals
and sources that attempt to measure various aspects of the pain
experience (biological, psychological, social) at different times, in
different places, and for different applications. Next, we touch on
protocol, technical, and human-centered considerations for each
area, highlighting the critical assumptions or foreseeable ethical,

2O’Donnell J, Alltucker K. Medical Bias: From Pain Pills to COVID-19, Racial

Discrimination in Health Care Festers. USA Today (2020). Available online at:
https://www.usatoday.com/story/news/health/2020/06/14/festering-racial-bias-
health-care-factor-covid-19-disparities/5320187002/.

legal, or social issues (12) surrounding the methodological
advancements or associated technologies. We conclude by
reflecting on the possible implications of these techniques given
their overlapping strengths and weaknesses, and identify places
where multi-, cross-, inter-, or anti-disciplinary approaches
and collaborations could provide novel solutions, generate new
research findings, and/or create new standards of care or practice.

STATE-OF-THE-ART IN PAIN METHODS

The following represent state-of-the-art (SOTA)methods that are
either emerging in pain research or are producing new findings
and foundational discoveries in the pain field. Importantly,
we aim to include methods that together encompass the
multidimensional nature of pain, from the biological and
physiological aspects (neuroimaging and physiological sensors)
to the psychological and cognitive aspects (self-report and
language) all the way to the social and ecological aspects (visual
reports and environmental sensors), finishing with machine
learning as an overarching method that can analyze the different
data types generated. This review is by no means exhaustive
and does not include critical findings or research in the areas
of sociology, anthropology, or epidemiology, which we consider
greatly important to the pain field but outside the scope of
this paper. Additionally, the methods reviewed were chosen
based on the authors’ previous research experiences, publications,
and subject matter expertise. For a high-level summary and
comparison of some of the key considerations across all methods,
see Table 1.

Reporting Pain—Self-Reports and
Patient-Reported Outcomes
Patient reported outcome measures (PROs, PROMs, or self-
reports) are often considered “the gold standard” for measuring
acute and chronic pain. They include familiar condition-agnostic
questionnaires, such as but not limited to the numeric pain
rating scale (NRS or NPRS) (13), the visual analogue scale
(VAS) (14), the McGill Pain Questionnaire (MPQ) (15), various
versions of facial pain scales (16), the Gracely Pain Scale (17),
and the Brief Pain Inventory (BPI) (18), as well as subsets
of questions from much larger batteries like the National
Institutes of Health Patient Reported Outcome Measurement
Information System [PROMIS] (19). There are also PROs
that focus specifically on designated pain conditions, such as
the Western Ontario and McMaster Universities Osteoarthritis
Index (WOMAC) for arthritis (20) or the Oswestry Disability
Index (ODI) for low back pain (21). There have already
been numerous reviews and comparisons of these scales (22–
26). Rather than repeat these efforts, we focus instead on
methodological considerations for their implementation, such as
where and how they are administered.

Until recently, many PROs have been implemented cross-
sectionally, at clinic or research visits, occurring every few
weeks to months or more infrequently on the order of years.
Their administration has also largely been limited to written
or verbal responses (e.g., completing questions on a physical
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TABLE 1 | Summary of considerations across each reviewed pain methodology.

Considerations Methods and signals

Patient-reported

outcomes

Language proxies Alternative visual

reports

Physiological and

environmental sensors

Neuroimaging

Dimensionality Patient pain expression is more open or

unlimited

Captures short-term pain dynamics

Captures long-term pain dynamics

Captures multiple dimensions beyond

intensity, quality, or location

Data has ecological validity (supports

collection/analysis in multiple

environments)

Data form is intended for pain-specific

uses

More direct access to biological signals

Can more easily account for social

influences

Data Requires active participant engagement

Collection Supports passive data collection

Internet/Connectivity/Smart

Device-dependent

Data collection methods are scalable

Relatively easy to set-up data collection

methods

Requires extensive researcher/clinician

training

Prone to noise introduced from technical

interfaces or environment

Prone to noise due to methodological

and/or user errors

Data Analytics Can be qualitatively analyzed

Can be quantitatively analyzed

Data analysis is scalable

Requires advanced statistical analyses

or complex processing

Existing analytical standards or

benchmarks for reference

Accessibility Flexible, participant-tailored collection

methods possible

May reduce patient burden (time, cost,

or physical reqs)

May reduce researcher burden (time,

costs, analysis reqs)

Utility Method used in clinical settings or

contexts to aid in therapeutic decisions

Method itself can be therapeutic

Color indicates extent to which each consideration applies. Orange—generally true of this methodology; blue—generally not true for this methodology; grey—varies often; and black—not

applicable or unknown. Machine learning as a technique is not listed here as it requires data from the remaining methods and signals. Additionally, the problem of introducing human

bias into data collection and analysis is also not listed here, as it’s a consideration that applies to all methods and varies greatly.

form or answering aloud in front of a staff member); this might
happen once during a visit or several times in succession as
part of provoked pain paradigms, psychophysics experiments, or
quantitative sensory testing (27–29). This infrequent in-person

approach might make sense for specific pain conditions or
highly-controlled research questions but does not easily measure
pain fluctuations (30) or pain perturbation by environmental,
psychological, or socioeconomic factors (31–34). Likewise, many
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existing PROs are unidimensional or only focus on preconceived
features of importance in the pain experience (e.g., pain intensity,
pain location, or pain qualia), even though quality of life
improvements may be higher priorities for many patients
(35). In the instances where sleep, mobility, sociability, mental
health, social support, or sexual health are measured, they
are often collected as separate reports, creating much longer
batteries, a reaction which might increase response burden
or administrative burden (36–39). Finally, the context of
administration can greatly influence self-report reliability—the
environmental setting (in a clinic or research center), social
setting (in front of a clinician or researcher), and temporal
requirements (retrospective summaries or momentary one-offs)
can all introduce a variety of cognitive and recall biases into
pain reports (40). It is well-known that there are discrepancies
between momentary pain assessments and pain memories3

(41, 42) due to heuristic strategies like the peak-end rule
and cognitive phenomena like the recency effect. Additionally,
patients’ incentives, cultural display rules, social desirability, and
confirmation bias can all introduce intentional or unintentional
over- or under-reporting of pain dimensions (43–46).

To improve pain reports, recent methods have focused on
increasing the frequency, diversity, and contextual validity of
measurements via the use of ecological momentary assessments
[EMAs (47)], where PROs are collected semi-continuously from a
patient’s natural environment as part of their day-to-day routines
(48, 49). This kind of sampling can be done relatively easily
due to the nearly ubiquitous use of internet, smart phones,
tablets, and computers, as well as the implementation of apps
and electronic data capture systems that seamlessly integrate
cloud storage, content repositories, security measures, and data
collection methods. Although EMAs have been used for a
number of years within the healthcare space (50, 51), we have
seen a recent uptake in these methods due to their relevance,
utility, and need during the pandemic, especially in the realm of
pain (7, 52, 53). Researchers have now been able to better study
the temporal dynamics of pain (54), as well as find more nuanced
relationships between pain intensity, location, descriptions, and
flares with sleep disruption, psychological symptoms, personality
characteristics, and concomitant activities or medication use (1–
4)4. From a scientific and clinical perspective, care providers and
researchers canmore efficiently track their patients longitudinally
without the need for increased visits (reducing care burden and
study costs), and likewise, patients can participate in studies,
clinical trials, and pain treatments more easily, reducing financial
and time commitments by not traveling to on-site locations at
designated or restrictive times.

While some of the in-clinic recall biases mentioned above are
minimized or avoided using EMAs, biases related to reporting
due to incentives (e.g., qualifying for treatment or passing
eligibility criteria) or social desirability can still inflate or deflate

3Stein NL.Memory for Everyday and Emotional Events (1997). Available online at:
http://site.ebrary.com/id/10806640.
4Some examples in Abstracts from the North American Neuromodulation
Society’s 2021 Virtual Meeting, January 15–16, 2021. Neuromodulation:
technology at the neural interface. (2021) 24:e1–276.

self-reports, and cognitive or psychological elements such as
current mood can still influence how a person rates their
pain in a moment (55). Likewise, prior experience with self-
report measures, patient preferences, and clinical history can all
influence how people complete momentary assessments at home
(40). Moreover, new biases or cognitive phenomena can also be
introduced using this method depending upon implementation–
studies have shown that the simple act of rating pain every day
or receiving feedback about self-reports can change the qualities
of pain time-courses and treatment responses due to increased
awareness, reporting fatigue, habituation, or increased reporting
accuracy [for one example, see (56)].

Protocol and Technical Considerations

Issues of compensation and accessibility are important to
consider with any kind of PRO. At in-person visits, patients are
often compensated for their time filling out these questionnaires
and completing study requirements, as well as ideally reimbursed
for travel. In contrast, there might be assumptions that EMAs
require less work or less time due to decreased travel or
increased convenience. However, at-home methods might be
more intensive, since patients might be expected to rate
more frequently or consistently within a given time frame,
and they could also be perceived as more invasive from a
privacy perspective. At-home PROs also have considerably more
accessibility requirements, and there might be considerable
upfront costs or training to implement an EMA system in a
way that serves as many patients as possible (47). For example,
patients need to have access to a computer or smart device, as
well as internet or a data plan. If any or all of these are not
available, teams must decide whether it is monetarily feasible to
provide participants with a smart phone and data plan at no cost
to them for the study duration. Additional flexibility in terms
of user interface design or content collection may need to be
implemented, particularly for patients who may require bigger
text, read-aloud functions, or different UI interaction methods
(e.g., voice control or buttons instead of sliders to accommodate
hand mobility differences) (57). Adjusting frequency or time of
PRO deployment or reporting to better fit with participants needs
might be necessary to accommodate work and family time (58).

Human-Centered Considerations

It is well-documented that self-reports of pain are influenced
by and change significantly based on participants’ gender, age,
ethnicity, and culture (44, 59, 60). For example, depending on
age, previous experiences with pain, and communication ability,
utilizing scales with numbers andwords alonemay not be the best
way of measuring patients’ pain. In lieu of this, pain drawings—
which show the front and back of the body in its entirety—may
be a better option for PROs as they allow people to visually
indicate where on their body they are experiencing pain. These
include simple painmaps where a person circles areas of the body
or shades certain dermatomes or myotomes (61, 62), as well as
more layered versions that incorporate colors, numbers, or words
to indicate intensity and qualia (1–5). Importantly, body maps
can be used longitudinally (63) to show how pain somatotopy
fluctuates in time, with efforts to digitalize these into EMAs
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of their own (64). Similarly, the use of pictograms to illustrate
pain experiences and sensations has also emerged—these consist
of static images or cartoons that often show a person’s facial
expressions along with body language and additional context
about pain location or source, and they have been helpful in
studying pain in children as well as those with literacy, speech,
or cognitive differences (65–67).

Critical Assumptions

Across nearly all numeric PROs measuring intensity, there
is a discrepancy between the underlying neurophysiological
pain response and the outward reporting of pain. While there
is ample evidence that human perceptions of pain and pain
relief are not linear—e.g., in cases like wind-up, hyperalgesia,
offset analgesia, temporal summation, or sensitization (68–
72)—the large majority of PROs essentially force people to
translate this complex non-linear perception onto a linear scale.
From a technical perspective, this limitation might be partly
addressed via post-hoc statistics or a-priori models using non-
linear functions. However, this may also represent a foundational
disconnect within pain research and methods more generally. At
the very least, it likely points to a need for a re-designed way
to assess even the most fundamental dimensions of pain, like
intensity5.

PROs have been and continue to be a fundamental research
tool in pain methods, as they allow for a relatively easy way
to communicate various aspects of the pain experience across
different time scales and potentially across different contexts. Due
to their prevalence and long history of use in the field, many also
have a rich literature base and existing set of standard practices
and benchmarks [e.g., minimal detectable change (MDC) scores,
international population norms, etc.] that researchers can draw
upon for comparison and analysis. However, as others have
cautioned (73, 74), they should not be placed on amethodological
pedestal as somehow being better or less problematic than other
methods overviewed here. Critically, the reliance on numbers,
pre-selected word anchors, and forced descriptions of qualia or
intensity can change how people report their pain (75) and/or
profoundly limit patients’ ability to share their unique pain stories
and define what pain is like for them (76). To measure pain more
authentically, we need to understand pain using the person’s own
language, relying on patients’ voices and narratives to define and
extract meaningful information about their experiences.

Listening to and Reading Pain—Language
as a Proxy of Personal Pain Experience
Elaine Scarry said, “Physical pain has no voice, but when it
at last finds a voice, it begins to tell a story” (77). In the
last decade, the utilization of written or spoken language as
a signal of underlying physical and mental health, indicator
of neurological or cognitive conditions, or metric to quantify
or categorize neuropsychological states has gained momentum.
Previous studies have shown language’s utility in identifying

5Barron D. The Problem With Pain Scores. Scientific American (2021). Available
online at: https://www.scientificamerican.com/article/the-problem-with-pain-
scores/.

ingested drugs and dosages (78), quantifying depression severity
(79), dissociating and predicting mental illnesses (80–82), and
tracking changes in neurological disease symptoms (83–85).
Given many chronic pain conditions are also neurodegenerative
(86) and linked to changes in cognitive functioning or emotional
processing, researchers are investigating whether quantitative
language features can also measure pain qualities, although
qualitative research investigating pain and language has been
around for some time (77, 87–90). Unlike questionnaires,
collecting patient language about their own experience is far
less limiting, and whereas numeric PROs could be influenced by
various cognitive processes, voice acoustic properties and lower-
level linguistic and syntactic structures are harder to consciously
influence in the same way (91, 92).

Prior work investigating the relationship between speech
characteristics and pain have shown some promising links,
primarily in the domain of acoustics and pain intensity.
Breathiness (93), Mel frequency cepstrum coefficients (MFCCs)
(93, 94), loudness (94), fundamental frequency (95, 96), formants
(95), jitter (95), and speech rate (97) have all been associated
with induced acute, perturbed, simulated, and/or chronic pain
intensity in laboratory settings (98). Additionally, a number
of content-related features from spoken and written language
have also shown potential in assessing pain intensity, emotional
pain severity, pain-related emotions, and changes in perceived
qualia; these features have included personal pronoun usage,
sentiment, verbosity, and psycholinguistic structure of words
(99–106). Other aspects of the pain experience—such as quality
of life metrics, pain interference, and even diagnostic category—
have been evaluated using higher-level linguistic features, such
as metaphor usage (107–109). Quantitative language metrics
like these might be able to serve as an alternative to numeric
ratings or as “proxies” of pain intensity or quality. This might be
useful for both patients and pain practitioners—it could increase
the number and frequency of pain data collection points (since
many people talk throughout the day as part of their normal
interactions) while simultaneously reducing collection burden
(by decreasing the number of pain ratings needed).

Researchers have recently shown language’s utility in
understanding and measuring a variety of dimensions of the
pain experience outside of qualia or intensity. Quantitative
language features from semi-structured interviews have been
used to quantify placebo response in chronic pain patients
(110), and large-scale text-mining of electronic medical records
has been utilized to detect pain disparities in underserved
communities (111). Similarly, social media posts have been
analyzed to longitudinally track patients and identify new pain
phenotypes (112), geospatially monitor and characterize opioid
use (113), conceptualize how pain is socially communicated
(114, 115), track local and federal pain treatment policies (116),
and discover population-level increases in pain conditions and
symptoms (117).

Protocol and Technical Considerations

To capture acoustic properties of language, speech is required.
Speech can be elicited actively—via responses to short narrative
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or monolog free-speech prompts6, dialogue and semi-structured
open-ended interviews (118–121), descriptions of pictures
(122), reading passages (123), or verbal motor tasks like
phonoarticulatory diadochokinesis (124)—or passively, by
randomly sampling voice snippets from the environment
(125, 126). Speech data can be recorded using professional sound
equipment or with simple hand-held recorders, as well as via
built-in microphones in phones and computers. Alternatively,
one can also collect non-spoken language or transcribe collected
speech into text—in these instances, participants might be asked
to write or type their responses. They might also consent to let
investigators use prior or on-going free text in the form of social
media posts or direct messages, data which can also be obtained
via publicly-available datasets, licenses, or crowd-sourcing (127).

The methods chosen and features calculated need to be
designed with the specific application or pain condition in mind,
as many factors will influence their utility and feasibility. For
example, open-ended monolog prompts might be appropriate
for adults with pain but may not be easily understood or fully
answered by children; similarly, for some populations, speech
may be easier or more natural to elicit than typing a response,
which might be better for participants who text often or for
participants whomight find textingmore convenient than talking
during the workday. Likewise, the use of off-the-shelf or personal
recording devices might make sense for larger clinical trials
or at-home assessments to scale data collection and analysis,
but for smaller studies interested in vocal characteristics of
pain, investing in recording equipment and sound-proofing
might result in higher quality acoustic data. Additional study
design choices could also dictate how burdensome methods like
these could be for patients—outside of elicitation methods and
frequency, elements such as randomization without repetition
and varied prompt or picture topics might also need to be
employed to sustain engagement and reduce boredom [for some
examples, see (128)].

There are also many procedural and analytic considerations.
Hand transcription of voice responses and qualitative coding
of language using methods like grounded theory (129) or
interpretative phenomenology analysis (130) might work well
for smaller studies, but these approaches are not always feasible
for larger studies—they may not scale with data collection
or analysis needs, nor are they easily reproducible across
studies or applicable for acoustic designs. If participants are
collecting language using at-home methods, there will likely be
additional sources of noise (e.g., additional voices, background
TV, movement) (131), which affects transcription accuracy
and acoustic feature calculation. These methods will require
participant training to minimize these effects, as well as
various pre-processing software to filter out these interferences
(132–134). In the absence of paid-for transcription services,
researchers can also utilize Automatic-Speech-Recognition

6Boyd Z, Elliot Z, Fruehwald J, Hall-Lew L, Lawrence D. An evaluation of
sociolinguistic elicitation methods. In: The 18th International Conference

of the Phonetic Sciences. Glaskow (2015). Available online at: https://www.
internationalphoneticassociation.org/icphs-proceedings/ICPhS2015/Papers/
ICPHS0800.pdf.

(ASR) to transcribe spoken language into text for easier data
processing (135). However, ASR’s transcription quality is only as
good as its underlying acoustic models and associated training
data (136). Reducing gender and racial biases in ASR and large
language models is an area of on-going investigation7 (137, 138);
instead of relying strictly on population-based language models
for transcription, practitioners can pre-train models on small
samples of transcribed individual speech from reading passages
[e.g., the Rainbow Passage (139)] to improve accuracy and
reduce word error rate (140). In addition to issues of scaling
collection and transcription, researchers will also need to think
about how to scale analyses of such a rich data source. For this,
natural language processing (NLP) (141, 142) is commonly used,
deploying sub-methods like named entity recognition or topic
modeling to classify differences in pain (143–145).

Human-Centered Considerations

The language we use to represent pain changes as a function
of our neuropsychological development, our experiences with
pain, and relatedly with age (146–148)—findings or methods
that hold true to one age group may not be applicable to
another. Similarly, gender identity, associated norms or social
conditioning, and racial or ethnic community practices and
values can also influence if and how people talk about pain (149–
153). Likewise, culture, religious beliefs, and native language also
influence how pain is verbalized, described, and conceptualized
(154–162). All these elements can affect patient engagement with
the method itself, as well as downstream analyses, interpretations
of the data, and validation of any results.

Critical Assumptions

Utilizing patients’ language as the “ground truth” is in line
with the basic premise that pain is inherently subjective and
highlights the necessity of respecting patient’s reports. However,
the utilization of patient language holds normative and even
ableist assumptions about the best forms of communication or
the legitimacy of different communication sources. There may
be some people who prefer not to communicate through talking
or may be limited in their ability to use written or spoken
language due to cognitive differences or neurodivergence more
broadly. There is some research showing existing PROs and
language-based measures fall short for people with Autism or
Asperger’s who may communicate pain differently8 (163). This is
particularly troublesome given this community may experience
more acute and chronic pain than other members of the
neurodivergent community or their neurotypical counterparts.
Additionally, many of the language models used today carry
assumptions about the acoustic tones and rhythms found in
“typical” conversational speech. This could negatively impact
pain patients with speech impediments (164) or those whose
language patterns do not match that of model creators (typically

7OpenAI. Better Language Models and Their Implications (2019). Available online
at: https://openai.com/blog/better-language-models/.
8Eveleth R. Beyond the Smiley-Face Pain Scale. The Atlantic (2015). Available
online at: https://www.theatlantic.com/health/archive/2015/01/beyond-the-
smiley-face-pain-scale/384049/.
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White, English-speaking men) (165, 166)9, and could exclude or
delegitimize the use of lyrics, rhymes, or singing, all of which can
also be used to communicate pain (167).

Thus, although the recent use of language proxies for pain
have been an important development in the field—allowing
for more intuitive, social, and patient-centric measurements of
broader experiences in ways that are relatively flexible and often
scalable—there is still work to be done to make this method
inclusive. Moreover, sometimes language as a signal simply is not
enough, as many authors have already eloquently described; for
example, Virginia Woolf said, “. . . let a sufferer try to describe
a pain in his head to his doctor and language at once runs
dry (168)” and Emily Dickinson said, “Pain has an element of
blank—it cannot recollect when it began or if there were a time
when it was not” (169). In moments when pain is particularly
intense or unrelenting, people in pain might not be able to speak.
Additionally, non-verbal utterances like cries, gasps, or groans
may be produced instead of words, and methods and techniques
which can both capture these vocalizations and dissociate them
from other noises and language features would be useful and
appropriate (170).

Seeing Pain—Use of Visual and Alternative
Pain Reports
As an alternative to quantitative or language-based assessments,
there are also self-reports which try to bypass traditional
forms of reporting (or use words and numbers sparingly as
additional components to the primary report, which is visual in
nature).While face scales, pictograms, and bodymapsmentioned
previously might be considered visual reports to a certain degree
and are important from an accessibility standpoint, they have
pitfalls surrounding representative assumptions as to what base
bodies look like (e.g., average size with two legs and two arms)
with no way to easily account for physical differences due to
weight, genetics, or corporeal disruptions from illness or trauma.
Likewise, facial scales have assumptions of what reference faces
are comprised of (e.g., two eyes, two ears, a nose, and a mouth)
and what base facial expressions look like. They also reiterate
beliefs about the existence of universal expressions or emotions
(171, 172)—an idea that is still debated (173, 174)—as well
hold assumptions that everyone can intuitively understand facial
expressions or easily infer meaning from them, which isn’t true
(175). In this section, we focus on different methods that try to
visually depict aspects of the patient’s pain experience, driven
primarily by their embodied and situated perspective.

Visual arts have long been utilized in community and
healthcare spaces as therapeutic resources, places of resistance
to the biomedical model, and forms of communication and
community building (176, 177). Visual art can takemany forms—
painting, drawing, handwork (e.g., pottery, sculpture, sewing,
or basket weaving), movement, cinematography, photography,
and acting. Many if not all these genres have been explored

9Additional media coverage examples: https://www.brookings.edu/research/
detecting-and-mitigating-bias-in-natural-language-processing/ and https://
www.technologyreview.com/2021/05/20/1025135/ai-large-language-models-
bigscience-project/.

in the context of pain’s physical and psychological forms (178–
180), and there are an increasing number of research studies
and grassroots efforts aimed at utilizing self-created art to depict
and share patient’s subjective pain experience. For example, there
have been methods that ask patients to paint or draw what
their pain looks or feels like as a form of expression (181–183);
there are also online communities of pain patients who collect
and showcase art related to their pain, with the specific goal of
improving communication with care providers10. Others have
used photography and mixed media to capture various aspects
of people’s pain (76, 184), as well as clay work and sculptures
(185) and patient co-created animations (186, 187)11. There is
also evidence of the ability of visual arts to communicate aspects
of pain in theater and performance settings (188), particularly
in the realm of dance and movement. Research in dance-
movement therapy (DMT) is beginning to show that certain
kinds of movement-based exercises can communicate pain in
new and beneficial ways. For example, the DMT exercise called
“mirroring” asks patients to communicate their pain through
movements or postures, during or after which they then visualize
these movements mirrored back to them by another participant
(who might be another pain patient, a therapist, a loved one, or
care provider). Semi-structured open-ended movement displays
like these have been shown to improve empathy toward people in
pain, transfer bodily understanding and awareness to those not
experiencing pain, and potentially cause analgesia12. Similarly,
there has also been an increase in the use of cinema, film, video
recordings, and documentaries to try to communicate multiple
dimensions of pain (and do so multi-modally through stories,
art, and depictions of people in pain and their environments)13.
Early qualitative research has shown that viewing films of pain
or pain performances may impact how care providers think
about or conceptualize their patient’s experience (189). Methods
like these have been able to elicit elements of pain not typically
asked about in the clinic, on questionnaires, or within interviews
such as feeling disconnected from one’s body, a loss of identity,
feeling powerlessness, or fuller senses of suffering14 (189, 190).
They have also been transformed into re-usable and clinically-
impactful tools that patients can use to have more personalized
conversations with their care providers (75, 186).

The use of visual or alternative pain reports like these is
particularly exciting for a couple reasons. First, they challenge the
pain field to consider pain displays that are not only defined by an
individual in pain but also by larger communities experiencing
pain (shifting ideas about self-reports to community-reports).
They also encourage the pain field to consider the use and

10Example: painexhibit.org.
11Example: https://painimation.pitt.edu.
12Hughes V. Using Dance/Movement Therapy and Laban Movement Analysis to
Build a Better Model of Rehabilitation for Chronic Pain; 2018. Available: https://
digitalcommons.slc.edu/cgi/viewcontent.cgi?article=1041&context=dmt_etd.
13Some Examples: Unrest, On a Scale of 1 to 10, Tipping the Pain Scale, and This

Might Hurt.
14Nicholls DA, Groven KS, Kinsella EA, Anjum RL. Mobilizing Knowledge

in Physiotherapy: Critical Reflections on Foundations and Practices (2021).
Available online at: http://search.ebscohost.com/login.aspx?direct=true&scope=
site&db=nlebk&db=nlabk&AN=2628279.
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benefits of participatory methods whereby patients co-design
or even dictate what pain measures and metrics look like, in
some ways challenging the notion of what it means to be a
“pain expert” or pain researcher (191). Second, they open the
door to novel pain measurement tools that could be back-
translated into clinical use via converting traditional or language-
based PROs into something visual. For example, clay has been
used to sculpt expressions of emotions or re-communicate body
language (192)—what would this look like in the context of
PROs that use faces or body maps as primary pain measures?
Could patients use clay to show how their bodies feel, where
the pain is located, and/or what the consequences of pain are?
Similarly, using visual ormixedmethods approaches in bodymap
contexts might be able to capture pain elements more intuitively
and include those outside of intensity or location, such as pain
directionality up or down, pain radiation outwards, or pain
fluctuation from a source. What would it look like to visually
record the completing of static pain drawings in real time as a
method to measure the temporal evolution of multiple aspects
of spontaneous or on-going pain? More investigation is surely
warranted in being able to translate, validate, or mix visual and
non-visual reports and methods.

Protocol and Technical Considerations

Because these forms of expressing pain rely on patient-specific
communication and can also be time-intensive to create or
perform, it makes it difficult to scale or re-apply data collection
methods across different populations, cultures, and even across
sample sizes of patients (like in the context of larger clinical
trials). Likewise, the subjective and intensely personal nature
of these methods creates tensions between the need for unique
qualitative data and interpretations on the one hand, and current
scientific, technical, and medical requirements of reproducible
data and quantifiable results on the other. It’s challenging to be
able to validate these methods across new patient cohorts or
new contexts, and even more challenging to form quantifiable
measurements of the data (and do so in ways that don’t reproduce
the pitfalls of other methods or exploit, reduce, or ignore patient
experience). While there are a lot of unknowns in this realm,
we note that this line of inquiry remains essentially limited to
the social sciences and relatively unexplored in the biomedical
pain sciences. It would be worthwhile forming and funding
interdisciplinary research collaborations between quantitative
and qualitative experts, such as but not limited to pain scientists,
clinicians, social scientists, artists, and patients.

Human-Centered Considerations

The visual methods summarized here all try to center the
human-experience of pain as expressed by individuals or even
collective communities. On their own or in certain therapeutic
environments, they can be empowering and disrupting. But
within the context of the current healthcare system complex
and under the biomedical gaze, they can still perpetuate harmful
stereotypes and assumptions, namely that pain is always shown
or eventually can be “known” or made obvious (189). Notably,
this assumption is found across all the methods reviewed here
and is not unique to visual reports, although they illustrate

it well. The reliance on appearance or the presumed outward
expression of pain in some contexts can function as a form of
forced assimilation, as it does not always acknowledge the hidden
aspect of suffering and ignores that many pain patients are forced
or prefer to hide their pain at work or at home, or present as
“normal” in order to function in society [a medical form of
“passing” or “covering” (193, 194)]. Due to the assumption that
significant or severe pain will eventually be “seen,” there are often
incongruences between verbal reports, elicited behavior, and
felt internal reality which might cause biased pain assessments
or withheld pain treatments. As a community, pain patients
already must deal with numerous stigmas surrounding hidden
disabilities, perceived burden and guilt, labor and productivity
norms, and assumed malingering (195–200). Care should be
taken to reduce, minimize, or prevent (if possible) additional
stigmatization through the method used or data collected.

Critical Assumptions

Alternative visual reports have played an important role in the
pain field, as they have not only allowed for fuller expressions
of the pain experience but also largely challenged the traditional
status quo of “acceptable ways” to communicate pain. However,
there are numerous instances where pain cannot be verbalized,
displayed easily, or even “known” at all due to injury, disease,
age, neurological difference, or cognitive impairment (e.g., in
advanced stages of dementia, in minimally conscious individuals
or comatose patients, or in those with severe communication
difficulties from ALS or locked-in syndrome). There exist
clinician-reported outcomes of pain (CROs) (201, 202) as well as
third-person reported outcomes (203–205), which ask care team
members, providers, and loved ones to rate their perceptions
of the patient’s pain. However, these are fundamentally limited
since there might be no way for a patient to concur with
the pain assessment, advocate for themselves, or rebut care
decisions. Additional measures which don’t rely on self-reports,
self-displays, or others’ reports of pain may also be useful and
clinically relevant.

Sensing Pain—Measuring Pain Through
Physiological and Environmental Sensors
The multidimensional nature of pain lends itself to being studied
multimodally using various body, environmental, and ambient
sensors (206). These are often part of a much larger system
of wireless and connected devices that collect, transfer, store,
and analyze data over a network (commonly referred to as the
Internet of Things, IoT). IoT and sensor-based methods can
be used to collect more frequent and fine-grained assessments
within a growing digital health ecosystem (207). As with EMAs,
these tools may reduce some of the reporting or cognitive biases
found in clinical or research settings andmay better contextualize
pain within a person’s natural environment. These methods also
have the potential to reduce patient burden by not requiring
frequent or active reporting, since many sensors can collect data
entirely passively (208). Additionally, the use of sensors might
make participating in clinical research more accessible—instead
of incurring costs (time, energy, and money) to go to a visit, the
clinic or research center is brought to the patient (208).
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There are multiple studies showing physiological and
environmental sensor utility for pain in “smart home”
environments (209–212); importantly, many of these studies pair
cross-sectional PROs, crowd-sourced reports, or longitudinal
EMAs with sensor data (213). Some devices are used to measure
specific aspects of pain sensation, perception, or psychology,
while others are used to capture quality of life. The former
typically fall under the category of body sensors, which capture
physiological or biometric signals from the body. Wrist-worn
devices and epidermal patches are often used to calculate
heart rate variability (HRV), which has been correlated to
acute changes in or sustained alterations to sympathetic and
parasympathetic tone due to primary (214, 215), secondary
(216), and chronic (217, 218) pain, as well as psychological
stress (219).

Quality of life measures tend to utilize environmental or
ambient sensors, although wearables are used as well. These
might include passive infraredmotion andmagnetic door sensors
to monitor movement and label certain “activities of daily
living” (ADLs) based on room entry (e.g., cooking, bathing,
entering/exiting the home, sleeping). Existing smart home
devices like internet-enabled thermostats, humidity detectors,
and light switches can also be integrated into data collection
to better label certain ADL events (210, 220). Additionally,
built-in device accelerometers can be used and integrated to
monitor mobility via actigraphy, step counts, and time spent
in different three-dimensional positions (221–223)15. Other
wearable and environmental sensors are used to quantify activity
levels (224, 225), gait, balance, or movement quality (226–230),
and posture (231, 232), all of which might be applicable for a
pain patient depending on their condition or at-home treatment
or rehabilitation regimens (220, 233).

The use of sleep sensors have also been implemented, since
pain itself and common pain medications like opioids are known
to disrupt sleep patterns (234–236). Sleep sensors can take
many forms (237, 238), including portable polysomnography
sensor systems embedded into head caps, smart apps that
capture movements or noise, infrared cameras that capture
body position, or pressure platforms put under or into
mattresses, pillows, or cushions (239–244). Finally, facial
expression monitoring of pain intensity is also an active area
of inquiry (245–249), part of a growing subarea of IoT and
digital patient monitoring (237, 250) that utilizes multi-camera
systems and video recordings to measure “emitted” facial
expressions in real-time or retrospectively (251–253). These
measures have been primarily based on automatic recognition
of facial action coding system units (FACS) (254) and associated
sentiment (255), although some analyze audio and visual signals
together (256–259).

Nearly all these devices, methods, or signals have been used in
critical, clinically complicated, or end-of-life situations. HRV has
been used as an indicator of nociceptive pain in people who were
minimally conscious or in a vegetative state (260), smart watches

15Rauck R. Predicting pain now and in the future through personalized
physiologic mobility metrics. In: Poster presented at; 2021 Jan 15 North American

Neuromodulation Society, Virtual Meeting (2021).

have been implemented to monitor movement and manage pain
symptoms for patients in palliative care (261), EEG reactivity
signals have been used to infer pain in comatose patients (262)
and people with cognitive impairments (263), and pain facial
expression has been measured in patients with dementia (264),
intellectual or developmental disabilities (265), and infants (266).
Although this review is focused on human pain methods, we also
note that some of these sensor-based methods are also utilized to
measure pain in animals, including automatic facial recognition
(AFR) (267–270).

Protocol and Technical Considerations

When implementing sensor-based measurements, choosing
which devices to use or program is not trivial, as there are
hundreds on the market. Moreover, many direct-to-consumer
devices claim to accomplish similar things or perform similarly
to SOTA devices without openly shared data or validation studies
(271–273). Additionally, many devices come with their own out-
of-the-box or off-the-shelf output metrics that are automatically
computed for the user or consumer; care should be taken as
to whether or not to take these metrics at face value (since
many calculations are “black box” or proprietary and thus cannot
be easily examined for noise, privacy, reliability, or accuracy)16

(274, 275). Likewise, researcher access to raw, unprocessed data
and researcher ability to pre- and post-process these kinds of
large and noisy data streams need to be considered.

There are also many layers of complexity to implement
multiple device collection congruently and privately, particularly
if these methods are deployed outside of a clinical or
research setting. The sensing system itself, the network
connection, data communication and transference, data storage
location and requirements (e.g., de-centralized or centralized),
data management and security, applications, data standard
compliance, and even data analytics (e.g., on the cloud, federated
learning, or locally on approved devices) (207, 276) will all affect
starting implementation and maintenance costs. Similarly, the
reliance on technology for all measurements has some inherent
risks for data collection—data quality, accuracy, detection
rate, and obtainment can all be influenced by environmental,
connectivity, and human factors such as: low light conditions,
occlusion, power outages, wearing and charging compliance,
fitting issues, or devices going out of network or range of upload
hubs. Securing additional secondary methods for collecting data
(e.g., diarymethodology or questionnaires) should be considered,
as well as backup device storage and queued data transfer abilities.

Human-Centered Considerations

Adaptability is an important design element to consider when
deciding on devices and sensors to use. For example, wrist-worn
devices need to have adjustable bands to be able to accommodate

16See two examples: (1) Wetsman N. Data From Health Apps Offers

Opportunities and Obstacles to Researchers. The Verge (2019). Available online
at: https://www.theverge.com/2019/7/3/20681254/data-health-apps-clue-period-
tracking-sleep-fitness-research.
(2)WetsmanN.AppleWatch’s Data ‘Black Box’ Poses Research Problems. The Verge
(2021). Available online at: https://www.theverge.com/2021/7/27/22594178/apple-
watch-data-research-heart-rate-reliability.
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varying wrist sizes, and different materials should be considered
based on skin sensitivities, skin fragility, or skin allergies; the
same is true for patches and wireless EEGs, since adhesive
materials can be abrasive or irritating to skin (277) or may not
adequately capture signals depending on hair type or head fit
(278). Patient living conditions and preferences should also be
considered, since placement of sensors and co-use by cohabitants
also matter (e.g., bed sensors may not be appropriate for people
with partners, children, or pets that co-sleep with them, or for
patients who sleep in non-traditional locations or environments)
(279–282). Importantly, sensor methods might create new forms
of participant burden (283, 284). Setting up devices for proper
data collection and the need to charge devices might contribute
to confusion or additional work for patients (285, 286)—having
systems, methods, or devices which can reduce manual set-
up, automate data uploads, or maximize battery life will aid in
their long-term feasibility and engagement. As discussed with
EMAs, there is also the presumption of access—considerations
regarding interface design, digital literacy, and digital inequity
must all be taken seriously. Time costs associated with patient or
caregiver training, and monetary costs for scaled set-up at home
or within a clinical infrastructure also should be accounted for
up front. As with other methods, consideration of demographic
and comorbid health conditions and abilities is also necessary.
Gender, age, body mass index, baseline health, exercise regimens,
and other factors can influence many of these physiological
signals. For instance, HRV as a signal changes as a function of
age, activity level, and sex (287, 288), and sensors or technologies
themselves can also work differentially depending on patient
variables including skin color (289, 290).

Critical Assumptions

Sensor-based measurements of pain are important resources for
studying and assessing patients’ experiences. Their contribution
to the pain field has largely been their ability to collect
multiple kinds of data through often passive or minimally
burdensome methods, allowing for a much larger breadth of
use and the discovery of correlations with other ecological
events, physiological signals, or patient activities. However, these
measurements also have the potential to perpetuate harmful
suppositions about what pain “is.” For example, many of these
measures likely follow the recent trend of calling pain a “fifth
vital sign”—while pain perception and report should indeed
be considered vital to a person’s health and well-being, the
comparison to a vital sign immediately conjures up mechanisms
akin to strictly biological measures like heart rate and blood
pressure (72). In some ways, a hyper or a singular focus on
these kinds of metrics can work to erase the comprehensive
and multidimensional conceptualization of pain that IASP has
put forth. This framing ignores the intensely social aspect
of pain communication by solely placing the data of interest
as something emitted by the patient, as opposed to also
being witnessed by others. Likewise, there is often an unsaid
assumptions that sensor-based metrics are more objective or less
noisy than self-reported metrics, and some even argue that they
work to reduce the kinds of human biases seen when measuring
pain (291). However, as mentioned, sensors are subject to

numerous points of human and environmental interference that
can introduce sources of noise. Moreover, we also know that
the decisions of which kinds of sensors to use are not neutral
(292) and that the underlying sensor data that accompanying
algorithms are trained on are not representative. This is easily
seen in automatic facial recognition, where pain inference
accuracy remains questionable at best (293–295). Setting aside
the technology and methods for a moment, we already know
that humans aren’t reliably accurate at recognizing the emotional
expressions of others17 (172). This effect is seen not only in day-
to-day life, but also concerningly within clinical settings, where
the facial and bodily expressions of women and people of color
are notoriously under-valued, minimized, or ignored altogether
(296–303). These existing human errors and pervasive prejudices
means that the data sources and the data labels that go into
methods like these are in turn quite biased, as are interpretations
of the results, which has implications not only for downstream
use but also how to even define accuracy in the first place.

There are additional issues related to privacy, surveillance,
and consent that are seen using these methods. While most of
the data generated are biometric in a generic sense (generated
by biology), some data can also be considered biometric in the
legal sense (reasonably identifying of an individual), which raises
important ethical and legal concerns surrounding protecting
privacy, identity, and sensitive health data. This is particularly
relevant for passive data collection methods, where someone
might easily forget or not notice that a device is on and
upload information they may not have intended or wanted
to. In addition to privacy concerns, long-term psychological
consequences of “the quantified self,” informed and flexible
consent (including the right to be forgotten), transparency of
data collection and use, and autonomy in decisions made and
interpretations formed from these data are all critical issues to
think about (304–311).

Imaging Pain—Neuroimaging
Measurements of Pain Sensation and
Perception
Outside of wearable and environmental sensors, neuroimaging
has also been used to study additional physiological and
biological components of pain. There are various technologies
for imaging and measuring brain structure and function as it
relates to pain. Chronic pain research, in particular, has benefitted
tremendously from these tools, strengthening evidence that acute
and chronic pain mechanisms are distinct (312, 313) and shifting
the field’s focus of attention from somatosensory processing and
“the pain matrix” (314) toward brain circuitry related to reward
and decision making (30, 313, 315), emotion (316, 317), and
memory (41). The novel findings and confirmatory evidence
offered in these studies have fostered innovative research, and
substantiated new targets for treating chronic pain with active
pharmaceuticals (318) and placebo (319, 320).

17van Zalk N, Lalitharatne TD, Tan Y, Nanayakkara T. Lack of Universality in Pain

Recognition from Animated Facial Expressions. Open Science Framework (2021).
Available online at: https://osf.io/9ukqy.
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Yet, there is still much to understand about the data created
by these technologies. The physical properties of magnetic
resonance imaging (MRI), for example, are well-known, but
the physiological basis the signals detected is still an active
area of research: cortical thickness (321, 322), synchronous
activity in various brain circuits (323, 324), and white matter
integrity (325) all change with experiences of pain, but the causal
links remain hidden. Likewise, electroencephalography (EEG),
nearly a century old technology, produces data whose source
mechanisms are still not fully known: why does the brain produce
specific oscillatory frequencies, what structures and processes
account for those frequencies, and why do they change with pain?
Of course, answering these questions could create fundamental
shifts in how researchers understand and study pain. But in the
meantime, analyses constantly evolve and adapt to account for
changing knowledge and technological advances. Thus, while
neuroimaging can produce exciting research findings and useful
insights that may one day lead to more effective clinical pain
treatments, there are several practical issues to consider.

Protocol and Technical Considerations

Each imaging modality comes with unique advantages and
limitations. Temporal resolution is highest in modalities that
more directly measure brain electrical activity (like EEG) and
are much better at capturing fast neural events, but because
these measures are most often taken at the surface of the scalp,
detecting signals from pain-relevant deeper brain structures is
challenging (326). On the other hand, fMRI is more suited
to pain-relevant subcortical sites and has considerably greater
spatial resolution, but signal detection is dependent on less-
direct measures of neural activity and are orders of magnitude
slower. Any interpretation about pain/neuronal relationships
using this method must take into account blood oxygenation,
hemodynamics, and other sources of physiological activity mixed
within the signal (327). Electrocorticography (ECoG) has both
high spatial and temporal resolution, as well as direct measures
of neural activity, but it requires highly invasive surgery, and
thus can only be used under special clinical circumstances (328).
Additionally, each modality is susceptible to various sources
of noise like breathing, heartbeat, eye and body movements,
and electrical activity from the surrounding environment. These
confounds may be accounted for using a range of signal
processing methods (329–331), although there is no agreed-upon
field standard.

The limits of these methods to specify and distinguish
physiological and cognitive functions relevant for pain
remain questionable, particularly for MRI. The “pain matrix,”
for example, a highly studied brain circuit which exhibits
coactivation of somatosensory, cingulate, and insular cortices
with painful stimuli, has mostly been disregarded as pain-specific
and is now more commonly recognized as a network which
responds to “salient” stimuli, painful or not (314). Similarly,
putatively more pain-specific and granular sets of brain regions
(332, 333) have shown little to no improvement in distinguishing
pain. A recent study showed that using only small fractions
of these maps resulted in almost no loss in researchers’ ability
to decode perceptual pain states (334). Further, the general

notion that high spatial resolution in fMRI is even capable of
meaningfully explaining cognitive functions is being tested18.
These results further support the need for cross-disciplinary
research, suggesting that pain is too complex to be adequately
understood using current neuroimaging methods. A harsher
take might be that popular neuroimaging methods altogether
cannot meaningfully describe fundamental functional properties
of the brain (335), and that funding may be more appropriately
allocated to methods with greater promise.

Human-Centered Considerations

Pain research necessarily involves some degree of vulnerability,
and this is only compounded when imaging is involved.
In attempts to establish experimental control, clinical pain
studies are often less than inclusive, with exclusion criteria
that may disqualify people with comorbidities, clinical or
drug use histories, or who are subject to various other
social circumstances. Imaging creates even tighter restrictions:
experiments can be lengthy and require multiple visits at special
facilities, which can make it difficult for those who need to
accommodate work or dependent care schedules, and those
without reliable transportation or adequate funds to travel. The
imaging process itself can be physically uncomfortable for people
who cannot stay still or in certain positions for long periods of
time, or those who suffer from anxiety in closed spaces. For MRI
experiments, magnetic material must be removed and/or absent
from the body during scanning, which makes it impossible for
people with certain implants, work histories or medical/cosmetic
procedures, or those who prefer not to remove certain items
from their body, to participate. Likewise, to obtain stronger
EEG signals, researchers may choose to exclude people with
coarse and curly hair in order to get closer contact between the
sensors and the scalp (278). Enforcing all these criteria, of course,
may leave researchers with findings that cannot be generalized
outside of a select, homogeneous, subpopulation with limited
pain experiences.

The clunky setup of many neuroimaging devices may also
prohibit measuring everyday experiences of clinical pain. For
example, research participants may not feel their pain while
seated or laying in certain positions. Pain may be sporadic
and unpredictable, which makes longitudinal tracking or early-
stage detection of disease status difficult. Data collection sessions
may also be too short to capture slow pain dynamics which
can occur over hours, days, or longer. Attempts to evoke
feelings of pain while collecting data may impose an unnatural
pain experience, and reporting pain during data collection may
also affect pain perception (336). For these and other reasons,
current neuroimaging methods are not scalable and further
limits those who may wish to participate in research. Mobile
neurotechnologies may ease some of these restrictions19, but
signal quality from these devices has yet to be fully validated by
the research community.

18Nakai T, Nishimoto S. Preserved representations and decodability of diverse
cognitive functions across the cortex, cerebellum, and subcortex. Neuroscience.
(2021) [doi: 10.1101/2021.12.09.47193910.1101/2021.12.09.471939].
19Example: https://www.kernel.com.
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Neuroimaging experiments can also range widely in financial
cost. While EEG experiments are relatively cheap, the going rate
for a single hour of MRI scanning may be hundreds to thousands
of dollars. This price is compounded by a pervasive fascination
with big data. “Scale thinking,” or the desire to process and own
an ever-growing volume of work, not only frames how industry
tends to think about its problems (337) but also influences the
research community, as evidenced in efforts to conduct larger and
larger neuroimaging datasets like the Human Brain Project20 and
Human Connectome Project21. The discoveries and solutions
yielded from these efforts, however, may not be proportional to
the investment. In a recent simulation, increasing participants
by orders of magnitude resulted in only incremental gains in
predictive performance22. While not disqualifying, results like
this one raise questions about what society should expect from
these technologies, whether certain methods may reap larger
benefits from scientific funding, and at what point these decisions
should be made (and who should be making them).

Critical Assumptions

As mentioned, neuroimaging has been a vital method in the
field of pain research, providing us with a non-invasive way
to interrogate and better understand underlying neurological
patterns in pain perception or chronification. Yet, while the
brain is undoubtedly key to understanding the mechanisms
of pain, neuroimaging researchers should resist promoting
neuroessentialist views that reduce the pain experience to mere
brain or spinal cord signals. Doing so risks diminishing the
importance of measurement from other methods, may misdirect
more practical efforts to diagnose and treat pain (338), and may
proliferate a social dependence on scientific authority (339).

Analyzing Pain—the Role of Machine
Learning in Pain Data and Pain Research
Pain researchers in all the fields and methods presumably
generate data in volumes or complexities that may become
exceedingly difficult to manage. Machine learning (ML) can
ease some of those difficulties, helping researchers to process
data, as well as explain, predict, and understand various aspects
of pain itself. By identifying patterns in data without relying
on explicit programming or rules, machine learning allows
researchers to further investigate those patterns which might not
otherwise surface. Different aspects of data cleaning, clustering,
or modeling can be done with machine learning, and it is
becoming a standard tool across many scientific disciplines.

Most machine learning tasks come in two different forms,
supervised and unsupervised. A “supervised” machine learning
model may be designed to classify pain responses, attempting to
determine a person’s analgesic response likelihood (319) or the
presence or absence of pain (340, 341), or it may be designed
as a regression problem to indicate how a person’s pain rating
will change over time. This pattern-finding process is part of

20Example: https://www.humanbrainproject.eu.
21Example: https://www.humanconnectomeproject.org.
22Schulz M-A, Bzdok D, Haufe S, Haynes J-D, Ritter K. Performance reserves in
brain-imaging-based phenotype prediction. Neuroscience. (2022). [doi: 10.1101/
2022.02.23.48160110.1101/2022.02.23.481601].

“training” a machine learning model, which ultimately shapes
the model’s statistical properties and its resulting output scores.
“Unsupervised” machine learning, on the other hand, identifies
patterns in data without the need for labels. An example of
this might be to find predominant themes in text data from
patient interviews, or for segmenting patient populations into
different groups. Both supervised and unsupervised methods
can be carried out using algorithms with varying degrees of
complexity, each of which may be more appropriate than others
for handling specific data types, dimensions, and quantities.
While other sections of this review specify protocol or technical
considerations for their respective methods, a full accounting of
those considerations is beyond the scope of this section due to
the breadth of algorithms available, and the nuances which may
vary according to the kind of pain data being used. Importantly,
comprehensive coverage of those considerations have been
reported elsewhere (342–344). Instead, in this section we
concentrate on the intersecting human-centered considerations
and critical assumptions within machine learning, particularly
around one binding requirement for all its forms: the need for
a large amount of data. The growing incentive to generate pain
data is a key reason for the growth of machine learning in pain
research, and vice versa.

Human-Centered Considerations and Critical

Assumptions

The healthcare industry generates data in tremendous volumes,
and is projected to be one of the fastest-growing data producers
in the world by 202523. Various types of patient data attract
machine learning researchers to healthcare, but the availability
of clinical images in particular is pushing radiology toward the
forefront of adopting and integrating machine learning into
clinical practice (345–347). One recent study using convolutional
neural networks (a popular kind of machine learning used for
visual object recognition) demonstrated researchers’ ability to
identify non-standard patterns of knee pathology, and predicted
patients’ subjective pain reports 61% better than traditional
measures (110). Additionally, using this non-standard approach,
researchers were able to account for racial disparities in pain
perception at 5x the rate than previously accomplished. This
finding is particularly important considering growing concern
around imbalanced community representation in medical data:
it shows that machine learning can uncover pain-related
pathologies to the benefit of marginalized communities, despite
their historical exclusion in healthcare.

This is a rather uncommon result in machine learning
literature, however, which typically results in an elevated risk for
maintaining or amplifying existing societal disparities due to the
systemic inequities under which data is created, collected, and
used (292, 348). This problem is often framed in terms of bias—
applying bias correction through data preprocessing methods24

(349) or adjusting model parameters through procedural

23Reinsel D, Gantz J, Rydning J. The Digitization of the World From Edge

to Core. IDC (Data Age 2025). Report No.: #US44413318 (2018). Available
online at: https://www.seagate.com/files/www-content/our-story/trends/files/idc-
seagate-dataage-whitepaper.pdf.
24Lum K, Isaac W. To predict and serve? Significance Mag. (2016) 13:14–9.
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fairness25 are then frequently suggested as ways to mitigate
these risks. Bias, however, can affect machine learning at many
stages of development and implementation, and this can be
much harder to address with technical approaches which can’t
account for existing societal inequities and power imbalances
(350, 351). An example of this is shown in a recent study
that corrected a healthcare algorithm which disproportionately
assigned Black patients lower risk scores, despite having worse
health outcomes than White patients with the same score
(352). Here, the old algorithm used a financial variable as a
proxy for health outcome, which differentially corresponded to
communities due to differences in needs, access, and trust in
healthcare institutions (353, 354). A corrected machine learning
model was created through more rigorous evaluation and the
use of a dependent variable which more faithfully represented
patients’ actual health. The result was a reduced disparity of
scores across racialized groups.

Of course, designing a machine learning model like this
requires more knowledge than is available in a database. It
requires a model evaluation process that extends beyond
calculating conventional performance metrics, and an
ability to critically assess the presumed impartiality of data.
This is particularly pertinent in pain research, as pain is
neither an objective measure, nor is it measured or treated
equally across different patient and societal communities
(300). Accordingly, attempts to objectively encode it for the
purpose of scaling research or medical solutions through
machine learning continues to pose a risk of entrenching
societal harms (337)—more data does not guarantee more
meaningful discovery or better predictions. Contextual
knowledge of data is also needed, as is transparency about
the analytics—without either, scientists can end up making
the pain experience worse for patients navigating an already
unfair system26.

This point is perhaps most germane to the open-source
machine learning and data science communities who are known
for a culture of sharing, while at the same time publishing
highly controversial work in areas where data is plentiful, but
subject matter expertise or critique is lacking. The quick surge of
machine learning enthusiasts offering their tech expertise in the
beginning of the COVID-19 pandemic is a prime example: in a
study evaluating 232 COVID-19 predictive models, it was found
that none of them were clinically useful, and almost all of them
were “poorly reported,” had a “high risk of bias,” and reported
performance that was “probably optimistic” (355). This result
may be due to the conventional approach of judging machine
learning model quality around benchmark metrics that often
don’t translate well in real-world practice (356, 357). Machine
learning models built on the online availability of face data, for
example, have spurred studies making claims about the ability
to computationally model one’s trustworthiness (358), sexual

25Barocas S, Hardt M, Narayanan A. Fairness and Machine Learning.
fairmlbook.org (2019). Available online at: http://ww.fairmlbook.org.
26For a recent example, see: https://www.wired.com/story/opioid-drug-addiction-
algorithm-chronic-pain/.

orientation (359), and criminality27, all of which are based on the
debunked pseudoscience of physiognomy (360). Facial emotion
recognition, as well, stands against long-held observations that
emotion and affect are too complex to be captured by facial
expression alone (172). Yet, facial expression data remains a
valuable commodity for businesses offering affect recognition
solutions28, as well as a popular data source for machine
learning studies, including those attempting to measure pain
(293, 361, 362).

However, open-source data sharing, and the communities
that partake, can and do create positive opportunities for the
pain research field (363). As of writing this paper, Kaggle, a
popular data science challenge forum, had 964 notebooks under
the search for “pain”29; GitHub hosts a list of open-source pain
databases30; and OpenPain31 hosts the largest set of brain images
from academic pain studies, available to anyone. The culture
of sharing in machine learning presents relatively low barriers
to those interested in studying pain (given sufficient time and
internet access), opening the field to fresh enthusiasm and unique
perspectives. This benefit can be reciprocal as well—pain research
might also inspire new machine learning algorithms for single-
shot and transfer learning, for example32.

The machine learning field is quickly changing and becoming
a central tool for many scientific disciplines—in fact, multiple
studies cited in other sections of this review have used it in some
form. In some ways, as a tool and as an academic discipline, its
use and study can foster the collaborative research we advocate
for throughout this paper. But pain researchers must not take for
granted that machine learning is a sufficient or superior way to
explain pain mechanisms or predict its occurrence, particularly
in the absence of contextual knowledge of the complex nature
of pain.

DISCUSSION

The methods overviewed here cover a wide range of possible
technologies and processes that exist today in the pain field. As
they move from research settings into applied settings, they have
the potential to help better personalize pain treatment, increase
access to pain care, improve clinical trial accuracy, and influence
or transformmany aspects of the digital health space. However, in
additional to the promising advantages and existing strengths of
these methods, each also has a considerable number of concerns,
limitations, or critical issues which need to be acknowledged
and addressed.

All technologies and methodologies are simultaneously
situated within and productive of multi-layered contexts of

27Fussell S. An Algorithm That ‘Predicts’ Criminality Based on a Face Sparks

a Furor. WIRED (2020). Available online at: https://www.wired.com/story/
algorithm-predicts-criminality-based-face-sparks-furor/.
28Example: https://www.affectiva.com.
29Example: https://www.kaggle.com.
30Example: https://github.com/philippwerner/pain-database-list.
31Example: https://www.openpain.org.
32Mohamed S, Oft D. Pain and machine learning. In: Workshop on Biological and

Artificial Reinforcement Learning (2020). Available online at: https://deepmind.
com/research/publications/2020/Pain-and-Machine-Learning.
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creation and use. The context of creation represents the ideas,
people, processes, and data that are brought into or created
within the design, implementation, and initial analyses of a
given project. In the pain field, this is largely within the
domain of academic, medical, or industry research, and it
includes the physical hardware (e.g., neuroimaging scanners,
sensors, paper forms, smart devices), the software and digital
infrastructure (e.g., algorithms, internet, data capture systems,
apps), raw or preprocessed data forms (e.g., acoustic files,
images, transcriptions, reported outcomes, derived features),
data sources (e.g., pain patients themselves, care givers, crowd-
or-open sourced datasets), and data practitioners (e.g., the
researchers designing the study or collecting and analyzing
the data). In contrast, the context of use is largely situated
within medical practice and the healthcare and wellness industry
complex (e.g., hospitals, pharmaceutical and medical device
companies, biomedical startups, insurance companies), and it
includes clinical practitioners (e.g., pain physicians or other
care providers), end-users and consumers (e.g., pain patients,
pain communities, care givers, clinicians, device representatives),
and the application or purpose itself (e.g., monitoring, treating,
communicating). Importantly, both creation and use intersect
with ongoing and historical social contexts as well.

When reviewing the contexts of creation and use within
pain research, four distinct but inter-related problems
consistently emerge: (1) a lack of representative datasets,
(2) a tendency toward scientific reductionism and essentialism,
(3) harmful assumptions around scientific objectivity and
associated expertise or legitimacy, and (4) the potential
for unchecked application or use of findings. As we have
seen, large language models and sensor datasets are known
to be non-representative; the same is also true for many
neuroimaging datasets (364–367). This has implications for
downstream contexts of use, as it could introduce bias into
models or findings, potentially making future treatment
decisions unfair, exacerbating existing pain care disparities,
or even resulting in harm or death. Another observation
is that all methods are inherently limited in the extent to
which they can adequately capture pain experience—they all
run the risk of oversimplifying the pain experience, whether
elevating one dimension over another or ignoring an aspect
altogether. For example, in both sensor- and neuroimaging-
based methods, we see researchers referring to measures
as “biomarkers” of pain, which tends to reduce pain into a
unimodal phenomenon, one based in or best known through
underlying biology instead of psychosocial factors. Likewise
numeric, language-based, and visual PROs might better capture
more of the cognitive elements of pain or even some of
the social dynamics but may fail to acknowledge important
physiological mechanisms.

We also see a tendency for pain researchers to view pain
as “an object” and patients as sources of data as opposed
to experts. This reproduces unequitable power dynamics and
problematic assumptions about what can be measured, what
should be measured, and whose measurements matter. For
example, brain features, physiological data, or facial recognition
data are commonly referred to as “objective measures of pain”

(368–372)33. This terminology positions the collected measures
of the body as somehow better because they are presumed to
be less subjective or more “neutral” since patient’s self-report is
removed. It is worth spending more time on this presumption
of objectivity due to its pervasiveness across pain methods and
scientific practice. As scientists, we are taught that production
of knowledge is only valid if our findings are “intelligible” or
known, and that almost any unknown can—through rigorous
methods, quantitative metrics, a bit of intellect, and hard work—
eventually be made intelligible (373). We are also taught that
through the scientific method we are somehow magically able to
remove ourselves from the context of our science, echoing the
argument of neutrality in that “good science” is not influenced
by subjective phenomena like values, opinions, experiences, or
emotions. But these ideas are simply that—just ideas. They
represent notions and assumptions that aren’t guaranteed or
necessary truths (292, 372, 374, 375). This line of reasoning and
particular use of language matters for pain research not only
because the notion of objectivity is completely antithetical to the
IASP definition of pain, but also because it can create a false
hierarchy of data value and expertise. The notion of objective
pain metrics may work against patient self-reports by appearing
less noisy, less biased, or even more trustworthy. In turn, this
can result in bias against patients, missed opportunities for
treatment, or potentially dangerous overtreatment if a purported
“objectivemeasure” contradicts a patient’s “subjective statement.”
Perhaps more fundamentally, the intersectionality of pain as a
biological, psychological, social, and cultural reality that can be
simultaneously hidden and seen or embodied and disembodied,
calls into question whether it can even be “measured” in the first
place (360, 374, 376).

This is not, of course, to say that we cannot or should not
study pain but rather that as a field, we need to be critical of
the assumptions of our work, the questions we ask, and the
goals of our research applications. We also need to re-center pain
patients in our processes and see their lived experiences as valid
forms of expertise. Given all this, researchers should keep inmind
that amassing multimodal data alone or through collaboration
(as we suggest below) is not a solution by itself. In the end, a
primary goal in pain research has been to try to impose order
on an experience which has remained difficult to define, in the
hopes of creating more scalable pain diagnoses and treatments.
While diversifying data sources may help represent pain more
realistically or wholistically, attempts to scale subjectivity and
ambiguity or ignore them (i.e., pain prediction models) runs
a risk of disadvantaging data outliers (376) and delegitimizing
the pain of those who do not fit the model. Researchers, in
seeking to use or build large data sets, should also be wary
of “scale thinking,” as data amount or data diversity is not
necessarily proportional to model performance (377), and can be
unintentionally extractive (337).

33Examples in media include: https://www.healthline.com/health-news/mental-
scientists-objectively-measure-pain-for-the-first-time-041213, https://www.apa.
org/monitor/2017/11/measure-pain, and https://www.sciencedaily.com/releases/
2011/09/110913172623.ht.
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Finally, pain research is often done without much thought to
widespread application. However, many of the methods utilized,
datasets and models created, or associated findings might be
relevant to actors outside direct patient care, and this raises
serious ethical questions about the use of pain data, methods,
and tools. For instance, pain researchers might be comfortable
if the data they collected or the predictive models they built
were used to help physicians better triage pain care or reduce
the likelihood of patients being exposed to detrimental medicinal
side effects. However, would they still feel comfortable if the
same dataset was shared with insurance companies to infer
pre-existing chronic pain conditions and potentially prevent
some pain patients from receiving care? Would they let their
algorithms be used in legal cases to determine legitimacy
of workman’s compensation claims? Would they want their
amassed EMA, sensor, and language data being sold to third party
companies whose intentions are unknown?Would they advocate
for application in the absence of robust and repeated validation?
Although these concerns are limited within the academic space
due to Institutional Review Board data sharing requirements,
in industry research spaces where client needs and business
potential might sometimes take precedence over basic research
considerations, concerns around dual- or multi-use technology
or repurposing of data and algorithms are particularly relevant.

So where does this leave us, as researchers, as clinicians, and
as an entire field? On the one hand, there are multiple take-
aways and concrete actions that individual practitioners can do
to improve their research today. For example, researchers can
engage in reflective and reflexive praxis to combat the positivity
bias that is rampant in the pain field, due to the idea that any
research that is intended to minimize pain or suffering must
automatically be beneficial. Additionally, labs can engage in
data practices which combat individual and systemic biases in
healthcare and medical pain research, including but not limited
to: using simulated or randomized data sets to blind researchers
during analyses (378, 379) conducting fairness audits or applying
de-biasing techniques, and aiming to collect data from a diverse
and importantly representative set of patients to account for
differences due to biology as well as socioeconomic indicators
of health. The latter means fundamentally shifting some of the
processes and ideas that go into creating eligibility requirements
or advertising for clinical studies, as well as focusing on and
dedicating resources toward building and fostering trust from
and within patient communities who have been previously
harmed or invalidated by medical research (380). Funding
agencies may also consider allocating additional resources in
grant awards so that recipients are able to adapt to patient needs
in the contexts of accessibility, digital literacy, and digital equity.
Researchers can also be more intentional and careful about
the language used in their grants and publications. Practically,
this might be as simple as being upfront and transparent
about limitations like under-powered samples or degrees of
freedom (381). Critically, this would look like reframing study
designs, labels, and interpretations to confront systemic biases
and stereotypes in pain research [for a concrete example of
anti-racist pain methods, see (382)]. Regarding methodologies
and applications of the findings, researchers and clinicians can

take the time to do thorough informed consent discussions
so that patients and participants understand the kinds of data
being collected, how they are collected, and their intended
use. Practitioners can also combat unintended dual-, multi-, or
repeated-use or media contortion of results or outcomes via
pre-registration (383), as well as by setting and communicating
clear limits for use and advocating for validation, replication, and
testing to combat hype or overselling of findings (381).

On the other hand, this review signifies the urgency to move
beyond individuals, labs, or specific disciplinary or technical
fixes, and advocates for multimodal and multidisciplinary
methods. Because each method discussed contains an
aspect another does not, it paves the way for interesting
and innovative collaborations that combine different strengths
and mitigate different weaknesses Moreover, this review
shows the importance and, we’d argue, necessity for including
pain patients and social scientists in pain research processes
(from design to interpretation and application). There already
exist many examples of multidisciplinary collaborations,
participatory methods, and/or multimodal outcomes that
pain practitioners can look toward for inspiration and re-use,
including painimations (185, 186), photovoice (384), pain cards
(75, 183, 385), cross-culture approaches (386, 387), and more
(388). Of course, this is not to say that collaboration will be easy
or straight forward. It can be challenging to know when and
how to best integrate different collection methods, measurement
requirements, or data types. As with each individual method, the
specific research question and context (e.g., the pain condition
at hand, clinical standards or procedural requirements, resource
allocation, existing expertise, etc.) will all shape decisions around
if and how to combine forces. This is an area of active exploration
and investigation, and to date, there do not exist any guidelines
or best practices for collaboration within, or integration of, pain
research methods.

CONCLUSIONS

In this paper, we aimed to not only summarize the benefits and
limitations of a breadth of existing and emerging pain methods,
but also show their relationships to larger sociotechnical
considerations and provide points of potential intersection in
techniques and measures. It is our hope that this review can
contribute to the larger pain field by functioning both as a mirror
and a north star via the identification of “pain points” and gaps in
our thinking and practice, the outlining of potentially mitigative
actions, and the encouragement of cross- and multi-disciplinary
collaborations amongst knowledge creators and care providers.
As a field, if we care about upholding and advocating for the
definition of pain put forth by IASP, we cannot continue to
operate under the guise of research or clinical practice as usual.
We cannot continue to ignore systemic inequities in pain care,
as these biases end up in our data and circle back to inform
future pain practice via our models and results. This cycle must
stop. We cannot continue to function under the assumption that
some forms of data are more valid than others, that some forms
of research methods are more valuable than others, or that we
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can treat various pain metrics as if they can be easily aggregated,
combined, or compared without considerable forethought and
attention to context. The transformation of the field will likely
involve a balance of qualitative and quantitative practices and
tools, as well as empirical and theoretical modes of inquiry,
and will necessitate a need for multiple ways of thinking about,
communicating, and approaching pain that break traditional
disciplinary, skill, and knowledge boundaries. What the future
pain field will look like remains unknown, but ultimately and
critically, it is up to all of us to build it.
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