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Abstract: Ghrelin, an orexigenic hormone released primarily from the gut, signals the hypothalamus
to stimulate growth hormone release, enhance appetite and promote weight gain. The ghrelin
receptor, aka Growth Hormone Secretagogue Receptor (GHS-R), is highly expressed in the brain,
with highest expression in Agouti-Related Peptide (AgRP) neurons of the hypothalamus. We recently
reported that neuron-specific deletion of GHS-R completely prevents diet-induced obesity (DIO) in
mice by activating non-shivering thermogenesis. To further decipher the specific neuronal circuits
mediating the metabolic effects of GHS-R, we generated AgRP neuron-specific GHS-R knockout mice
(AgRP-Cre;Ghsrf/f). Our data showed that GHS-R in AgRP neurons is required for ghrelin’s stimulatory
effects on growth hormone secretion, acute food intake and adiposity, but not for long-term total
food intake. Importantly, deletion of GHS-R in AgRP neurons attenuated diet-induced obesity (DIO)
and enhanced cold-resistance in mice fed high fat diet (HFD). The HFD-fed knockout mice showed
increased energy expenditure, and exhibited enhanced thermogenic activation in both brown and
subcutaneous fat; this implies that GHS-R suppression in AgRP neurons enhances sympathetic
outflow. In summary, our results suggest that AgRP neurons are key site for GHS-R mediated
thermogenesis, and demonstrate that GHS-R in AgRP neurons plays crucial roles in governing energy
utilization and pathogenesis of DIO.
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1. Introduction

Ghrelin signaling has profound effects on energy- and glucose-homeostasis [1]. Ghrelin is
produced predominantly by enteroendocrine cells in the gastric oxyntic mucosa [2–4], and is the
only orexigenic hormone known to stimulate growth hormone (GH) release, enhance feeding and
promote weight gain [1,2,4–7]. Ghrelin’s biological effects are mediated through the growth hormone
secretagogue receptor (GHS-R) [1,3], and activation of GHS-R increases food intake and body
weight [2–4]. It has been reported that global deletion of GHS-R protects against diet-induced obesity
(DIO) [8], and we have shown that global deletion of GHS-R alleviates age-associated obesity and
insulin resistance [9–11]. Moreover, we recently reported that GHS-R deletion in all neurons completely
prevents DIO and attenuates DIO-associated insulin resistance, exhibiting activated thermogenesis and
enhanced physical activity [12]. While the new finding is very exciting, the specific neurons associated
with GHS-R mediated metabolic effects have remained unclear.

GHS-R is primarily expressed in the brain, and at lower expression levels in peripheral tissues
such as pancreas, muscle and adipose tissues [5,13–15]. In the brain, the highest expression of GHS-R
is detected in the arcuate nucleus (ARC) in hypothalamus, particularly in orexigenic neuropeptide Y
(NPY)/Agouti-Related Peptide (AgRP) neurons [16,17]. The NPY/AgRP neurons reside along with the
anorexigenic neurons expressing proopiomelanocortin (POMC) in the ARC. The activity of AgRP and
POMC neurons are regulated by hormones such as ghrelin, leptin and insulin and by nutrients such as
glucose [18–20]. During food deprivation, AgRP neurons are activated by ghrelin to promote hunger
and feeding [5,21–29]. Recently, AgRP neurons have been reported to regulate adaptive thermogenesis
and browning of white adipose tissue (WAT) [18]. However, it is unknown whether AgRP neurons are
important in mediating GHS-R suppression-associated thermogenic activation.

In this study, we investigated the specific role of GHS-R in AgRP neurons in regulating
thermogenesis. We used a novel mouse model in which GHS-R was selectively deleted from AgRP
neurons (AgRP-Cre;Ghsrf/f); we then studied the mice under regular chow- and HFD-feeding and under
cold challenge.

2. Results

2.1. Generation of AgRP-Cre;Ghsrf/f Mice

Mice with GHS-R deleted selectively in AgRP neurons (AgRP-Cre;Ghsrf/f) were generated by
breeding a widely-used AgRP-Cre mouse [30,31] with our Ghsrf/f mouse [12]. The gene targeting
strategy is shown in Figure 1A. To confirm the AgRP neuron-specific Cre activation, we crossed
AgRP-Cre mice with the Rosa26-tdTomato mice; these mice express a red fluorescence protein following
Cre-mediated recombination, thus enabling direct visualization of cells where recombination takes
place (Figure 1B). In line with a previous report [31], AgRP-Cre-mediated recombination was only
evident in hypothalamic arcuate nucleus (ARC) region, but was not evident in other brain regions.
Indeed, real-time PCR results showed that Ghsr deletion was only detected in the hypothalamus, but
not in other brain regions such as cortex, or peripheral tissues such as liver, muscle, white adipose
tissue (WAT), brown adipose tissue (BAT) or pancreas (Figure 1C). Furthermore, we micro-dissected
the arcuate nucleus (ARC), ventromedial hypothalamus (VMH) and paraventricular nucleus (PVN)
from hypothalami of AgRP-Cre;Ghsrf/f and control Ghsrf/f mice, and then evaluated Ghsr expression.
Consistent with the pattern of AgRP-Cre-mediated recombination, Ghsr expression was reduced by
more than 80% in ARC, but not in other hypothalamic regions we examined (Figure 1D).
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Figure 1. GHS-R in AgRP-Cre;Ghsrf/f mice is selectively deleted in arcuate nucleus of the 
hypothalamus. (A) Schematic diagram of the loxP-flanked Ghsr allele before and after Cre-derived 
recombination. Exons 1 and 2 were deleted during recombination. Triangle represents loxP sites; (B) 
Coronal section showing tdTomato-labeled neurons (red fluorescence) in the arcuate nucleus (ARC) 
in Agrp-Cre;tdTomato reporter mice; (C) Ghsr gene expression in hypothalamus, cortex, liver, skeletal 
muscle, epididymal white adipose tissue (WAT), brown adipose tissue (BAT) and pancreas; (D) Ghsr 
gene expression in ARC, ventromedial hypothalamus (VMH), and paraventricular nucleus (PVN) in 
the hypothalamus. * p < 0.05 compared between genotypes. 

2.2. GHS-R Deletion in AgRP Neurons Abolishes Ghrelin-Induced GH Secretion and Food Intake 

Ghrelin is known to stimulate GH release and food intake via GHS-R. However, we found that 
deleting GHS-R in AgRP neurons had no effect on body length (Figure 2A), and insulin-like growth 
factor-1 (IGF-1) levels were comparable between AgRP-Cre;Ghsrf/f and control Ghsrf/f mice (data not 
shown). IGF-1 is mainly secreted by the liver as a result of GH stimulation, and is often used as an 
indicator of GH levels, while measuring the pulsatile GH levels in circulation is technically difficult 
in mice [32,33]. To assess whether GHS-R in AgRP neurons mediates the acute effects of ghrelin on 
GH secretion and food intake, we i.p. injected ghrelin into anesthetized AgRP-Cre;Ghsrf/f and control 
Ghsrf/f mice. Ghrelin-induced GH release was abolished in AgRP-Cre;Ghsrf/f mice (Figure 2B). While 
ghrelin-induced acute increase of food intake was readily detectable in control Ghsrf/f mice, it was 
absent in AgRP-Cre;Ghsrf/f mice (Figure 2C). These data indicate that the stimulatory effects of ghrelin 
on GH release and acute food intake are mediated by the GHS-R in AgRP neurons. 

2.3. GHS-R Deletion in AgRP Neurons Attenuates Ghrelin-Induced Obesity 

It has been reported that central ghrelin infusion promotes adiposity without inducing 
hyperphagia, indicating that ghrelin-induced adiposity is independent from its orexigenic effect 
[34]. To determine whether ghrelin’s effect on adiposity is mediated through GHS-R in AgRP 
neurons, we i.p. injected ghrelin into 4-month-old male AgRP-Cre;Ghsrf/f and control Ghsrf/f mice for 
18 days. We started a 7-day regimen in these mice with a daily dose of 33 µg (10 nmol) ghrelin i.p., 
which has been shown to increase body weight [35]. We observed no significant increase in body fat 
between ghrelin-injected mice versus saline-injected mice in either AgRP-Cre;Ghsrf/f or Ghsrf/f mice. 
From day 8 to 18, we then increased to 2 times of 10 nmol ghrelin per day. We subsequently detected 
a higher gain in fat percentage in ghrelin-treated Ghsrf/f mice than in saline treated Ghsrf/f mice from 
day 14 to 18 (Figure 2D). Relative gain in fat percentage of ghrelin-treated AgRP-Cre;Ghsrf/f mice was 
significantly lower than that of ghrelin-treated Ghsrf/f mice from day 14 to 18. Calorie intake was not 
statistically different between AgRP-Cre;Ghsrf/f and Ghsrf/f mice treated with either saline or ghrelin 

Figure 1. GHS-R in AgRP-Cre;Ghsrf/f mice is selectively deleted in arcuate nucleus of the hypothalamus.
(A) Schematic diagram of the loxP-flanked Ghsr allele before and after Cre-derived recombination.
Exons 1 and 2 were deleted during recombination. Triangle represents loxP sites; (B) Coronal section
showing tdTomato-labeled neurons (red fluorescence) in the arcuate nucleus (ARC) in Agrp-Cre;tdTomato
reporter mice; (C) Ghsr gene expression in hypothalamus, cortex, liver, skeletal muscle, epididymal
white adipose tissue (WAT), brown adipose tissue (BAT) and pancreas; (D) Ghsr gene expression in
ARC, ventromedial hypothalamus (VMH), and paraventricular nucleus (PVN) in the hypothalamus.
* p < 0.05 compared between genotypes.

2.2. GHS-R Deletion in AgRP Neurons Abolishes Ghrelin-Induced GH Secretion and Food Intake

Ghrelin is known to stimulate GH release and food intake via GHS-R. However, we found that
deleting GHS-R in AgRP neurons had no effect on body length (Figure 2A), and insulin-like growth
factor-1 (IGF-1) levels were comparable between AgRP-Cre;Ghsrf/f and control Ghsrf/f mice (data not
shown). IGF-1 is mainly secreted by the liver as a result of GH stimulation, and is often used as an
indicator of GH levels, while measuring the pulsatile GH levels in circulation is technically difficult
in mice [32,33]. To assess whether GHS-R in AgRP neurons mediates the acute effects of ghrelin on
GH secretion and food intake, we i.p. injected ghrelin into anesthetized AgRP-Cre;Ghsrf/f and control
Ghsrf/f mice. Ghrelin-induced GH release was abolished in AgRP-Cre;Ghsrf/f mice (Figure 2B). While
ghrelin-induced acute increase of food intake was readily detectable in control Ghsrf/f mice, it was
absent in AgRP-Cre;Ghsrf/f mice (Figure 2C). These data indicate that the stimulatory effects of ghrelin
on GH release and acute food intake are mediated by the GHS-R in AgRP neurons.

2.3. GHS-R Deletion in AgRP Neurons Attenuates Ghrelin-Induced Obesity

It has been reported that central ghrelin infusion promotes adiposity without inducing
hyperphagia, indicating that ghrelin-induced adiposity is independent from its orexigenic effect [34].
To determine whether ghrelin’s effect on adiposity is mediated through GHS-R in AgRP neurons,
we i.p. injected ghrelin into 4-month-old male AgRP-Cre;Ghsrf/f and control Ghsrf/f mice for 18 days.
We started a 7-day regimen in these mice with a daily dose of 33 µg (10 nmol) ghrelin i.p., which has
been shown to increase body weight [35]. We observed no significant increase in body fat between
ghrelin-injected mice versus saline-injected mice in either AgRP-Cre;Ghsrf/f or Ghsrf/f mice. From day 8
to 18, we then increased to 2 times of 10 nmol ghrelin per day. We subsequently detected a higher gain
in fat percentage in ghrelin-treated Ghsrf/f mice than in saline treated Ghsrf/f mice from day 14 to 18
(Figure 2D). Relative gain in fat percentage of ghrelin-treated AgRP-Cre;Ghsrf/f mice was significantly
lower than that of ghrelin-treated Ghsrf/f mice from day 14 to 18. Calorie intake was not statistically
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different between AgRP-Cre;Ghsrf/f and Ghsrf/f mice treated with either saline or ghrelin (Figure 2E),
indicating that the difference in adiposity is independent of hyperphagia. Hence, our data demonstrate
that GHS-R in AgRP neurons is required for ghrelin-induced adiposity, and ghrelin-induced adiposity
is independent of its orexigenic action.

Int. J. Mol. Sci. 2017, 18, 832 4 of 19 

(Figure 2E), indicating that the difference in adiposity is independent of hyperphagia. Hence, our 
data demonstrate that GHS-R in AgRP neurons is required for ghrelin-induced adiposity, and 
ghrelin-induced adiposity is independent of its orexigenic action. 

 

Figure 2. Ghrelin-induced GH secretion and acute food intake is abolished in Agrp-Cre;Ghsrf/f mice. 
(A) Body length of AgRP-Cre;Ghsrf/f and control Ghsrf/f mice; (B) Ghrelin-induced GH release: Ghsrf/f 
mice and AgRP-Cre;Ghsrf/f mice were anesthetized with pentobarbital (50 mg/kg); 15 min later, 20 µg 
ghrelin was injected. Blood was collected for GH detection at 0 and 5 min after ghrelin injection. (n = 
5–9, * p < 0.05, Ghsrf/f mice vs. AgRP-Cre;Ghsrf/f mice); (C) Ghrelin-induced acute food intake. Ghrelin 
(0.5 mg/kg) was i.p. injected into mice in the early morning after 3 h fasting. # p < 0.05, saline vs. 30 
min after ghrelin injection in Ghsrf/f mice; * p < 0.05, Ghsrf/f vs. AgRP-Cre;Ghsrf/f; (D) Chronic 
ghrelin-induced adiposity: 4-month old Ghsrf/f mice and AgRP-Cre;Ghsrf/f mice were i.p. injected with 
ghrelin for 18 days (days 1–7, 33 µg/daily was given; days 8–18, 33 µg twice a day was given). 
Relative fat percentage gain, compared to the beginning of the treatment, was increased in 
ghrelin-injected Ghsrf/f from day 14 compared with AgRP-Cre;Ghsrf/f group. * p < 0.05 compared 
between genotypes; # p < 0.05 compared between treatment groups; (E) Daily caloric intake was 
comparable between saline- and ghrelin-treatment groups, as well as between different genotypes. 

2.4. GHS-R Deletion in AgRP Neurons Does Not Affect Energy Homeostasis under Regular Diet Feeding 

To elucidate the effects of AgRP-specific GHS-R deletion on metabolism, we assessed body 
weight and body composition of regualr diet (RD)-fed AgRP-Cre;Ghsrf/f mice and control Ghsrf/f mice. 
There were no significant differences in the body weight or fat content (genotype effect F1,23 = 1.262, p 
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significant difference between RD-fed AgRP-Cre;Ghsrf/f mice and control Ghsrf/f mice in food intake, 
locomotor activity, energy expenditure, or resting metabolic rate (Figure 3C–F). Together, these data 
suggest that GHS-R deletion in AgRP neurons does not have significant effects on energy 
homeostasis under normal feeding conditions. 

Figure 2. Ghrelin-induced GH secretion and acute food intake is abolished in Agrp-Cre;Ghsrf/f mice.
(A) Body length of AgRP-Cre;Ghsrf/f and control Ghsrf/f mice; (B) Ghrelin-induced GH release: Ghsrf/f

mice and AgRP-Cre;Ghsrf/f mice were anesthetized with pentobarbital (50 mg/kg); 15 min later, 20 µg
ghrelin was injected. Blood was collected for GH detection at 0 and 5 min after ghrelin injection.
(n = 5–9, * p < 0.05, Ghsrf/f mice vs. AgRP-Cre;Ghsrf/f mice); (C) Ghrelin-induced acute food intake.
Ghrelin (0.5 mg/kg) was i.p. injected into mice in the early morning after 3 h fasting. # p < 0.05, saline
vs. 30 min after ghrelin injection in Ghsrf/f mice; * p < 0.05, Ghsrf/f vs. AgRP-Cre;Ghsrf/f; (D) Chronic
ghrelin-induced adiposity: 4-month old Ghsrf/f mice and AgRP-Cre;Ghsrf/f mice were i.p. injected with
ghrelin for 18 days (days 1–7, 33 µg/daily was given; days 8–18, 33 µg twice a day was given). Relative
fat percentage gain, compared to the beginning of the treatment, was increased in ghrelin-injected
Ghsrf/f from day 14 compared with AgRP-Cre;Ghsrf/f group. * p < 0.05 compared between genotypes;
# p < 0.05 compared between treatment groups; (E) Daily caloric intake was comparable between
saline- and ghrelin-treatment groups, as well as between different genotypes.

2.4. GHS-R Deletion in AgRP Neurons Does Not Affect Energy Homeostasis under Regular Diet Feeding

To elucidate the effects of AgRP-specific GHS-R deletion on metabolism, we assessed body weight
and body composition of regualr diet (RD)-fed AgRP-Cre;Ghsrf/f mice and control Ghsrf/f mice. There
were no significant differences in the body weight or fat content (genotype effect F1,23 = 1.262, p = 0.27
and genotype effect F1,23 = 0.542, p = 0.47, respectively) (Figure 3A,B). Furthermore, the metabolic
assessment using Comprehensive Lab Animal Monitoring System (CLAMS) showed no significant
difference between RD-fed AgRP-Cre;Ghsrf/f mice and control Ghsrf/f mice in food intake, locomotor
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activity, energy expenditure, or resting metabolic rate (Figure 3C–F). Together, these data suggest
that GHS-R deletion in AgRP neurons does not have significant effects on energy homeostasis under
normal feeding conditions.

We previously showed that ghrelin inhibits glucose-induced insulin secretion, and ghrelin ablation
improves hyperglycemia of leptin-deficient mice [36]. We have also shown that global GHS-R ablation
ameliorates age-associated obese and insulin-resistant phenotypes in old mice [11], demonstrating
that GHS-R has important roles in energy- and glucose-homeostasis. To assess insulin sensitivity, we
performed insulin tolerance tests (ITT) and glucose tolerance tests (GTT) on RD-fed AgRP-Cre;Ghsrf/f

and control Ghrf/f mice. Fasting glucose levels of AgRP-Cre;Ghsrf/f mice were significantly lower at
0 time point (Figure 3G), but there was no significant difference in glucose excursions during GTT
(genotype effect F1,12 = 0.6252, p = 0.44). Despite a significant decrease in insulin levels in RD-fed
AgRP-Cre;Ghsrf/f mice at 30 min post bolus glucose injection in GTT, area under curve analysis showed
no significant difference. No significant difference was detected in ITT (genotype effect F1,12 = 1.774,
p = 0.21) (Figure 3H).
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Figure 3. GHS-R deletion in AgRP-neurons does not affect energy homeostasis or insulin sensitivity
in mice fed regular diet. (A,B) Body weight and fat percentage of Ghsrf/f and AgRP-Cre;Ghsrf/f mice,
n = 10 and 15, respectively; (C–F) Indirect calorimetry analysis: (C) Daily food intake, (D) Locomotor
activity, (E) Energy expenditure adjusted by body weight or lean mass, (F) Resting metabolic rate
(RMR) normalized by lean mass; (G) Glucose and insulin levels during GTT after 18 h overnight fast.
(H) ITT after 6 h morning fast. n = 6. * p < 0.05, Ghsrf/f vs. AgRP-Cre;Ghsrf/f.

2.5. AgRP Neuron-Specific GHS-R Deletion Attenuates Diet-Induced Obesity

We recently reported that deletion of GHS-R in all neurons effectively prevents DIO and
significantly improves insulin sensitivity [12]. To determine whether GHS-R in AgRP neurons mediates
the protective effect against DIO, we fed AgRP-Cre;Ghsrf/f and Ghsrf/f control mice with high-fat
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diet (HFD) starting at 10-weeks of age, and monitored changes in body weight, fat and lean mass
(measured by Echo MRI) biweekly. Gains in body weight and fat content was significantly reduced in
AgRP-Cre;Ghsrf/f mice compared to Ghsrf/f control mice, starting from 16 weeks of age (6 weeks after
commencement of HFD feeding) (genotype effect F1,22 = 10.81, p = 0.003 and genotype effect F1,22

= 15.69, p = 0.0007, respectively) (Figure 4A,B). Metabolic assessment showed no difference in food
intake or locomotor activity between AgRP-Cre;Ghsrf/f mice and control Ghsrf/f mice (Figure 4C,D),
while energy expenditure was significantly increased in AgRP-Cre;Ghsrf/f mice compared to Ghsrf/f

control mice (Figure 4E). Resting metabolic rate was not different between AgRP-Cre;Ghsrf/f and control
mice (Figure 4F). Importantly, AgRP-Cre;Ghsrf/f mice exhibited increased energy expenditure, while
physical activity and resting metabolic rate were unchanged. These data suggest that non-shivering
thermogenesis is primarily responsible for the improved metabolic phenotype of AgRP-Cre;Ghsrf/f mice.
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(A,B) Body weight and fat percentage of Ghsrf/f and AgRP-Cre;Ghsrf/f mice, n = 10; (C–F) Indirect
calorimetry analysis: (C) Daily food intake, (D) Locomotor activity, (E) Energy expenditure adjusted
by body weight or lean mass, (F) Resting metabolic rate (RMR) was measured during light cycle and
normalized by lean mass; (G) Glucose and insulin levels during GTT after 18 h overnight fast; (H) ITT
after 6 h morning fast. n = 6. * p < 0.05, ** p < 0.01, *** p < 0.001, Ghsrf/f vs. AgRP-Cre;Ghsrf/f.

However, despite the lean phenotype observed in HFD-fed AgRP-Cre;Ghsrf/f mice, they did not
show significant increase in insulin sensitivity compared to Ghsrf/f control mice. GTT showed that
glucose levels of AgRP-Cre;Ghsrf/f were significantly lower at 0 time point (Figure 4G), but there was no
significant difference in glucose excursions (genotype effect F1,14 = 2.332, p = 0.15). The glucose/insulin
ratio was not significantly different between AgRP-Cre;Ghsrf/f and Ghsrf/f control mice, and area under
curve analysis for insulin levels showed no significant difference.ITT showed significantly lower
blood glucose levels in AgRP-Cre;Ghsrf/f after insulin administration at 0 and 30 min, but showed no
difference when normalized to baseline glucose (genotype effect F1,13 = 1.987, p = 0.18) (Figure 4H).
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2.6. AgRP Neuron-Specific GHS-R Deletion Enhances Thermogenesis

The CLAMS analysis revealed that HFD-fed AgRP-Cre;Ghsrf/f mice have increased energy
expenditure (Figure 4E). To determine whether increased energy expenditure in AgRP-Cre;Ghsrf/f

mice is due to enhanced thermogenesis, we subjected both RD- and HFD-fed mice to 4 ◦C cold
exposure for 6 h. While there was no difference in cold resistance between RD-fed AgRP-Cre;Ghsrf/f

and control mice (genotype effect F1,6 = 0.6214, p = 0.4605), HFD-fed AgRP-Cre;Ghsrf/f mice exhibited
higher cold-resistance than control mice, showing higher core body temperature (genotype effect
F1,7 = 13.24, p = 0.008) (Figure 5A). Both brown adipocytes in brown adipose tissue (BAT) and beige
adipocytes in subcutaneous fat possess thermogenic properties [37,38]. Indeed, we detected increased
gene expression of β3-adrenergic receptor (β3-AR), and increased protein levels of the hallmark
thermogenic regulatory protein, uncoupling protein-1 (UCP1), in BAT of HFD-fed AgRP-Cre;Ghsrf/f

mice (Figure 5B,C). These data suggest that sympathetic nerve activity and thermogenic activity in
BAT may be increased in HFD-fed AgRP-Cre;Ghsrf/f mice.
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Figure 5. AgRP-neuron-specific GHS-R deletion increases thermogenesis, and activates thermogenesis
in BAT and inguinal fat under HFD feeding. (A) Rectal temperature of RD- and HFD-fed mice
during 4 ◦C cold exposure; (B) Expression of β3-adrenergic receptor gene in BAT; (C) Protein levels
of thermogenic protein UCP1 in BAT; (D) Expression of beige adipocyte marker genes in inguinal fat;
(E) Protein levels of thermogenic protein UCP1 in inguinal fat. Tissues were collected immediately
after cold challenge for 6 h at 4 ◦C. n = 5. * p < 0.05, ** p < 0.001 Ghsrf/f vs. AgRP-Cre;Ghsrf/f.

In addition to possible increased thermogenic function in BAT, the gene expression of beige
adipocyte markers Tbx1 and CD137 were also increased in the inguinal fat of HFD-fed AgRP-Cre;Ghsrf/f
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mice, suggesting possible increased browning of inguinal fat (Figure 5D). Consistently, we also detected
increased UCP1 protein levels in inguinal fat of HFD-fed AgRP-Cre;Ghsrf/f mice (Figure 5E). Together,
these data suggest that the lean phenotype of HFD-fed AgRP-Cre;Ghsrf/f mice may be due to increased
non-shivering thermogenesis in both BAT and WAT, since physical activity and resting metabolic rate
were not altered in these mice.

2.7. Putative Regulators Invloved in GHS-R Associated Thermogenic Regulation

To investigate the signaling network underlying the increased thermogenesis in HFD-fed
AgRP-Cre;Ghsrf/f mice, we microdissected ARC from HFD-fed groups and analyzed gene expression
of various signaling components. Given ghrelin’s role as an orexigenic hormone, we expected that
deletion of GHS-R from AgRP neurons would lead to reduced expression of orexigenic signals.
Intriguingly, while expression of orexigenic neuropeptide Agrp was significantly increased, expression
of orexigenic Npy was not altered, in HFD-fed AgRP-Cre;Ghsrf/f mice compared to control Ghsrf/f mice
(Figure 6A). In HFD-fed AgRP-Cre;Ghsrf/f mice, the anorexic Pomc gene showed a trend of decrease in
expression. Expression of melanocortin-4 receptor (Mc4r), the receptor for POMC-derived peptide
α-MSH, showed a significant decrease (Figure 6A). In ARC, despite the increase of expression of
orexigenic gene Agrp and the decrease of anorexic gene Pomc, the in vivo data showed no significant
difference in long-term total food intake (Figure 4C). Thus, these data suggest other compensatory
mechanisms exist in ARC for modulating energy sensing and calorie intake.
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Figure 6. AgRP-specific GHS-R deletion alters gene expression in various hypothalamic regions in
HFD-fed mice. Expression of various genes in ARC: (A) Expression of genes associated with orexigenic
and anorexic signals; (B) Expression of key regulators known to be involved in mitochondrial function
and β-oxidation; (C) Expression of genes involved in the mitochondrial dynamics. Expression of
various genes in PVN (D) and VMH (E), supporting activated thermogenic signaling. Tissues were
collected immediately after 6 h cold challenge at 4 ◦C. * p < 0.05, Ghsrf/f vs. AgRP-Cre;Ghsrf/f, n = 4–5.
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The sirtuin 1 (SIRT1)-p53 pathway has been shown to mediate the orexigenic action of
ghrelin [39,40]. The activation by ghrelin of the SIRT1-p53 pathway leads to increased AMP-activated
protein kinase (AMPK) activity, causing changes in hypothalamic mitochondrial respiration,
production of reactive oxygen species, activation of carnitine palmitoyltransferase 1 (CPT1) and
uncoupling protein 2 (UCP2) [25,41]. We analyzed the expression of these genes in microdissected
ARC to test whether the sirtuin 1/p53 pathway may mediate the thermogenic effect of GHS-R in
AgRP neurons. Deletion of GHS-R in AgRP neurons did not change expression of Sirt1, p53, AMPKa1,
AMPKa2, or Cpt1a, whereas Ucp2 was significantly decreased in HFD-fed AgRP-Cre;Ghsrf/f mice
compared to control Ghsrf/f mice (Figure 6B). Recent findings suggest that the mitochondrial dynamics
are important in the regulation of nutrient utilization and energy expenditure [42,43]. Here, we found
that mitochondrial fusion gene mfn1 was significantly decreased in HFD-fed AgRP-Cre;Ghsrf/f mice,
while other genes involved in mitochondrial dynamics were not significantly altered (Figure 6C).
Together these data suggest that deletion of GHS-R in AgRP neurons may alter mitochondrial activity,
which may in turn affect AgRP neuronal activity. AgRP neurons are GABAergic [44]; decrease in
neuronal activity of AgRP nuerons may lead to reduced inhibition of its downstream targets such as
POMC neurons and neurons in PVN and VMH of the hypothalamus.

2.8. Putative Downstream Regulators That May Mediate GHS-R Suppression-Induced Thermogenesis

PVN is an important site for the regulation of energy expenditure [45,46]. Recent study suggested
that NPY/AgRP neurons control sympathetic output and thermogenic function in BAT via a relay
of tyrosine hydroxylase (TH) neurons in the PVN [47]. TH is a rate-limiting enzyme involved in the
biosynthesis of catecholamines, including dopamine, norepinephrine and epinephrine. Hence, we
studied the expression of genes in the NPY/AgRP-PVN pathway. Consistent with the observation
that Npy was not significantly altered in HFD-fed AgRP-Cre;Ghsrf/f mice (Figure 6A), the expression
of its receptors Y1, Y2 and Y5 was unchanged in PVN (Figure 6D). Despite the significant increase
of Agrp in ARC (Figure 6A), expression of its downstream effector Mc4r was not changed in PVN of
HFD-fed AgRP-Cre;Ghsrf/f mice (Figure 6D). Notably, TH expression was significantly increased in
PVN, suggesting catecholamine output to downstream targets may be increased.

VMH is another important site that controls energy expenditure, involving regulatory pathways
such as AMPK-sympathetic nervous system and BAT axis-mediated thermogenic signaling [48–50].
Whole brain mapping of axonal projections from AgRP neurons suggest that AgRP neurons project
to the neurons in VMH [51]. Interestingly, AMPK1a gene expression was decreased in VMH of
AgRP-Cre;Ghsrf/f mice (Figure 6E). Leptin is an anorexic hormone, and leptin regulates thermogenesis
via VMH [52]. However, expression of leptin receptor (Lepr) and its downstream mediator STAT3 in
VMH was not changed. Taken together, these gene expression data suggest that mitochondrial function
may be altered in GHS-R deleted AgRP neurons. We hypothesize that GHS-R deficient AgRP neurons
have reduced inhibitory tone to its downstream targets PVN neurons and VMH neurons, which may
contribute to the concomitant increase of sympathetic nerve activity. These affected neuronal circuits
may together lead to increased thermogenic activation in BAT and subcutaneous WAT, subsequently
increasing energy expenditure. A schematic diagram depicting the hypothetical pathway is shown in
Figure 7.
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which enhances thermogenesis in the brown and beige adipocytes, subsequently increasing energy 
expenditure (red upward arrows). Thus, GHS-R in AgRP neurons may regulate thermogenesis in 
BAT and WAT through ARC → PVN → sympathetic outflow, and/or ARC → VMH → sympathetic 
outflow pathways (Small black arrows in each brain regions indicate the gene expression changes in 
AgRP-specific GHS-R KO mice compared to WT mice: upward arrow = increase, downward arrows 
= decrease. Dotted line T bar shows the hypothetical inhibitory signals from AgRP neurons to POMC 
neurons in ARC or neurons in PVN and VMH. Red question mark shows the suggested axonal 
projections from AgRP neurons to VMH, which need to be confirmed). 
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Figure 7. Schematic diagram of proposed neuronal circuits involved in AgRP-specific GHS-R mediated
thermoregulation. Deletion of GHS-R in AgRP neurons may lead to decreased AgRP neuron activity,
which decreases inhibitory tone to its downstream targets POMC neurons, PVN and VMH regions.
GHS-R suppression in AgRP neurons may up-regulate the sympathetic outflow, which enhances
thermogenesis in the brown and beige adipocytes, subsequently increasing energy expenditure
(red upward arrows). Thus, GHS-R in AgRP neurons may regulate thermogenesis in BAT and WAT
through ARC→ PVN→ sympathetic outflow, and/or ARC→ VMH→ sympathetic outflow pathways
(Small black arrows in each brain regions indicate the gene expression changes in AgRP-specific GHS-R
KO mice compared to WT mice: upward arrow = increase, downward arrows = decrease. Dotted
line T bar shows the hypothetical inhibitory signals from AgRP neurons to POMC neurons in ARC or
neurons in PVN and VMH. Red question mark shows the suggested axonal projections from AgRP
neurons to VMH, which need to be confirmed).

3. Discussion

In this study, we report that AgRP neuron-specific deletion of GHS-R increases energy expenditure.
This increase is likely due to increased thermogenesis, as AgRP-Cre;Ghsrf/f mice show increased
ability to maintain core body temperature during acute cold challenge, and increased expression of
thermogenic marker UCP1 in BAT and WAT. AgRP neurons are a neuronal population located in
the hypothalamic arcuate nucleus, and previous studies support a critical role of AgRP neurons in
glucose-sensing and modulation of energy homeostasis [5,25,27,29,53,54]. Compelling evidence using
optogenetic approaches showed that increased firing activity in AgRP neurons is sufficient to rapidly
and robustly induce voracious feeding, even in satiated mice [54]. Ghrelin has been shown to directly
activate AgRP neurons [5,25]. Re-expression of GHS-R in AgRP neurons, using tamoxifen-inducible
AgRP-CreER in adult GHS-R null mice containing floxed-STOP codon preceding Ghsr gene, has been
shown to partially restore orexigenic responses of ghrelin [27]. Acute administration of exogenous
ghrelin leads to orexigenic stimulation, and chronic administration leads to fat deposition [1,7,55,56].
In this study, we showed that acute ghrelin-induced feeding was abolished in AgRP-Cre;Ghsrf/f mice,
and chronic ghrelin-induced fat deposition was blunted in AgRP-Cre;Ghsrf/f mice. Interestingly, normal
daily food intake and body length is not altered in AgRP-Cre;Ghsrf/f mice, suggesting compensatory
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mechanisms likely exist to maintain normal energy balance and growth under unchallenged condition.
Furthermore, recent findings showed that ablation of ghrelin-producing cells in adult mice did not
result in hypophagic phenotype and that ghrelin in normal physiological concentration ranges is
not essential for regulation of food intake [57]. These results are in line with our finding that
AgRP-Cre;Ghsrf/f mice have no reduction in total food intake.

Ghrelin and synthetic analogs are known to stimulate growth hormone (GH) release from the
pituitary gland [58–60]. There is a clinical study showing that ghrelin promotes GH release mainly at
the level of the arcuate nucleus [61]. It has been further demonstrated that ghrelin directly activates
neurons of growth hormone-releasing hormone (GHRH) in the arcuate nucleus to stimulate GH
secretion [62]. We have previously reported that acute administration of ghrelin to anaesthetized mice
stimulates GH release [3]. Significant increase in serum GH levels was observed as early as five min
post ghrelin injection, and this effect was reduced at 15 min post injection. Global deletion of GHS-R
completely abolished ghrelin-induced GH release [3]. AgRP neurons have been reported to project
directly to the pituitary to regulate GH-IGF-1 axis [63], but whether ghrelin directly activates AgRP
neurons to stimulate GH secretion is not known. Here we used a similar approach as our previous
publication [3], measuring serum GH levels before and 5 min post ghrelin injections in anaesthetized
mice. We showed that acute ghrelin-induced GH release was abolished in AgRP-Cre;Ghsrf/f mice. While
the anaesthetized condition helped to minimize confounding factors such as handling stress, other
stress responses associated with blood sampling cannot be ruled out. Recent report shows that the
newly improved GH hormone detection assay allows for reliable measurement of GH using as little as
2 µL of whole blood [64]. We will employ this new method in the future in examining pulsatile GH
levels in mice. Nevertheless, our data provide direct in vivo evidence that GHS-R in AgRP neurons is
required for ghrelin’s stimulatory effects on GH release.

Previously, we and others have reported that global GHS-R knockout mice show normal or slightly
reduced body weights and fat mass when fed a regular chow diet [8,65]. Similarly, AgRP-Cre;Ghsrf/f

showed no significant difference in body composition, food intake, energy expenditure and insulin
sensitivity under RD feeding. However, when challenged with HFD, AgRP-Cre;Ghsrf/f mice showed
increased energy expenditure, despite total energy intake being comparable. The increase in energy
expenditure is likely due to increased non-shivering thermogenesis, since both physical activity and
resting metabolic rate were similar. Consistent with the increased energy expenditure phenotype,
AgRP-Cre;Ghsrf/f mice were more resistant to cold challenge, suggesting that GHS-R deletion in AgRP
neurons may enhance thermogenesis.

Energy homeostasis is determined by the balance between energy intake and energy
expenditure [66]. Enhancing thermogenesis to increase energy expenditure offers an attractive strategy
to combat obesity. We previously reported that GHS-R plays an important role in BAT thermogenesis
during aging, and GHS-R ablation improves age-associated thermogenic impairment [9]. Here we
showed that under DIO condition, deletion of GHS-R in AgRP neurons led to increased β3-adrenergic
receptor expression and increased UCP1 protein in BAT, and also led to increased expression of beige
adipocyte markers as well as increased UCP1 protein levels in subcutaneous fat. Our data collectively
suggest that GHS-R in AgRP neurons may play a central role in regulating adaptive thermogenesis in
BAT and WAT, and this effect is more pronounced under the obese and cold challenged conditions.
Further experiments measuring sympathetic activity and BAT tissue temperature would be very
beneficial to confirm enhanced thermogenesis in AgRP-Cre;Ghsrf/f mice.

The ARC is one of the key hypothalamic nuclei that regulate energy homeostasis, and it
contains both anorexigenic POMC neurons and orexigenic NPY/AgRP neurons [46]. Food restriction
causes significant increases in expression of NPY and AgRP in the ARC and decreases adaptive
thermogenesis [67]; this suggests that NPY and AgRP in ARC, in addition to their classic orexigenic
property, also have important roles in thermoregulation. We found a paradoxical increase in Agrp
expression and decrease in Mc4r expression in ARC of AgRP-Cre;Ghsrf/f mice; this suggests a decreased
melanocortinergic tone. Our data also showed decreased Ucp2 and mfn1 expression in ARC of
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AgRP-Cre;Ghsrf/f mice, which imply altered mitochondrial function. Whether these mitochondrial
changes lead to decreased neuronal activity in AgRP neurons, which subsequently decrease GABAergic
signal output of AgRP neurons to downstream target sites need further confirmation.

Whole-brain mapping of axonal projections from AgRP neurons suggest that AgRP neurons
project to neurons in PVN and VMH, which are important sites for the regulation of energy
expenditure [51]. Our recent report of total neuronal deletion of GHS-R showed that PVN and
VMH might be important sites involved in thermoregulation [12]. In this study, we further assessed the
neuro-circuits involved in GHS-R mediated thermoregulation using AgRP-Cre;Ghsrf/f mice. NPY/AgRP
neurons in ARC have been shown to inhibit thermogenesis via suppression of tyrosine hydroxylase
(TH) neurons in the PVN [47]. AMPK-sympathetic nervous system-BAT axis has been shown to
mediate thermogenic signaling in VMH [48–50]. Consistently, we found that TH expression in the PVN
of HFD-fed AgRP-Cre;Ghsrf/f mice was increased, and AMPK1a expression was decreased in VMH of
AgRP-Cre;Ghsrf/f mice; this suggests decreased inhibitory tone from GHS-R deficient AgRP neurons.
We hypothesize that GHS-R in AgRP neurons regulates thermogenesis in BAT and WAT through ARC
→ PVN→ sympathetic outflow and/or ARC→ VMH→ sympathetic outflow pathway (Figure 7).
Future functional studies are required to confirm our current findings. Further investigations of
GHS-R-mediated thermoregulation in AgRP neurons and its downstream neuronal pathways would
be important for gaining a full understanding of how ghrelin signaling regulates sympathetic nerve
activity and adaptive thermogenesis.

Recent studies show that DIO causes ghrelin resistance, and ghrelin sensitivity can be restored
with weight loss ([68,69]; reviewed by Zigman et al. [70]). The authors propose that ghrelin resistance
may serve as a protective mechanism to restrict a higher body weight set point established during
DIO. Consistent with this idea, our data show that AgRP-Cre;Ghsrf/f mice are more resistant to DIO,
suggesting GHS-R deficiency in AgRP neurons may mimic the ghrelin resistance state induced by
HFD feeding, setting body weight gain at a lower threshold [70].

4. Materials and Methods

4.1. Animals

We previously described the generation of fully backcrossed GHS-R floxed mice on C57BL
background [12]. Using a Cre-Lox system, we generated AgRP neuron-specific GHS-R knockout
mice by breeding Ghsrf/f mice with widely used AgRP neuron-specific AgRP-Cre mice [30,31]. Mice
were housed in the animal facility of Baylor College of Medicine, maintained at ~75 ± 1 ◦F with 12 h
light/dark cycles (lights on 6 a.m. to 6 p.m.) with free access to water and food. For the current
study, age-matched male Ghsrf/f (WT) and AgRP-Cre;Ghsrf/f mice were fed diets from Harlan Teklad
(Madison, WI, USA): regular diet (RD) 2920X, with the caloric composition of 16% from fat, 60% from
carbohydrates, 24% from protein; or high-fat diet (HFD) TD88137, with the caloric composition of
42% from fat, 42.7% from carbohydrates, 15.2% from protein. Separate cohorts of mice were used
to study ghrelin’s pharmacological effects on growth hormone, acute food intake and adiposity,
and in vivo long-term RD and HFD feeding. All experimental procedures used were approved by
the Baylor College of Medicine Institutional Animal Care and Use Committee (IACUC, AN-2770,
8/7/2014–1/9/2017), and all methods were performed in accordance with the relevant guideline
and regulations.

4.2. Body Composition and Indirect Calorimetry Studies

Whole body composition was monitored using Echo MRI-100 whole-body composition analyzer
(Echo Medical Systems, Houston, TX, USA) to assess fat and lean mass. All metabolic parameters
data were obtained using an Oxymax (Columbus Instruments, Columbus, OH, USA) open-circuit
indirect calorimetry system, as we have previously described [11,71]. Mice were individually housed
in feeding chambers and given free access to powdered diets for 4 days for initial acclimatization,
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then transferred to metabolic chambers for indirect calorimetry testing for 5 days. Data presented are
averages of the day 2 to 4 of indirect calorimetry recordings. On the last day, the mice were fasted
starting from 6 a.m. (light on) to 6 a.m. the following day (24 h fast). Resting metabolic rate (RMR)
was calculated from the average of the 3 lowest points of energy expenditure values between 10 a.m.
to 2 p.m. during the fasting period. Energy expenditure data was normalized to both lean mass and
body weight. Locomotor activity was measured on x- and z-axes (horizontal and vertical activities,
respectively) using infrared beams to count the number of beam breaks during the recording period.

4.3. Glucose Tolerance Tests (GTT) and Insulin Tolerance Tests (ITT)

For GTT, overnight-fasted mice were i.p. injected with 2.0 g/kg D-glucose (Sigma, St. Louis, MO,
USA). At 0, 15 and 30 min time points, blood was collected from tail vein. A drop of blood was used
to measure glucose, and 25 µL of blood was collected into EDTA-coated capillary tubes for insulin
analysis. Plasma insulin during GTT was measured using Mouse Insulin ELISA kit (Cat: 10-1247-10,
Mercodia, Sweden) according to manufacturer’s instruction. For ITT, mice were fasted for 6 h starting
at 8:00 a.m., and 1 U/kg Humulin (Eli Lilly Company, Indianapolis, IN, USA) was i.p. injected. Blood
glucose was measured at different time points (0, 15, 30, 60, 120 min) using OneTouch Ultra blood
glucose meter (LifeScan, New Brunswick, NJ, USA).

4.4. Brain Processing for Immunofluorescence Imaging

Mice were anesthetized with isoflurane, then intracardially perfused with 50 mL of 10% formalin
following saline washout. Subsequently the brains were removed and postfixed overnight in 10%
formalin. Later the brains were cryoprotected by immersion in 30% sucrose in PBS at 4 ◦C. 25 µm
coronal sections were cut using freezing microtome, mounted onto silane-coated glass slides, and
coverslipped with Mounting Shield with DAPI (Vector Laboratories, Burlingame, CA, USA). Images
were taken with Leica Microscope using MM AF software (Buffalo Grove, IL, USA).

4.5. Brain Regions for Expression Analysis

Whole brains of mice were collected and frozen on dry ice. Hypothalamic brain regions were
dissected from 500 µm-thick coronal sections using 21 or 19 G Neuro Punches (Fine Science Tools, Inc.,
Foster City, CA, USA) under a magni-focuser (Edroy Products Company, Inc., Nyack, NY, USA) as
described previously [12]. Punched tissues were stored at −80 ◦C until further analyses.

4.6. Quantitative Real-Time PCR

To assess the mRNA gene expression, total RNA was isolated using TRIzol® Reagent
(Invitrogen, Carlsbad, CA, USA) or Rneasy Mini kit (QIAGEN) for tiny tissues, according to the
manufacturer’s instructions. In order to eliminate genomic DNA contamination, RNA samples
were treated with RNase-free DNase (Ambion, Austin, TX, USA). Reverse transcription was
performed with Superscript III First Strand Synthesis System (Invitrogen, Carlsbad, CA, USA).
Quantitative real-time PCR reactions were performed in duplicates with Biorad CFX384 model
(Bio-Rad Lab., Hercules, CA, USA). Relative gene expression levels were normalized by 18S.
GHS-R-1a primers are: forward primer 5′-GGACCAGAACCACAAACAGACA-3′, reverse primer
5′-CAGCAGAGGATGAAAGCAAACA-3′ [13]. This primer set flanks the intron, which helps to
distinguish functional ghrelin receptor GHS-R-1a from truncated GHS-R-1b. The rest of the primer
information can be found in our recent publication [12].

4.7. Growth Hormone Assay

Growth hormone assay was carried out in 3-month old male mice as we have previously
described [3]. Briefly, fed mice were i.p. injected with 50 mg/kg pentobarbital. Fifteen min later, 20 µg
ghrelin was i.p. injected to induce GH release. Blood samples (80 µL) were collected from the tail vein
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at 0 and 5 min after ghrelin administration. The plasma concentration of GH was determined using
GH Rat/Mouse Hormone RIA kit (Millipore Corporation, Billerica, MA, USA).

4.8. Ghrelin-Induced Spontaneous and Chronic Food Intake

The effect of ghrelin on spontaneous food intake was measured as we have previously reported [3].
Mice were singly housed for food intake measurements. Briefly, after 3 h fast (7:00 to 10:00 a.m.), mice
were i.p. injected with saline and food intake was measured. Regular chow pellets were pre-weighed
and placed inside each cage in a cup, and weighed again at indicated times. Any spillage was taken
into account in calculating food intake. After 30 min, the same mice were i.p. injected with ghrelin at
0.5 mg/kg body weight. Food intake was then monitored every 30 min for 90 min. For chronic ghrelin
treatment, 4-months old AgRP-Cre;Ghsrf/f and control Ghsrf/f mice were singly housed in metabolic
cages equipped with balances (Columbus Instruments, Columbus, OH, USA). Powdered regular chow
was used, and food intake was continuously monitored by the system, taking spillage into account.
Mice were i.p. injected with ghrelin for 18 days (day 1 to 7, 33 µg (10 nmol)/daily; day 8 to 18, 33
µg twice daily). Daily body weight, fat mass and lean mass were assessed using Echo MRI body
composition analyzer.

4.9. Cold Challenge Study

Core body temperatures were measured using a TH-8 Thermalert monitoring thermometer with
a rectal probe (Physitemp Instruments Inc., Clifton, NJ, USA). Mice were individually caged for 6 h
at 4 ◦C with free access to food and water. Body temperature was assessed hourly for 6 h; mice
were then sacrificed immediately, and tissues were dissected, snap frozen and stored at −80 ◦C for
further analysis.

4.10. Western Blot Analyses

About 0.2 g of brown adipose tissue (BAT) and inguinal white adipose tissue (ING) were sonicated
in 1X RIPA Buffer containing complete Phosphatase Inhibitor Cocktail (PhosSTOP) and Protease
Inhibitor Cocktail (Roche Diagnostics GmbH, Mannheim, Germany). Protein concentrations of samples
were determined using BCA Protein Assay kit (Pierce, Rockford, IL, USA). 20 and 40 µg of proteins from
BAT and ING were separated by 10% SDS-PAGE followed by electrophoretic transfer to a nitrocellulose
membrane. Membranes were blocked in Tris-buffered saline with Tween 20 (TBS-T, 50 mM Tris-HCl
(pH 7.5–8.0), 150 mM NaCl and 0.1% Tween 20) containing 5% non-fat milk for 1 h at room temperature,
and incubated with anti-UCP1 (ABCAM, Cambridge, MA, USA, Ab10983, 1:10,000), or anti-β-actin
(Cell Signaling, Danvers, MA, USA, 4967S, 1:1000) overnight at 4 ◦C. Blots were washed 3 × 15 min in
TBS-T, followed by incubation in horseradish peroxidase-conjugated anti-rabbit secondary antibody
(GE Healthcare Bio-Sciences, Pittsburgh, PA, USA, 1:10,000). This was followed by another 3 × 15 min
washing in TBS-T, and visualization using the Pierce ECL Western Blotting Substrate. Densitometry
analyses were performed using NIH ImageJ software (version 1.4, Bethesda, MD, USA).

4.11. Statistical Analysis

Data were presented as mean ± SEM. Graph-Pad Prism version 6.0 software (La Jolla, CA, USA)
was used, and p < 0.05 was considered statistically significant. Two-way ANOVA with repeated
measures were used to analyze body weight, fat percentage, GTT, ITT and cold stress data, and Sidak’s
multiple comparisons test was used for post-hoc analysis. Student’s t-tests were used to compare
genotype effects in all other experiments.

5. Conclusions

In summary, we found that GHS-R in AgRP neurons is essential for ghrelin-induced GH release,
acute food intake and adiposity, but it is not required for long-term growth or total food intake.
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Important to note, AgRP neuron-specific deletion of GHS-R results in increased energy expenditure,
likely due to increased thermogenic function in BAT and subcutaneous WAT, leading to decreased
susceptibility to diet-induced obesity. Our results show that GHS-R in AgRP neurons has a key role in
thermoregulation, which likely contributes to pathogenesis of DIO. The new model of Agrp-Cre;Ghsrf/f

mice is a powerful tool that can be used to further investigate the neural circuits involved in adaptive
thermogenesis. This study advances our understanding of the neural circuitries that mediate the
metabolic effects of ghrelin signaling in hypothalamus, offers new insights for thermoregulation and
energy metabolism at large, and also provides a novel anti-obesity strategy.
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