
Seminal Plasma as a Source of Prostate Cancer Peptide
Biomarker Candidates for Detection of Indolent and
Advanced Disease
Jochen Neuhaus1*., Eric Schiffer2., Philine von Wilcke1, Hartwig W. Bauer3, Hing Leung4, Justyna Siwy2,

Wolfram Ulrici5, Uwe Paasch6, Lars-Christian Horn7, Jens-Uwe Stolzenburg1

1 University of Leipzig, Department of Urology, Leipzig, Germany, 2 Mosaiques Diagnostics GmbH, Hannover, Germany, 3 Ludwig-Maximilians-Universität, Urology

Maximilianstrasse, Munich, Germany, 4 Beatson Institute for Cancer Research, Glasgow, United Kingdom, 5 Medical Practice, Leipzig, Germany, 6 University of Leipzig,

Department of Dermatology, Leipzig, Germany, 7 University of Leipzig, Department of Pathology, Leipzig, Germany

Abstract

Background: Extensive prostate specific antigen screening for prostate cancer generates a high number of unnecessary
biopsies and over-treatment due to insufficient differentiation between indolent and aggressive tumours. We hypothesized
that seminal plasma is a robust source of novel prostate cancer (PCa) biomarkers with the potential to improve primary
diagnosis of and to distinguish advanced from indolent disease.

Methodology/Principal Findings: In an open-label case/control study 125 patients (70 PCa, 21 benign prostate hyperplasia,
25 chronic prostatitis, 9 healthy controls) were enrolled in 3 centres. Biomarker panels a) for PCa diagnosis (comparison of
PCa patients versus benign controls) and b) for advanced disease (comparison of patients with post surgery Gleason score
,7 versus Gleason score .7) were sought. Independent cohorts were used for proteomic biomarker discovery and testing
the performance of the identified biomarker profiles. Seminal plasma was profiled using capillary electrophoresis mass
spectrometry. Pre-analytical stability and analytical precision of the proteome analysis were determined. Support vector
machine learning was used for classification. Stepwise application of two biomarker signatures with 21 and 5 biomarkers
provided 83% sensitivity and 67% specificity for PCa detection in a test set of samples. A panel of 11 biomarkers for
advanced disease discriminated between patients with Gleason score 7 and organ-confined (,pT3a) or advanced ($pT3a)
disease with 80% sensitivity and 82% specificity in a preliminary validation setting. Seminal profiles showed excellent pre-
analytical stability. Eight biomarkers were identified as fragments of N-acetyllactosaminide beta-1,3-N-acetylglucosaminyl-
transferase, prostatic acid phosphatase, stabilin-2, GTPase IMAP family member 6, semenogelin-1 and -2. Restricted sample
size was the major limitation of the study.

Conclusions/Significance: Seminal plasma represents a robust source of potential peptide makers for primary PCa
diagnosis. Our findings warrant further prospective validation to confirm the diagnostic potential of identified seminal
biomarker candidates.
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Introduction

Prostate cancer (PCa) is the second most frequently diagnosed

cancer and the sixth leading cause of cancer death in males

worldwide [1]. The introduction of serum prostate specific antigen

(PSA) screening led to a significant increase in the number of

diagnosed cases [2] but failed to demonstrate a statistically

significant prostate cancer mortality benefit [3]. Ninety-five

percent of men with PSA-detected cancer who are followed for

12 years do not die from PCa, even in the absence of definite

treatment, such as radical prostatectomy, radiation therapy or

hormonal therapy [3].

This has significantly exaggerated our current inability to make

evidence-based recommendations on treatment choices according

to tumour behaviour, namely clinically insignificant, or indolent

disease and clinically significant, or advanced disease [4].

Therefore, new screening modalities are urgently needed to

reduce the number of men who require biopsy and to improve the

discriminatory accuracy between indolent tumour that has a

favourable clinical prognosis even without intervention, and
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disease that is likely to have already clinically advanced, in order to

reduce over-diagnosis and over-treatment.

Proteomic biomarker screening has become popular during the

past decade. Blood, urine, prostatic fluids, and prostatic tissue have

been evaluated as biomarker source. Several candidate biomarkers

found in those studies were introduced as biomarkers in an

attempt to address the clinical needs for discrimination of indolent

and advanced disease [5-7]. However, all the single biomarkers

currently available, lack diagnostic accuracy for routine clinical

application. The high biological variability of prostate cancer

suggests that a distinct clearly defined set of biomarkers, rather

than a single biomarker, may be more efficient to accurately assess

the disease. Recent technical advances, especially in mass

spectrometry and computation, allow application of proteomic

profiling for discovery of multiple protein biomarker.

Recently, we identified and validated a proteomic pattern of 12

naturally occurring, urinary peptide biomarkers by capillary

electrophoresis mass spectrometry (CE-MS), capable to detect

PCa using first stream urine with 90% sensitivity and 61%

specificity [8,9]. These experiments suggested that prostatic fluids

may serve as source of biomarkers [10]. On the basis of these

findings, we hypothesized that seminal plasma might offer a robust

source to identify novel PCa protein maker profiles. This study

aimed at a systematic assessment of pre-analytical seminal plasma

stability and of its suitability for the development of PCa

biomarker panels.

Results

Patients’ clinical outcome
In total 70 patients with PCa, 21 patients with benign prostate

hyperplasia (BPH), 25 patients with chronic prostatitis (CP) and 9

healthy control (HC) were included in the study (Table 1 and

Figure 1). CP and HC groups were significantly younger than the

patients in the PCa and the benign prostate hyperplasia (BPH)

groups (Table 1). As expected PSA levels were significantly lower

in CP and HC compared to BPH (0.98 – 6.70 ng/ml) or PCa (2.0

– 20 ng/ml) in both, training and test set (p,0.05, Mann Whitney

test, two-tailed; Table 1). The TNM classification revealed 60

organ confined (#pT2c) and 10 advanced ($pT3a) PCa. The

allocation of patients to low and high risk groups varied

considerably between classification systems (Table 1).

Proteomic profiles
CE-MS analysis yielded high resolution profiles (Figure 2, Table

S1). For preliminary profile calibration we used synthetic isotope

labelled peptides as reference. This pre-calibration allowed

definition of 287 ‘‘house-keeping peptides’’ as reference mass

and migration time data points. As ion signal intensity (amplitude)

showed significant variability, the signals of 46 highly abundant

peptides were used as internal standard peptides for signal

normalization (Table S2). These peptides were present in .97%

of analyzed samples and showed lowest signal variability. The

procedure to use ‘‘internal standard’’ for amplitude normalization,

was shown to be an easy and reliable method to address both

analytical and dilution variances in a single calibration step [11].

Tandem mass spectrometry [12-14] identified 141 native seminal

peptides representing 47 different parental proteins (Table S3).

Eighty-eight identified peptides (83/141, 59%) were fragments of

semenogelin-1 or -2, by far the most abundant peptides of the low

molecular weight seminal proteome.

Biomarker discovery
Study A: Diagnostic markers. For diagnostic biomarker

discovery we divided the available 125 samples into a discovery set

with 22 PCa, 14 CP; 9 BPH and 5 HC samples and the remaining

48 PCa, 12 BPH, 11 CP, and 4HC samples into an independent

test set (Figure 1). Multiple testing statistics resulted in 21

discriminatory polypeptides significantly altered between patients

with and without prostate cancer (Table 2 and Figure 3). Six out of

the 21 polypeptides were identified as fragments of N-acetyllacto-

saminide beta-1,3-N-acetylglucosaminyltransferase, prostatic acid

phosphatase, semenogelin-1 and -2 (Table 3). In order to define

biomarker candidates reliably differentiating PCa and BPH, we

compared BPH vs. PCA, BPH vs. CP & HC, and BPH vs. PCa &

CP & HC using appropriate multiple testing statistics. Five

polypeptides were significant in all three tests suggesting suitability

of these candidates to specifically identify BPH and therefore to

exclude presence of PCa (Table 2, Figure 3). One of them was a

fragment of GTPase IMAP family member 6 (Table 3).

We applied a two-step approach: (i) a first panel (21

polypeptides, 21PP) to discern PCa and BPH from inflammatory

and healthy prostate; (ii) a second panel (5 polypeptides, 5PP) to

differentiate PCa and BPH. Both signatures were trained in the

discovery cohort (Figure 1) using support vector machine

algorithms (SVM) and reached AUC values of 100% (95% CI

93%–100%) for 21PP and 99% (95% CI 90%–99%) for 5PP.

For confirmation of classification performance of the biomarker

signatures we applied the combination of 21PP and 5PP to an

independent test set of 48 PCa, 12 BPH, 11 CP, and 4HC (Figure

1). Samples positive for 21PP (above the classification cut off) were

re-classified using 5PP to specifically identify BPH excluding PCa.

Therefore, samples positive for 21PP and negative for 5PP were

considered as PCa, samples positive in either panels were

considered as BPH and samples negative for 21PP (below the

classification cut off) were considered as CP or HC control

samples. This approach correctly identified 40 out of 48 PCa

samples [83% sensitivity (95% CI 70%–93%)], 6 of 12 BPH and

12 of 15 controls [67% specificity (95% CI 46%–83%)]. AUC

value was 75% (95% CI 64%–83%, P = 0.0001). The observed

diagnostic performance was as high as the performance of PSA as

reference, which showed 87% sensitivity (95% CI 75%–97%) and

59% specificity (95% CI 40%–80%).

Study B: Advanced disease biomarkers. For advanced

disease biomarker discovery we divided the available 70 PCa

samples into a training set with 37 PCa samples (21 post-surgery

Gleason score ,7, 16 post-surgery Gleason score .7). The

remaining 33 samples with post-surgery Gleason score 7 were used

as a test set. Comparison of the 21 GS ,7 patients (,pT3a) to 16

GS .7 patients (11 ,pT3a, 5 pT3a) using statistics corrected for

multiple testing resulted in 11 biomarker candidates with a

fragment of stabilin-2 among them (Tables 2 and 3). These as

pattern (11PP) were found to classify the cohort with an AUC of

99% (95% CI 87%–100%, Figure 1).

To test the performance of the biomarkers associated with

advanced disease, 11PP was applied to the test set of patients with

post-surgery Gleason score 7 that were not used for biomarker

discovery. Of the 33 samples, 9 scored as advanced (above the

classification cut off) and 24 as indolent tumour (below the

classification cut off).

In clinical practice various classification systems are used to

estimate risk for prostate cancer progression. Therefore, we

compared the performance of our biomarkers to five commonly

used systems (Table S4): 11PP results were significantly correlated

to TNM stages [rho 0.423 (95% CI 0.093 to 0.669), P = 0.0142],

EAU score [rho 0.408 (95% CI 0.076 to 0.659), P = 0.0183], and
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NCCN score [rho 0.365 (95% CI 0.024 to 0.629), P = 0.0370]

(Figure 4A–C), while CAPRA, RTOG and D’Amico score were

not correlated (data not shown). Using EAU classification as

reference standard, 11PP correctly identified 4/5 advanced

($pT3a) and 23/28 organ-confined (,pT3a) tumours, resulting

in an AUC of 83% (95% CI 66%–94%, P = 0.0055, two sided

power b= 0.84, Figure 5D). Sensitivity was 80% (95% CI 29%–

97%) and specificity was 82% (95% CI 63%–94%)].

Study C: Assessment of biomarker stability and

reproducibility. Seminal plasma demonstrated robust pre-

analytical stability at room temperature. The obtained profiles

were highly similar without massive disappearance or formation of

degraded fragments. An average of 18876202 peptides (Figure

5A) was detected in 14 replicates. Investigation of the 21PP in

these 14 replicates to quantify time dependency of stability

revealed a significant decrease of SVM scores over time with

Spearman’s rho of –0.576 (95% CI –0.854 to –0.07, P = 0.0379,

Figure 5B). Regression analysis unveiled a decrease rate of -0.05

a.u. (,2%) per hour. 5PP and 11PP displayed no significant time

dependency. Analytical precision of the established SVM classi-

fiers was assessed in 15 independent replicates. Mean classification

scores were 0.61960.07, 2.29060.81, and -1.23960.18 resulting

in coefficients of variations of 2.2%, 10.8%, and 6.1% for 21PP,

5PP, and 11PP, respectively (Figure 5C).

Discussion

We hypothesized that seminal plasma is a robust source of novel

PCa peptide maker profiles with the potential to improve primary

diagnosis of prostate cancer and to distinguish advanced from

indolent disease.

In contrast to earlier reports of proteomic profiling of seminal

plasma using tryptic digestion [15], we used native seminal plasma

for biomarker proteomic analysis. The main advantages of this

top-down approach on naturally occurring peptides include the

ability to directly detect combinations of post-translational

modifications, sequence variants, and degradation products. We

detected almost 2,000 different seminal peptides #20 kDa. Those

were fragments of larger parental proteins, which were partially

also detected earlier using tryptic digests. However, our approach

also identify yet unknown seminal constituents (Table S3).

The generation of these naturally occurring peptides depends

on the proteolytic liquefaction of the ejaculate and results in

multiple proteolytic fragments of seminal proteins. Disease

associated alterations in this proteolytic liquefaction process might

account for our observation, that some naturally occurring

fragments show significantly altered seminal levels and others of

the same parental protein do not. Therefore, pre-analytical

stability and analytical reproducibility are of utmost importance

for successful biomarker discovery and clinical validation. A first

milestone in the current study was the development of a simple

and reproducible sampling procedure consistent with a clinical

routine setting. We allowed liquefaction to reach a final steady

Figure 1. Flow chart of study design. For biomarker discovery in total 125 seminal plasma samples were used from 70 patients with PCa, 21
patients with benign prostate hyperplasia (BPH), 25 patients with chronic prostatitis (CP) and 9 healthy control (HC). This pool of available samples
was used in varying composition in three study arms. In study A ‘‘Diagnostic Markers’’ 50/125 patients with and without prostate cancer (22 PCa, 14
CP; 9 BPH and 5 HC) were used for biomarker discovery and the remaining 75/125 patients (48 PCa, 12 BPH, 11 CP, and 4HC) were used for diagnostic
performance tests. In Study B ‘‘Advanced Disease Markers’’ available PCa samples (n = 70) were stratified according to Gleason score. For biomarker
discovery patients with Gleason score ,7 (n = 21) and Gleason score .7 (n = 16) were compared. The remaining 33/70 patients with Gleason score 7
(28 indolent disease ,pT3a and 5 $pT3a advanced disease according EUA guidelines) were used for testing clinical performance. Furthermore, in
study C preliminary assessment of stability and precision of the approach was performed.
doi:10.1371/journal.pone.0067514.g001
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state, documented by a constant number of detectable polypep-

tides over time (Figure 5A), but controlled time to sample storage

at –80uC to be below 60 min to avoid interference with time-

dependent biomarker instability at room temperature (Figure 5B).

Samples of prostate tissue, blood, seminal plasma, and urine

with and without prostate massage are currently intensively

analyzed for potential PCa biomarkers [5,6]. While tissue is

expected to be proximal to the origin of the disease and to

correlate with highest biomarker concentrations, the sampling of

tissue is related to invasive intervention with all risks and

limitations. In contrast, especially seminal plasma and urine are

easily accessible. However, proteolytic processing is of increasing

importance for the exploitation of markers from bodyfluids. Our

preliminary data on seminal plasma stability (Figure 5A/B) did not

provide evidence for massive post-sampling degradation as in

contrast was observed for blood serum [16] or plasma [17].

Therefore seminal plasma might combine high proximity to the

prostate gland as site of the tumour only exceeded by direct

prostate tissue sampling with the excellent stability and accessibil-

ity of urine [18–21], making it a highly promising source for

potential PCa biomarkers.

We were able to define and validate robust biomarker signatures

for the diagnosis of PCa. The sensitivity of 83% (95% CI 70%–

93%) to diagnose PCa was highly comparable with those reported

earlier for CE-MS based urinary biomarker signatures (sensitivity

86% to 90%). The specificity of 67% (95% CI 46%–83%) was

slightly better than their urinary counterparts of 59% and 61%,

respectively [8,9].

In addition, we discovered a seminal biomarker signature,

which distinguished (P = 0.0055) patients with post-surgery

Gleason score 7 with indolent (,pT3a) or advanced ($pT3a)

disease with high sensitivity and specificity of 80% and 82%,

respectively. Current clinical routine using serum PSA level and

pre-surgery Gleason sum score to identify advanced disease

remains inadequate, as the majority of screening detected PCa

have PSA levels between 4–10 ng/ml and moderate Gleason sum

scores of 6 and 7. Therefore, these biomarkers, which are based on

post-surgery outcome data as reference standard, might represent

a future possibility for a non-invasive pre-surgery differentiation of

organ confined and advanced tumour stages. In addition, tumour

evaluation by pre-surgery Gleason score grading requires invasive

procedures to obtain tissue specimens, and is hampered by

significant inter-operator variability and discrepancies between

pre- and post-surgery scores in as many as 35% of cases [22].

Furthermore, among patients with clinically localised disease

(tumour stages T1 and T2), approximately 30% are found to have

locally advanced tumours following radical surgery. Therefore,

there is a real risk of under-treatment in this group of patients, if

managed by surveillance. In future the biomarker profile might

help to avoid under-treatment in these patients with unclear

clinical presentation.

One of the differentially expressed seminal proteins was prostate

acidic phosphatase (ACPP), which is a negative regulator of cell

growth in LNCap cells [23]. Down regulation of cellular ACPP is

associated with androgen-independent tumour growth and high

tumorigenicity of advanced PCa grades [23].

We observed semenogelin-1 fragment 316–344 (ID18990) as

one of the 21 differentially regulated polypeptides (Table 2 and

Table 3). While this fragment can directly be assigned to KLK3

( = PSA) cleavage at site 315 (SSIY-SQTE), this holds not true for

the other observed semenogelin fragments. These cannot be

explained by KLK3 cleavage alone, implicating presence of a

more complex protease activity network with multiple downstream

cleavage events after initial KLK3 cleavage It is well known that

there are mutual activation and inhibition mechanisms within the

liquefaction cascade [24], which could lead to different ‘‘down-

Figure 2. Human seminal plasma polypeptide profiles. Capillary electrophoresis coupled to mass spectrometry profiling of humane seminal
plasma revealed a total of 1784 peptides. The synthetic peptides spiked to the samples for pre-calibration purposes are marked with white arrows.
Normalized molecular weight (700-25.000 Da) in logarithmic scale is plotted against normalized migration time (15-45 min). The mean signal intensity
of the polypeptide peak is given in 3D-depiction. Compiled data sets of PCa (case) combined all controls and also separately CP (control), BPH
(control) and HC (control) from training set are shown.
doi:10.1371/journal.pone.0067514.g002
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stream’’ cleavage patterns. The role of the potential peptidases

involved in the formation of the specific peptide fragments cannot

be judged at present. In further experimental studies the possible

involvement of exopeptidases should be addressed, which might

further process the initial fragments. However, current literature is

insufficient to assign the special cleavage sites within semenogelin

to distinct exopeptidases [25].

Our study faces several limitations. Donation of seminal plasma

for diagnostic purposes is related to several practical issues. From

the present study we learned that between 30–50% of the patients

are willing and able to donate ejaculate before radical prostatic

surgery. However, we believe that acceptance will improve by

communicating the promising results of our preliminary study.

We could partially compensate missing compliance by the

inclusion of healthy volunteers and patients with chronic

prostatitis. Although these cohorts enabled us to confirm our

initial hypotheses that seminal plasma offers a robust source of

biomarkers, they might also have introduced some degree of bias

related to their age discrepancy compared to PCa and BPH

groups. In addition, our cross-sectional test cohorts are relatively

small and skewed. Therefore, future confirmatory studies should

mind well powered, balanced, and age-matched control cohorts

with clinical outcome data on PCa subtypes in follow-up. Based on

the small-scale test data presented here, sample size calculations

for such kind of study estimate a total sample size of 200 patients

with advanced or aggressive PCa and 302 patients with localized

indolent disease to demonstrate a minimal sensitivity and

specificity of 70% and 80% for advanced PCa, respectively.

Although using state-of-the-art tandem mass spectrometry, we

were unable to sequence all biomarker candidates. In contrast to

identification of parent proteins by tryptic peptide mass finger-

printing, native peptide sequencing is limited by post-translational

modifications, complicating not only peptide fragmentation, but

also subsequent database searches.

Conclusions

We were able to confirm our initial hypothesis that seminal fluid

is a robust source for the identification of PCa protein maker

profiles for primary diagnosis of prostate cancer. Our study

involves a two-step experimental approach with independent

discovery and test sets of samples in relation to post-surgery clinical

reference standard. This design is in line with current guidelines

for clinical proteome analysis [26]. Although our cohorts are

relatively small and selected, they were appropriate to assess the

feasibility of seminal profiling and to estimate the potential of

seminal peptides as diagnostic biomarkers. Therefore, the present

study should be understood as a very first step into the field of

seminal biomarkers. Our findings warrant further confirmatory

studies with enlarged unselected prospective validation cohorts to

confirm and to precise the diagnostic potential of the seminal

biomarker candidates and their (patho)physiological relevance.

Figure 3. Biomarker signatures. Normalized molecular weight (700–25.000 Da) in logarithmic scale is plotted against normalized migration time
(15–45 min). The mean signal intensity of the polypeptide peak is given in 3D-depiction. Averaged data sets of the training set are shown.
doi:10.1371/journal.pone.0067514.g003

Prostate Cancer Biomarkers from Seminal Plasma

PLOS ONE | www.plosone.org 8 June 2013 | Volume 8 | Issue 6 | e67514



Materials, Patients and Methods

Ethics Statement
The study was approved by the Ethics Committee of the

University of Leipzig (Reg.No. 084-2009-20042009) and was

conducted according to the principles expressed in the Declaration

of Helsinki. Written informed consent was obtained from all

patients.

Study design and seminal plasma sampling
Exploitable seminal plasma samples were obtained from 70

patients with PCa, 21 patients with benign prostate hyperplasia

(BPH), 25 patients with chronic prostatitis (CP) and 9 healthy

controls (HC). As clinical reference standard we used a combina-

tion of histological workup of radical prostatectomy specimens for

post-surgery tumour grading and staging in PCa patients and

negative 10–12 needle prostate biopsy cores and/or negative

prostate resection specimens in BPH patients. All patients were

asked to donate seminal fluid prior to radical surgical resection of

the prostate, during infertility or urological diagnostics. For

biomarker discovery the available 125 samples were separated

into three study arms, one for diagnostic biomarkers (study A), a

second for advanced disease biomarkers with different training and

test sets (study B), and biomarker stability and reproducibility

(study C, Figure 1). In studies A and B, samples were either used

for discovery or for performance tests, but not both. Fifty samples

(22 PCa, 9 BPH, 14 CP, 5 HC) were used as training set for

diagnostic biomarker discovery (Table 1A), 75 samples were

included into the test set for testing diagnostic performance (48

PCa, 12 BPH, 11 CP, 4 HC, Table 1B). For advanced disease

biomarker discovery we divided the available 70 PCa samples into

a training set with 37 PCa samples (21 GS,7, 16 GS.7). The

remaining 33 samples with GS = 7 were used as a test set (28

,pT3a ‘‘indolent’’, 5 $pT3a ‘‘advanced’’).

We compared five different approaches for assessment of risk for

clinical PCa progression: based on the guidelines of the AUA [27]

who adopted the D’Amico criteria [28], the National Compre-

hensive Cancer Network (NCCN) criteria [29], the Radiation

Therapy Oncology Group (RTOG) criteria [30], the European

Association of Urology (EAU) guidelines [31], and the Cancer of

the Prostate Risk Assessment Score (CAPRA) score [32] (Table

S4). Seminal plasma samples were internally coded and analysed

in a blinded fashion (test set) after establishing biomarker profile

(training set).

In order to analyze pre-analytical stability of seminal plasma

obtained by this sampling protocol, a single sample of a patient

Figure 4. Biomarker performance validation. (A).Box and whisker plots of obtained 11PP results in the test cohort of PCa patients with GS 7
stratified according to TNM, (B) EAU, and (C) NCCN classification systems. Black squares indicate medians and whiskers 1.5-times the interquartile
ranges. Rank correlation coefficients rho, the respective 95% CI and P-values are given above. (D) ROC curve (black lines) for 11PP classification of the
independent validation cohort of PCa patients with GS 7 with either indolent (N = 28) or advanced (N = 5) disease according to EAU classification as
reference standard. 95% confidence intervals are plotted as dashed lines. Diagonal line represents guessing probability with an area under the curve
of 0.5. 95% confidence intervals (CI) are displayed as dashed lines.
doi:10.1371/journal.pone.0067514.g004
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harbouring PCa was thawed and prepared in two independent

replicates (study C). The rest of the sample was incubated at room

temperature. For six hours, every hour two replicates were

prepared. All 14 prepared replicates were lyophilized shortly after

preparation and re-suspended immediately before CE-MS anal-

ysis.

Analytical precision of the established SVM classifiers was

assessed by applying it to 15 CE-MS data sets obtained from

independent replicates of a sample of a 57 years old patient with

significant BPH. Prostate volume was 120 cc and total serum PSA

4.3 ng/mL. Results were expressed as mean and standard

deviation. Coefficients of variations were calculated by dividing

standard deviations by the observed overall range of SVM scores

[21PP from –1.50 to +1.50 (3.0 a.u.), 5PP from –4.50 to +3.0 (7.5

a.u.), and 11PP from –1.50 to +1.50 (3.0 a.u.)].

Sample procurement and proteomic analysis
Ejaculate was collected and allowed natural liquefaction to

occur by proteolysis at room temperature for 15 to 30 min.

Subsequently specimens were centrifuged at 4000 rpm for 10 min

to separate spermatozoa from seminal plasma. The supernatant

was then aliquoted into 50 ml aliquots and deep frozen at –80uC
until further processing.

Sample preparation
Immediately before preparation, seminal plasma samples were

thawed and protein concentration was adjusted to 2 mg/ml.

10 ml-replicates were lyophilized, stored at 4uC. Shortly before

CE-MS analysis the lyophilized replicates were suspended in 9 ml

high-performance liquid chromatography grade H2O and 1 ml

synthetic isotope-labelled peptide stock solution (Table S5) was

added [11] Isotope-labelled peptides were purchased from JPT

(Berlin, Germany). One 15N- and five 13C-isotopes were incorpo-

rated into a single proline residue (DM = +6). The C-termini of the

Figure 5. Assessment of biomarker stability and reproducibility. (A) An average of 18876202 polypeptides was detected in each of the 14
measurements stored for different times at RT. The mean is marked with a bold line; standard deviation is highlighted in grey. (B) Beyond this
qualitative assessment biomarker signatures were applied to the 14 stability replicates to obtain quantitative data of time-dependent stability of
seminal plasma. For 21PP ranked correlation analysis revealed a significant decrease of SVM scores over time with Spearman’s rho of –0.576 (95% CI –
0.854 to –0.07, P = 0.0379). Regression analysis unveiled a decrease rate of –0.05 a.u. (,2%) per hour. 5PP and 11PP displayed no significant time
dependency. (C) Analytical precision of the established SVM classifiers was assessed by applying it to 15 CE-MS data sets obtained from independent
replicates of a sample of a 57 years old patient with significant BPH. Mean classification scores were 0.61960.07, 2.29060.81, and -1.23960.18 for
21PP, 5PP, and 11PP respectively. Coefficients of variations were calculated by dividing standard deviations by the observed overall range of SVM
scores [highlighted in grey, 21PP from –1.50 to +1.50 (3.0 a.u.), 5PP from 4.50 to +3.0 (7.5 a.u.), and 11PP from –1.50 to +1.50 (3.0 a.u.)]. Coefficients of
variations were 2.2%, 10.8%, and 6.1%, respectively. Classification cut offs are represented by horizontal lines. The boxes depict means and standard
deviation as whiskers.
doi:10.1371/journal.pone.0067514.g005
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isotope-labelled peptides were synthesized with an amide function

(DM = –1). Therefore, the synthetic peptides had a total mass

difference of 5 atomic mass units. The injected amounts of

synthetic peptides are given in (Table S5).

CE-MS analysis
CE-MS analysis was performed as described earlier [33,34]. By

this procedure the limit of detection was ,1 fmol. Mass resolution

was above 8,000 enabling resolution of monoisotopic mass signals

for z#6. After charge deconvolution, mass accuracy was ,25 ppm

for monoisotopic resolution and ,100 ppm for unresolved peaks

(z.6).

Data sets were accepted only if the following quality control

criteria were met: A minimum of 1000 peptides/proteins must be

detected with a minimum MS resolution of 8,000 (required

resolution to resolve ion signals with z = 6) in a minimum

migration time interval (the time window, in which separated

peptides can be detected) of 10 minutes (mean number time

interval minus one standard deviation). After calibration, the mean

deviation of migration time (compared to reference standards)

must be below 0.30 minutes.

Data processing
Mass spectral ion peaks representing identical molecules at

different charge states were deconvoluted into single masses using

MosaiquesVisu software (www.proteomiques.com) [35]. For noise

filtering, signals with z.1 observed in a minimum of 3 consecutive

spectra with a signal-to-noise ratio of at least 4 were considered.

MosaiquesVisu employs a probabilistic clustering algorithm and

uses both isotopic distribution (for z#6) as well as conjugated

masses for charge-state determination of peptides/proteins. The

resulting peak list characterizes each polypeptide by its mass and

its migration time. After charge deconvolution, mass accuracy was

,25 ppm for monoisotopic resolution and ,100 ppm for

unresolved peaks (z.6). First we used 14 synthetic isotope labeled

peptides for data normalization. These peptides were added to

samples immediately before CE-MS analysis (Table S5). Secondly,

we calibrated the CE-MS data utilizing 287 reference mass data

points and migration time data points by applying global and local

linear regression, respectively. Ion signal intensity (amplitude) was

normalized relative to 46 reference signals of highly abundant

peptides using local linear regression (Table S1). The obtained

peak list characterizes each polypeptide by its calibrated molecular

mass [Da], calibrated CE migration time [min] and normalized

signal intensity. All detected peptides were deposited, matched,

and annotated in a Microsoft SQL database allowing further

statistical analysis. For clustering, peptides in different samples

were considered identical, if mass deviation was ,50 ppm for

small (,4,000 Da) or 75 ppm for larger peptides. Due to analyte

diffusion effect, CE peak widths increase with CE migration time.

For data clustering this effect was considered by linearly increasing

cluster widths over the entire electropherogram (19 min to 45 min)

from 2-5%.

After data normalization, all detected peptides were deposited,

matched, and annotated in a Microsoft SQL database. As

previously described for urine [36,37], several annotated peptides

appear sporadically, being observed in only one or a few samples.

To eliminate such peptides of apparently low significance, only

those peptides detected in more than 6 of the seminal plasma

samples in at least one group (samples from patients with same

disease) were further investigated. Applying these limits, a total of

1,784 relevant native peptides were clustered with a mass range

from 802.4 Da to 15,701.8 Da.

Descriptive Statistical analysis
Estimates of sensitivity and specificity were calculated based on

tabulating the number of correctly classified samples. Confidence

intervals (95% CI) were based on binomial calculations performed

with MedCalc version 8.1.1.0 (MedCalc Software, Belgium, www.

medcalc.be). The ROC plot was evaluated, as it provides a single

measure of overall accuracy that is not dependent upon a

particular threshold [38].

Differential statistical analysis
For statistical differential analysis we set a frequency threshold

of 60% for markers to be deemed valid in one of the considered

groups in order to be included in downstream analysis. Adjust-

ments for multiple testing [39] were done using the base 10

logarithm transformed intensities and the Gaussian approximation

to the t-distribution. For multiple testing corrections, p-values were

corrected using the false discovery rate procedure introduced by

Benjamini and Hochberg, which conserves sufficient statistical

power of looking for biomarkers that are differentially expressed

between two samples when subjected to two different treatments,

such as disease/no disease [40]. Proteins that were detected in a

diagnostic group of patients in at least 60% of samples were

considered. The test was implemented as macros in SAS (www.sas.

com) and are part of the multitest R-package www.bioconductor.

org [41].

Classification
MosaCluster (version 1.7.0) was developed for the discrimina-

tion between different patient groups. This software tool allows the

classification of samples in the high-dimensional parameter space

by using support vector machine (SVM) learning. For this purpose,

MosaCluster generates polypeptide models, which rely on

polypeptides displaying statistically significant differences when

comparing data from patients with a specific disease to controls or

other diseases, respectively. Each of these polypeptides allegorizes

one dimension in the n-dimensional parameter space [36,42–44].

SVM view a data point (probands urine sample) as a p-

dimensional vector (p numbers of protein used), and they attempt

to separate them with a (p-1) dimensional hyperplane. There are

many hyperplanes that might classify the data. However,

maximum separation (margin) between the two classes is of

additional interest, and therefore, the hyperplane with the

maximal distance from the hyperplane to the nearest data point

is selected. Therefore, all marker proteins are used without any

weighting to build up the n-dimensional classification space and to

display the data set in the classification space. Classification itself is

performed by determining the Euclidian distance of the data set to

the n-1 dimensional maximal margin hyperplane (absolute value

of the normal vector) and the direction of the vector (class 1 or

class 2).

Diagnostic cut-offs
For all biomarker patterns the threshold (cut-off) indicating the

transition from ‘‘negative’’ to ‘‘positive’’ was established based on

the classification results of the training set, considering analytical

variation of the system: This ensures a less than 15% chance that a

measurement with a true classification result of the threshold value

would give a false result above the cut-off. For 21PP the analytical

precision revealed a standard deviation SD (precision) of

approximately 0.30 a.u. The final cut-off was calculated as 0.30–

1SD = 0.00 a.u. This cut-off was applied to the 75 samples of the

test set. Values below 0.00 were considered negative, values $0.00

positive. For 5PP the final cut-off was calculated as
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1.00+1SD = 1.48 a.u. Values below 1.48 were considered negative

for BPH, values $1.48 positive. For 11PP the final cut-off was

calculated as 0.01+1SD = 0.30 a.u. This cut-off was applied to the

33 samples of the test set. Values below 0.30 were considered as

indolent disease, values $0.30 as advanced disease.

Sequencing of peptides
Native peptides from seminal plasma were sequenced using LC-

MS/MS analysis. MS/MS experiments were performed using

higher energy collision dissociation (HCD) or electron transfer

dissociation (ETD) [12–14]. Peptides were separated on a Dionex

Ultimate 3000 RSLS nano flow system (Dionex, Camberly UK)

and introduced into an LTQ Orbitrap hybrid mass spectrometer

(Thermo Fisher Scientific, Bremen, Germany) via nano-flow ESI,

as described in Metzger et al. [45]. Data files were searched

against the IPI human non-redundant database using the Open

Mass Spectrometry Search Algorithm (OMSSA, http://pubchem.

ncbi.nlm.nih.gov/omssa), with an e-value cut-off of 0.05 without

any enzyme specificity. No fixed modification was selected, and

oxidation of methionine were set as variable modifications.

Accepted parent ion mass deviation was 10 ppm; accepted

fragment ion mass deviation was 0.05 Da (for HCD) or 0.5 Da (for

ETD). For further validation of obtained peptide identifications,

the strict correlation between peptide charge at the working pH of

2 and CE-migration time was utilized to minimize false-positive

identification rates [46]: Calculated CE-migration time of the

sequence candidate based on its peptide sequence (number of basic

amino acids) was compared to the experimental migration time.

Peptides were accepted with a mass deviation below 680 ppm and

a CE-migration time deviation below 62 min.

Supporting Information

Table S1 CE-MS data sets. For detected peptides identifica-

tion tag, calibrated mass in Da and migration time in min are

given. For all 125 patient data sets normalized signal amplitude

are listed, whereas ‘‘0’’ denotes undetected or missing values.

(XLS)

Table S2 Internal references. 46 seminal polypeptides were

used as internal references for signal amplitude normalization. ID:

polypeptide identifier annotated by the SQL database (ID), Amp:

Signal amplitude, CV: coefficient of variation of signal amplitudes.

(DOC)

Table S3 Seminal peptide sequence data. Tandem mass

spectrometry identified 141 native seminal peptides representing

47 different parental proteins. Fifthy-nine percent were fragments

of semenogelin-1 or -2, by far the most abundant peptides of the

low molecular weight seminal proteome. ID: polypeptide identifier

annotated by the SQL database (ID); Theo. Mass: theoretical mass

of the peptide sequence; delta CE/MS-M: Mass difference

between CE-MS experimental and theoretical mass normalized

to theoretical mass in parts per million [ppm]; delta MS/MS-M:

Mass difference between MS/MS experimental and theoretical

mass normalized to theoretical mass in parts per million [ppm]; m:

oxidized Methionine; CE/MS-Mass: CE-MS experimental mass

in Dalton [Da]; MS/MS-Mass [Da]: MS/MS experimental mass

in Dalton [Da]; E-value: Score used by OMSSA to rank hits for a

given MS/MS-spectrum.

(XLS)

Table S4 Risk assessment classification systems. In

clinical practice various classification systems are used to estimate

risk for prostate cancer progression. Therefore, we compared the

performance of our biomarkers to five commonly used systems,

namely AUA guidelines who adopted the D’Amico criteria, the

National Comprehensive Cancer Network (NCCN) criteria, the

Radiation Therapy Oncology Group (RTOG) criteria, the

European Association of Urology (EAU) guidelines, and the

Cancer of the Prostate Risk Assessment Score (CAPRA) score.

(DOC)

Table S5 Characteristics of synthetics peptide used for
pre-calibration of seminal plasma samples. Isotope

labelled proline residues are marked in bold italics. The amount

of each synthetic peptide added to the samples and averaged MS-

detected intensity are given.

(DOC)

Acknowledgments

The authors want to thank Mrs. Mandy Berndt and Mrs. Annett Weimann

for the excellent technical assistance.

Author Contributions

Conceived and designed the experiments: JN ES JUS. Performed the

experiments: JN ES PW. Analyzed the data: JN ES JS PW LCH.

Contributed reagents/materials/analysis tools: JUS HWB HL WU. Wrote

the paper: JN ES. Obtaining funding: ES JUS JN. Administrative support:

UP.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, et al. (2011) Global cancer

statistics. CA Cancer J Clin 61: 69–90.

2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, et al. (2009) Cancer statistics, 2009.

CA Cancer J Clin 59: 225–249.

3. Ilic D, O’Connor D, Green S, Wilt TJ (2011) Screening for prostate cancer: an

updated Cochrane systematic review. BJU Int 107: 882–891.

4. Siddiqui E, Mumtaz FH, Gelister J (2004) Understanding prostate cancer. J R

Soc Promot Health 124: 219–221.

5. You J, Cozzi P, Walsh B, Willcox M, Kearsley J, et al. (2010) Innovative

biomarkers for prostate cancer early diagnosis and progression. Crit Rev Oncol

Hematol 73: 10–22.

6. Goo YA, Goodlett DR (2010) Advances in proteomic prostate cancer biomarker

discovery. J Proteomics 73: 1839–1850.

7. Kim Y, Ignatchenko V, Yao CQ, Kalatskaya I, Nyalwidhe JO, et al. (2012)

Identification of differentially expressed proteins in direct expressed prostatic

secretions of men with organ-confined versus extracapsular prostate cancer. Mol

Cell Proteomics

8. Theodorescu D, Schiffer E, Bauer HW, Douwes F, Eichhorn F, et al. (2008)

Discovery and validation of urinary biomarkers for prostate cancer. Proteomics

Clin Appl 2: 556–570.

9. Schiffer E, Bick C, Grizelj B, Pietzker S, Schofer W (2012) Urinary proteome

analysis for prostate cancer diagnosis: cost-effective application in routine clinical

practice in Germany. Int J Urol 19: 118–125.

10. Marshall S (2009) Comments on the article "Biomarkers for prostate cancer" by

Eric Schiffer. World J Urol 27: 577–578.

11. Jantos-Siwy J, Schiffer E, Brand K, Schumann G, Rossing K, et al. (2009)

Quantitative urinary proteome analysis for biomarker evaluation in chronic

kidney disease. J Proteome Res 8: 268–281.

12. Coon JJ, Shabanowitz J, Hunt DF, Syka JE (2005) Electron transfer dissociation

of peptide anions. J Am Soc Mass Spectrom 16: 880–882.

13. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and

protein sequence analysis by electron transfer dissociation mass spectrometry.

Proc Natl Acad Sci U S A 101: 9528–9533.

14. Good DM, Coon JJ (2006) Advancing proteomics with ion/ion chemistry.

BioTechniques 40: 783–789.

15. Batruch I, Lecker I, Kagedan D, Smith CR, Mullen BJ, et al. (2011) Proteomic

analysis of seminal plasma from normal volunteers and post-vasectomy patients

identifies over 2000 proteins and candidate biomarkers of the urogenital system.

J Proteome Res 10: 941–953.

16. Kolch W, Neususs C, Pelzing M, Mischak H (2005) Capillary electrophoresis-

mass spectrometry as a powerful tool in clinical diagnosis and biomarker

discovery. Mass Spectrom Rev 24: 959–977.

Prostate Cancer Biomarkers from Seminal Plasma

PLOS ONE | www.plosone.org 12 June 2013 | Volume 8 | Issue 6 | e67514



17. von Zur Muhlen C, Schiffer E, Zuerbig P, Kellmann M, Brasse M, et al. (2009)

Evaluation of urine proteome pattern analysis for its potential to reflect coronary
artery atherosclerosis in symptomatic patients. J Proteome Res 8: 335–345.

18. Schaub S, Wilkins J, Weiler T, Sangster K, Rush D, et al. (2004) Urine protein

profiling with surface-enhanced laser-desorption/ionization time-of-flight mass
spectrometry. Kidney Int 65: 323–332.

19. Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, et al. (2006)
Discovery and validation of new protein biomarkers for urothelial cancer: a

prospective analysis. Lancet Oncol 7: 230–240.

20. Fiedler GM, Baumann S, Leichtle A, Oltmann A, Kase J, et al. (2007)
Standardized peptidome profiling of human urine by magnetic bead separation

and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.
Clin Chem 53: 421–428.

21. Good DM, Zurbig P, Argiles A, Bauer HW, Behrens G, et al. (2010) Naturally
occurring human urinary peptides for use in diagnosis of chronic kidney disease.

Mol Cell Proteomics 9: 2424–2437.

22. Bright E, Manuel C, Goddard JC, Khan MA (2010) Incidence and variables
predicting Gleason score up-grading between trans-rectal ultrasound-guided

prostate biopsies and radical prostatectomy. Urol Int 84: 180–184.
23. Chuang TD, Chen SJ, Lin FF, Veeramani S, Kumar S, et al. (2010) Human

prostatic acid phosphatase, an authentic tyrosine phosphatase, dephosphorylates

ErbB-2 and regulates prostate cancer cell growth. J Biol Chem 285: 23598–
23606.

24. Emami N, Deperthes D, Malm J, Diamandis EP (2008) Major role of human
KLK14 in seminal clot liquefaction. J Biol Chem 283: 19561–19569.

25. Villanueva J, Nazarian A, Lawlor K, Yi SS, Robbins RJ, et al. (2008) A
sequence-specific exopeptidase activity test (SSEAT) for "functional" biomarker

discovery. Mol Cell Proteomics 7: 509–518.

26. Mischak H, Allmaier G, Apweiler R, Attwood T, Baumann M, et al. (2010)
Recommendations for biomarker identification and qualification in clinical

proteomics. Sci Transl Med 2: 46ps42.
27. Thompson I, Thrasher JB, Aus G, Burnett AL, Canby-Hagino ED, et al. (2007)

Guideline for the management of clinically localized prostate cancer: 2007

update. J Urol 177: 2106–2131.
28. D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, et al. (1998)

Biochemical outcome after radical prostatectomy, external beam radiation
therapy, or interstitial radiation therapy for clinically localized prostate cancer.

JAMA 280: 969–974.
29. Mohler J, Bahnson RR, Boston B, Busby JE, D’Amico A, et al. (2010) NCCN

clinical practice guidelines in oncology: prostate cancer. J Natl Compr Canc

Netw 8: 162–200.
30. Roach M, Lu J, Pilepich MV, Asbell SO, Mohiuddin M, et al. (2000) Four

prognostic groups predict long-term survival from prostate cancer following
radiotherapy alone on Radiation Therapy Oncology Group clinical trials. Int J

Radiat Oncol Biol Phys 47: 609–615.

31. Heidenreich A, Bellmunt J, Bolla M, Joniau S, Mason M, et al. (2011) EAU
guidelines on prostate cancer. Part 1: screening, diagnosis, and treatment of

clinically localised disease. Eur Urol 59: 61–71.
32. Cooperberg MR, Pasta DJ, Elkin EP, Litwin MS, Latini DM, et al. (2005) The

University of California, San Francisco Cancer of the Prostate Risk Assessment

score: a straightforward and reliable preoperative predictor of disease recurrence

after radical prostatectomy. J Urol 173: 1938–1942.

33. Kolch W, Neususs C, Pelzing M, Mischak H (2005) Capillary electrophoresis-

mass spectrometry as a powerful tool in clinical diagnosis and biomarker

discovery. Mass Spectrom Rev 24: 959–977.

34. Theodorescu D, Wittke S, Ross MM, Walden M, Conaway M, et al. (2006)

Discovery and validation of new protein biomarkers for urothelial cancer: a

prospective analysis. Lancet Oncol 7: 230–240.

35. Neuhoff N, Kaiser T, Wittke S, Krebs R, Pitt A, et al. (2004) Mass spectrometry

for the detection of differentially expressed proteins: a comparison of surface-

enhanced laser desorption/ionization and capillary electrophoresis/mass

spectrometry. Rapid Commun Mass Spectrom 18: 149–156.

36. Weissinger EM, Wittke S, Kaiser T, Haller H, Bartel S, et al. (2004) Proteomic

patterns established with capillary electrophoresis and mass spectrometry for

diagnostic purposes. Kidney Int 65: 2426–2434.

37. Mischak H, Julian BA, Novak J (2007) High-resolution proteome/peptidome

analysis of peptides and low-molecular-weight proteins in urine. Proteomics Clin

Appl 1: 792.

38. DeLeo JM (1993) Receiver operating characteristic laboratory (ROCLAB):

Software for developing decision strategies that account for uncertainty. Second

International Symposium on Uncertainty Modeling and Analysis 318–325.

39. Dakna M, He Z, Yu WC, Mischak H, Kolch W (2009) Technical,

bioinformatical and statistical aspects of liquid chromatography-mass spectrom-

etry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) based

clinical proteomics: a critical assessment. J Chromatogr B Analyt Technol

Biomed Life Sci 877: 1250–1258.

40. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. J Royal Stat Soc B (Methodological)

57: 125–133.

41. Dudoit S, van der Laan MJ (2007) Multiple testing Procedures and Applications

to Genomics. Berlin: Springer Verlag. p. 1–590.

42. Girolami M, Mischak H, Krebs R (2007) Analysis of complex, multidimensional

datasets. Drug Discov Today 3: 12–19.

43. Yang ZR (2004) Biological applications of support vector machines. Brief

Bioinform 5: 328–338.

44. Yang ZR, Chou KC (2004) Bio-support vector machines for computational

proteomics. Bioinformatics 20: 735–741.

45. Metzger J, Negm AA, Plentz RR, Weismuller TJ, Wedemeyer J, et al. (2013)

Urine proteomic analysis differentiates cholangiocarcinoma from primary

sclerosing cholangitis and other benign biliary disorders. Gut 62: 122–130.

46. Zurbig P, Renfrow MB, Schiffer E, Novak J, Walden M, et al. (2006) Biomarker

discovery by CE-MS enables sequence analysis via MS/MS with platform-

independent separation. Electrophoresis 27: 2111–2125.

47. Hanno PM, Burks DA, Clemens JQ, Dmochowski RR, Erickson D, et al. (2011)

AUA guideline for the diagnosis and treatment of interstitial cystitis/bladder

pain syndrome. J Urol 185: 2162–2170.

48. Cooperberg MR, Hilton JF, Carroll PR (2011) The CAPRA-S score: A

straightforward tool for improved prediction of outcomes after radical

prostatectomy. Cancer 117: 5039–5046.

Prostate Cancer Biomarkers from Seminal Plasma

PLOS ONE | www.plosone.org 13 June 2013 | Volume 8 | Issue 6 | e67514


