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Oxidative (OS), reductive (RS), and nitrosative (NSS) stresses produce carbonylation, glycation, glutathionylation, sulfhydration,
nitration, and nitrosylation reactions. OS, RS, and NSS are interrelated since RS results from an overactivation of antioxidant
systems and NSS is the result of the overactivation of the oxidation of nitric oxide (NO). Here, we discuss the general
characteristics of the three types of stress and the way by which the reactions they induce (a) damage the DNA structure causing
strand breaks or inducing the formation of 8-oxo-d guanosine; (b) modify histones; (c) modify the activities of the enzymes that
determine the establishment of epigenetic cues such as DNA methyl transferases, histone methyl transferases, acetyltransferases,
and deacetylases; (d) alter DNA reparation enzymes by posttranslational mechanisms; and (e) regulate the activities of
intracellular enzymes participating in metabolic reactions and in signaling pathways through posttranslational modifications.
Furthermore, the three types of stress may establish new epigenetic marks through these reactions. The development of
cardiometabolic disorders in adult life may be programed since early stages of development by epigenetic cues which may be
established or modified by OS, RS, and NSS. Therefore, the three types of stress participate importantly in mediating the impact
of the early life environment on later health and heritability. Here, we discuss their impact on cardiometabolic diseases. The
epigenetic modifications induced by these stresses depend on union and release of chemical residues on a DNA sequence and/or
on amino acid residues in proteins, and therefore, they are reversible and potentially treatable.

1. Introduction

Mammalian cells contain two different genomes: the nucleic
genome and a smaller mitochondrial genome, and both
genomes may be epigenetically modified. Many environmen-
tal factors and signals derived frommetabolic pathways serve
as messengers to coordinate the genetic response and to com-
municate both genomes [1–3]. Oxidative (OS), reductive
(RS), and nitrosative (NSS) stresses are among the signals
that affect the structure of DNA both in the nucleus and

the mitochondria. The three types of stress also modify pro-
teins including histones, enzymes participating in the estab-
lishment of the classical epigenetic cues, DNA damage
reparation enzymes, and proteins participating in intracellu-
lar pathway through posttranslational regulation. They also
induce changes that may act as new epigenetic marks. There-
fore, these stresses participate in the nongenomic tuning of
the phenotype modifying previously existing epigenetic cues,
having beneficial effects, or increasing or decreasing the risk
of diseases later in life including cardiometabolic disorders
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such as obesity, metabolic syndrome, diabetes, hypertension,
atherosclerosis, and cardiac hypertrophy. The development
of these diseases may be programed by epigenetic cues mod-
ified by OS, RS, and NSS from early stages of development.
Therefore, the three types of stress mediate the impact of
the early life environment on later health and its heritability
[4, 5].

The most common epigenetic cues are DNA methyla-
tion, histone modifications (methylation and acetylation),
and noncoding RNAs. However, other mechanisms induced
by OS, RS, and NSS may also modify the structure or reading
of DNA, alter the histones upon which the DNA is struc-
tured, or modify the enzymes involved in DNA reparation.
Reactions such as carbonylation, glycation, glutathionyla-
tion, sulfhydration, nitration, and nitrosylation may also act
as epigenetic cues (see Figure 1).

Epigenetic modifications induced by OS, RS, and NSS
depend on union and release of chemical residues on a
DNA sequence and/or on amino acid residues in histones
in the same way as classical epigenetic cues, and therefore,
they are reversible and potentially treatable [6, 7]. Thus,
although epigenetic inheritance resembles genetic inheri-
tance of DNA in the capacity to transmit acquired character-
istics through generations, epigenetic classic mechanisms
differ in their capacity to be reversible through changes in
the environment and by variations in nutritional factors.
The mechanisms and the cellular levels at which OS, RS,
and NSS act are illustrated in Figure 2 and will be discussed
throughout this review. In this paper, we also discuss the epi-
genetic cues that may be induced by OS, RS, and NSS and
their impact on cardiometabolic diseases.

2. Definition and Mediators of Oxidative,
Reductive, and Nitrosative Stress

2.1. Oxidative Stress. Reactive oxygen species (ROS) are
oxygen-containing molecules with an uneven number of
electrons that allow them to react rapidly with other mole-
cules. ROS include the radical superoxide anion (O2

-),
hydroxyl radicals (OH·), alkoxyl radicals (RO·), peroxyradi-
cals (ROO·), hydrogen peroxide (H2O2), hypochlorous acid
(HOCl), and the oxygen singlet (1O2) [8]. Free radicals can
cause large-chain chemical reactions because they easily react
with other molecules inducing oxidation that may be benefi-
cial or harmful. When functioning properly, they help fight
off pathogens which lead to infections and function as second
messengers. However, they may also constitute a source of
cellular damage [9].

ROS are produced at several intracellular locations,
including mitochondria, peroxisomes, plasma membrane,
endoplasmic reticulum, and cytoplasm. ROS are mainly gen-
erated by mitochondria through oxidative phosphorylation
and the activity of the mitochondrial complexes I and III
[10]. Mitochondrial ROS are the principal species that cause
peroxidation of polyunsaturated fatty acids localized at cellu-
lar membranes as well as DNA. In DNA, they promote sin-
gle- and double-strand breaks, and in protein, they cause
damage through oxidation of sulfhydryl and aldehyde

groups, protein-protein interactions, and fragmentation
[11, 12].

Since most mitochondrial proteins are encoded in the
nuclear genome, there must exist a suitable communication
between nucleus, cytoplasm, and mitochondrial compart-
ments which is essential for maintaining appropriate mito-
chondrial function. Human mitochondrial DNA is a
16.5 kb circular double-stranded DNA containing a heavy
and a light strand and located in the mitochondrial matrix.
It contains 37 genes encoding for 13 subunits of the oxidative
phosphorylation complexes I, III, IV, and V; two ribosomal
RNAs; and 22 transfer RNAs. The replication, transcription,
and maintenance of mitochondrial DNA are carried out by a
nuclear-encoded factor [13].

ROS are also produced by cytosolic enzymes such as the
reduced nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, cyclooxygenases, xanthine oxidase, and
cytochrome P450. The decoupling of the endothelial nitric
oxide synthase (eNOS) also produces ROS. These enzymes
are implicated in the redox balance [14].

2.2. Reductive Stress. RS is the counterpart of OS. It is the
result of an elevated level of thiol groups that leads to an
increase of reducing equivalents such as NADPH, glutathi-
one (GSH)/glutathione disulfide (GSSG) ratio or to an ele-
vated level of sulfhydric acid (H2S) [15]. GSH is constituted
by glutamate, cysteine, and glycine. It is synthetized by γ-glu-
tamyl-cysteine synthetase (GCL) and GSH synthetase, and it
is regenerated by glutathione reductase (GR) [8]. GSH acts as
a second messenger in cells and is the most abundant endog-
enous intracellular antioxidant. Although it is mostly found
in a free form (85%), it can also bind to proteins [16]. GSH
regenerates vitamins E and C and is able to inactivate O2

−

and OH· radicals [17]. GSH is oxidized to GSSG in the pres-
ence of ROS, and, in turn, GSSG is recycled back to GSH, by
GR. This reaction is NADPH-dependent [18].

GSH is a source of reducing equivalents that are impor-
tant for the proper function of the glutathione peroxidase
(GPx) isoforms [19]. GPx are a family of homologous
enzymes that contain a selenium-cysteine that is an impor-
tant antioxidant enzyme involved in preventing the harmful
accumulation of intracellular H2O2. An increase in the GSH
levels leads to abnormal mitochondrial oxidation and disrup-
tion of mitochondrial homeostasis [20].

Sulfhydric acid (H2S) is also a very potent reducing agent.
H2S donors modify thiol groups of specific cysteines in target
proteins via sulfhydration. This gas is a pleiotropic transmit-
ter, which is produced from L-cysteine in the intestine by the
sulfate-reducing bacteria as an end product of anaerobic res-
piration [21, 22].

H2S is also endogenously produced by multiple transsul-
furation reactions catalyzed by the enzymes cystathionine
gamma-lyase (CSE), cystathionine β-synthase (CBS), and 3-
mercaptopyruvate sulfurtransferase (3MST) [23]. These
enzymes are not only present in the gut but are also found
in other organs, having a tissue-specific rate of expression.

H2S is a biologically relevant signaling molecule with
potential roles in several physiological processes and plays
versatile roles in cell death/survival [24]. H2S can penetrate
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Figure 1: Mechanisms and levels at which oxidative, reductive, and nitrosative stress produce cell damage. Mechanisms (in red) include the
direct action on DNA and on proteins. The levels at which oxidative, reductive, and nitrosative stress act (in green) include epigenetic
regulation, posttranscriptional regulation, and posttranslational regulation.
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plasma membranes and transduce intracellular and intercel-
lular signals without the need of a receptor [21].

Polysulfides act as catalysts for sulfide oxidation and the
concomitant production of ROS. However, the H2O2 pro-
duced in the autoxidation of H2S may be relevant for cell sig-
naling. Thus, H2S serves as a means for generating H2O2 in
cell signaling processes under some circumstances, and it
activates transcription factors such as the nuclear factor ery-
throid 2-related factor 2 (Nrf2), which regulates the expres-
sion of antioxidant proteins [25] (see Figure 3).

2.3. Nitrosative Stress. Reactive nitrogen species (RNS) are
the result of an increased oxidation of nitric oxide (NO).
NO is produced by the nitric oxide synthase (NOS) isoforms
and has important physiological actions constituting an
important vasodilator and neurotransmitter. Elevated levels
of RNS are caused by an excess production of NO by the
inducible nitric oxide synthase (iNOS) or by the uncoupled
eNOS in the presence of high concentrations of O2

- [8]. At
low concentrations, NO protects the cells from proapoptotic
effects, but elevated levels lead to apoptosis [26]. RNS, in
proper concentrations, function as second messengers, par-
ticipate in signal transduction pathways, and serve as non-
specific defenses forming part of the immune responses.
However, when their concentrations are increased, RNS ele-
vate the level of toxic molecules and may induce cellular
damage in the presence of an oxidative environment [27,
28]. The following molecules are considered RNS: peroxyni-
trite (ONOO-), nitrogen dioxide (·NO2), peroxynitrous acid
(HNO3), dinitrogen trioxide (N2O3), nitroxyl (HNO), perox-
ynitrous acid (ONOOH), peroxynitrate (O2NOO

-), peroxy-
nitric acid (O2NOOH), nitrosonium cation (NO+), nitrate
(NO3

-), nitrite (NO2
-), and nitroxyl anion (NO-) [8].

2.4. Protection against Stress. Oxidative stress results from an
imbalance between free radicals and antioxidants in the
body. Antioxidants are molecules that can donate an electron
to a free radical without making themselves unstable. This
causes the free radical to stabilize and become less reactive.
Oxidation is a normal and necessary process that takes
place in cells; however, when there are more free radicals
present than can be kept in balance by antioxidants, the
free radicals start damaging fatty cell components, DNA,
and proteins [29].

Enzymatic and nonenzymatic antioxidant systems regu-
late the level of ROS to remain at a functional level. The enzy-
matic system includes superoxide dismutase (SOD) with its
three isoforms: copper-zinc (Cu-ZnSOD), manganese SOD
(MnSOD), and extracellular (ECSOD); catalase (CAT),
enzymes that employ glutathione (GSH) such as GPx iso-
forms, glutathione-S-transferase (GST), GR, glutaredoxin
(Grd), and peroxythioredoxins (Trx) [30]. The nonenzy-
matic antioxidant systems are represented by reduced GSH,
ascorbic acid (vitamin C), α- and β-tocopherol (vitamin E),
α-retinol, (vitamin A), lycopene, ubiquinol-10, carotene,
water soluble uric acid, pyruvate, and bilirubin [31]. An
excess of antioxidants can also lead to a redox imbalance
[32].

3. Oxidative Stress and Changes in Nuclear and
Mitochondrial DNA

Oxidative stress may result in genome instability and global
heterochromatin loss thus affecting the chromatin states
[33–35]. Chromatin can be found in the next four states:
(1) transcriptionally active chromatin; (2) repressed chroma-
tin; (3) silent chromatin, which is not associated with specific
proteins or histone marks; and (4) heterochromatin protein
1- (HP1-) associated chromatin [36]. These different states
are important to maintain proper transcription [37, 38],
mitosis [39], and meiosis [40].

Different mechanisms protect cells from heterochroma-
tin loss and enhance genome stability upon exposure to OS.
When exposed to H2O2, there is an increase in the stability
of pericentromeric heterochromatin which has elevated
levels of the histone H3K9 methyltransferase SUV39H1,
SIRT1 deacetylase, and HP1 proteins [41].

Damage in mitochondrial DNAmay lead to a decrease in
the expression of electron transport chain components or in
the expression of components that produce more ROS. These
damages in mitochondrial DNA also correlate with diseases
including atherosclerosis. This has been found in mouse
models and human tissues. Damage to mitochondrial DNA
plays an important role in different diseases including diabe-
tes, obesity, dyslipidemia, hypertension, arrhythmias, and
sudden cardiac death. Investigations developed by different
groups have exposed a complex association between environ-
mental factors, mitochondrial metabolism, epigenetic sig-
nals, and transcriptional programs. Mitochondria do not
have specific DNA reparation enzymes, and this genome is
therefore more vulnerable to damage by these three types of
stress [42].

3.1. Effects of DNA Damage on Gene Expression and on DNA
Reparation Processes. DNA can be directly affected by OS
which causes strand breaks. Deoxyguanosine (dG) is the
most prone nucleoside toward oxidation, and it is turned into
8-oxo-d guanosine (8-oxo-dG) by ROS. This end product is
regularly bound and excised by 8-oxoguanine DNA glycosy-
lase and then repaired by the base excision repair-pathway.
When the oxidative damage is important, reparation mecha-
nisms may not be able to compensate for the damage [43].

Damaged bases, as a consequence of OS, can contribute
to gene regulation. The preferred targets for oxidation are
G-quadruplex (G4) that are guanine tetrads which are stabi-
lized by hydrogen bonds andmonovalent cations. Some tran-
scription factors are usually bound to these sequences and the
alterations of the G4 conformational state participate in the
regulation of gene expression [44]. Inactive 8-Oxoguanine
DNA glycosylase binds to 8-oxo-dG, recruiting transcription
factors and enhancing gene expression [45]. Oxidative DNA
damage can also inhibit binding of other chromatin proteins
[46].

GSH, one of the main molecules that induce RS, is recog-
nized as an agent that induces DNA damage and impairs
repair mechanism, redox regulation, and cell signaling path-
ways [47, 48].
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H2S is a DNA-damaging mutagen generating single-
strand DNA cleavage. This process involves autoxidation of
H2S to generate O2

-, H2O2, and
·OH that damage DNA via

a trace metal-mediated Fenton-type reaction [49]. Even if
cells contain little or no free transition metals, protein-
bound metals can participate in redox processes [50]. At a
physiological pH, there are significant amounts of sulfur anion
HS−, which is the principal substrate for aerobic oxidation [51].

The increase in the cleavage of the DNA strand with
increasing H2S concentrations may favor the formation of
elemental sulfur that may react with HS− to generate poly-
sulfides that, in turn, react with O2 to generate additional
O2- [52].

Sulfhydration leads to poly [ADP-ribose] polymerase 1
(PARP-1) activation through direct interaction. PARP-1
detects DNA damage and helps select the repair pathway
needed. Upon damage on DNA, PARPs bind to DNA strand
breaks and catalyze the addition of long branched chains of
PARs onto themselves and other chromatin remodeling fac-
tors. PARPs transfer ADP-ribose from NAD+ to glutamic
acid residues on a protein acceptor and/or on themselves,
allowing the formation of ADP-ribose polymers (PARs). In
the presence of H2S, activated PARP-1 recruits XRCC1 and
DNA ligase III to DNA breaks to mediate DNA damage rep-
aration [23, 50] (see Figure 4).

Nitrosative stress interacts with nucleic acids and forms
8-oxo-dG and 8-nitroguanidine which can cause breaks in
DNA and formation of single-strand DNA [53]. NO and
NSS also participate in the control of the structure of chro-
mosomes [54]. Chromatin modification can be associated

with some of the chemical reactions of NO and its metabolic
processes including S-nitrosylation of thiols, tyrosine nitra-
tion, and cGMP production (see Figure 4).

4. Oxidative, Reductive, and Nitrosative Stress
and Posttranslational Modifications to
Proteins including Histones

Posttranslational modifications (PTMs) by OS, RS, and NSS
are essential mechanisms to diversify protein functions and
coordinate signaling networks [55]. The three types of stress
act on histones, enzymes participating in the establishment of
epigenetic cues, DNA reparation proteins, and proteins in
the cytosol acting on enzymatic and signaling pathways.
They control protein folding, protein targeting to different
subcellular compartments, protein interaction, and func-
tional state, including the catalytic activity of enzymes and
of signaling in transduction pathways. Some PTMs are easily
reversible by the action of deconjugating enzymes. Modifying
and demodifying enzymes by PTM permit a rapid and not
expensive regulation of protein function that take less time
and imply a smaller expense of bioenergy [56]. As an exam-
ple, RNS can S-nitrosylate thiols to modify key signaling mol-
ecules such as kinases and transcription factors. Several key
enzymes in mitochondrial respiration are also inhibited by
nitrogen species leading to a depletion of ATP and cellular
energy [57].

In addition to the participation of the three types of stress
on posttranslational modifications of proteins, they may also
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affect posttranscriptional processes through the regulation of
RNA-binding proteins (RBPs). Genetic information stored in
chromosomal DNA is translated into proteins through
mRNAs. When pre-mRNAs are transcribed by RNA poly-
merase II in the nucleus, they undergo several PTMs induced
by RBPs. These processing steps regulate the fate of the tran-
script [58]. Posttranscriptional gene expression is regulated
by RBPs which intervene in multiple cellular processes.
Moreover, different classes of RBPs interact with various
small noncoding RNAs to form ribonucleoprotein complexes
that participate in many aspects of cell metabolism, such as
DNA replication, expression of histone genes, regulation of
transcription, and translational control [58].

4.1. Reactions by Which Oxidative Stress Modifies
Posttranslational Regulation. ROS react with proteins includ-
ing histones, enzymes determining the establishment of epi-
genetic cues, enzymes participating in intracellular signaling
pathways, and enzymes responsible for the reparation of
DNA damage resulting in oxidative modifications that
include cleavage of the polypeptide chain, hydroxylation of
aromatic groups and aliphatic amino acid side chains, forma-
tion of protein hydroperoxides, oxidation of methionine res-
idues, oxidation of sulfhydryl groups, conversion of some
amino acid residues into carbonyl groups, and formation of
cross-linking bonds that give rise to large aggregates. Oxida-
tive modification occurs particularly in aromatic and sulfur-
containing residues [59–62].

Protein carbonylation is an irreversible PTM by which a
reactive carbonyl group such as an aldehyde, ketone, or lac-
tam is incorporated into the structure of a protein
(Figure 2). Protein-bound carbonyls are derived from

metal-catalyzed oxidation that results from the Fenton reac-
tion and generate highly reactive OH· [64]. OH· can, in turn,
oxidize amino acid side chains or break the protein back-
bone, resulting in many alterations such as reactive carbonyls
[65]. Oxidation of proline and arginine leads to the genera-
tion of glutamic semialdehyde; lysine is oxidized to aminoa-
dipic semialdehyde and threonine to 2-amino-3-ketobutyric
acid [66]. Oxidation of tryptophan by ROS gives rise to more
than seven oxidation products [67]. Carbonyls derived from
reactive lipid peroxidation products also bind to proteins
[68–70].

Glycoxidation also results in protein carbonylation where
reactive α-carbonyls such as glyoxal, methylglyoxal, and 3-
deoxyglucosone that are formed during glycoxidation modify
lysine and arginine residues to generate pyrralines and imi-
dazolones among other products [71, 72].

The reaction of reducing sugars such as glucose or fruc-
tose with the side chains of lysine and arginine residues,
known as glycation, forms Amadori and/or Hynes products
that can be further decomposed by ROS into advanced glyca-
tion end products (AGE) that can contribute to protein car-
bonylation [73].

ROS also modify histones, and since histones are the
most common chromatin proteins, alterations in their
abundance, structure, or PTMs will have a severe impact
on the global structure of chromatin, influencing gene
expression, genome stability, and replication [4]. Histone
modifications induced by ROS include changes in methyla-
tion, acetylation, ubiquitylation, ADP-ribosylation, SUMOy-
lation, and phosphorylation, leading to their altered
folding, stability, and ability to be posttranslationally mod-
ified [74].
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Oxidized proteins are toxic decreasing cellular viability
and are therefore repaired or removed from cells [75, 76].
Proteins damaged by OS are proteolyzed in a ubiquitin-
and ATP-independent way.

4.2. Mechanism by Which Reductive Stress Acts on
Posttranslational Regulation. RS impairs cellular functions,
and GSH can be viewed as a new posttranslational modifier
of proteins and of histones. The ratio of the GSH/GSSG
redox couple regulates S-glutathionylation in cells [47]. S-
Glutathionylation is a potent mechanism for posttransla-
tional modulation of a variety of regulatory and metabolic
proteins when there is a change in the cellular redox status
(lower GSH/GSSG ratio). S-Glutathionylation occurs in pro-
tein cysteine residues by the addition of glutathione [77]
(Figure 2).

Furthermore, under RS, the relatively oxidizing environ-
ment that is needed in the endoplasmic reticulum for the
proper formation of disulfide bonds of membrane and secre-
tory proteins is lost. Therefore, protein disulfide bonds are
not normally formed, resulting in activation of the unfolded
protein response and endoplasmic reticulum stress [78].

Thiol–disulfide homeostasis loss is an important conse-
quence of many diseases. Any modification of critical cyste-
ine residues on enzymes, receptors, transport proteins, and
transcription factors is recognized as an important mecha-
nism of signal transduction perturbation [47].

Glutathionylation of DNA-repair proteins may lead to a
failure in the reparation mechanisms. An elevated level of
GSH leads to the deglutathionylation of DNA-repair proteins
[4].

GSH is also considered a posttranslational modifier of
histones altering the structure of the nucleosome. GSH links
metabolism to the control of epigenetic mechanisms at differ-
ent levels including substrate availability, enzymatic activity
for DNA methylation, and alterations in the expression of
microRNAs. It has been speculated that mutations in
enzymes involved in GSH metabolism and the alterations
of the levels of cofactors affecting epigenetic mechanisms
might be connected [79].

4.3. Mechanisms by Which Nitrosative Stress Acts on
Posttranslational Regulation of Proteins. ONOO- modifies
proteins via S-nitrosylation at cysteine residues modifying
their function (Figure 2). Nitrated cysteines are the main
alteration participating in redox signaling events. Most pro-
teins contain cysteine residues which are the second most
abundant amino acid in the proteins (1.9%). Nevertheless,
ONOO- can only modify a small percentage of these cyste-
ines [80].

S-Nitrosylation is a nonenzymatic reversible reaction, in
which a covalent NO is attached to a reactive cysteine residue
to form S-nitrosothiols (SNOs), such as low-molecular-
weight S-nitrosoglutathione (GSNO) and S-nitrosylated pro-
teins. The S-nitrosylation may happen by transnitrosylation
that involves an acceptor thiol and GSNO [81]. GSNO, is
the main endogenous SNO, serving as a stable reservoir of
intracellular NO. The main denitrosylating enzyme is S-
nitrosoglutathione reductase (GSNOR). The activity of this

enzyme is important in the regulation of SNO action [82].
GSNOR metabolizes GSNO and therefore depletes the levels
of S-nitrosylated protein, which are in equilibrium with
GSNO [83]. When the activity of GSNOR is decreased, it
results in high GSNO levels and S-nitrosylated proteins
[84]. Changes in the activity of GSNOR determine the whole
pool of SNOs and may regulate cell signaling. Moreover, a
deficiency in GSNOR is linked with the presence of NSS
and tissue damage [85]. This correlates with GAPDH S-
nitrosylation that leads to covalent inactivation of the
enzyme [86]. This irreversible alteration requires the synthe-
sis of new proteins to reestablish the activity of GAPDH [87].

NO alters histone PTMs, DNA methylation, and miRNA
levels [88]. DNA reparation and maintenance of genomic
stability depend on the nuclear enzyme PARP-1. In normal
conditions, this enzyme participates in DNA base excision
repair and in maintaining the genomic stability. However, it
can be overactivated by RNS to induce DNA damage. Activa-
tion of PARP-1 is mainly triggered by the presence of DNA
single-strand breakages, and therefore, it is overactivated
when endogenously and exogenously generated ONOO-

break the DNA strand [89].
The enzyme also automodifies itself by PARylation. The

PARP-1 auto-PARylation represents a major regulatory
mechanism [90]. Upon binding to damaged DNA, PARP-1
forms homodimers and catalyzes the cleavage of NAD+ into
nicotinamide and ADP-ribose to form ADP-ribose polymers
and long branches on glutamic acid residues of several target
proteins including histones and by PARP-1 automodifica-
tion. NSS triggers extensive DNA breakage, PARP-1 overac-
tivation, and the consequent depletion of the cellular stores of
substrates such as NAD+, impairing the Krebs cycle, glycoly-
sis, and mitochondrial electron transport. This results in ATP
depletion and the consequent cell dysfunction and death by
necrosis [90, 91].

5. Oxidative, Reductive, and Nitrosative
Damage to Classical Epigenetic Cues

Epigenetic modifications, such as the methylation/demethy-
lation of DNA and histone proteins and histone acetylation/-
deacetylation can be produced and eliminated by enzymes
that consume several metabolites derived from physiological
pathways including stress mediators. These metabolites
determine the activity of epigenetic enzymes such as methyl-
transferases, deacetylases and kinases, and histones control-
ling the chromatin structure that ultimately enhances or
reduces gene expression. Therefore, environmental stimuli
such as dietary exposure and nutritional status that alter the
concentration of metabolites affect epigenetic regulation,
including S-adenosylmethionine (SAM), acetyl-CoA, nico-
tinamide adenine dinucleotide (NAD+), flavin adenine dinu-
cleotide (FAD), α-ketoglutarate, succinate, fumarate, and
ATP [92]. Therefore, the concentration of crucial nutrients,
such as glucose, glutamine, and oxygen, spatially and tempo-
rally modulates epigenetic modifications to regulate gene
expression and the reaction to stressful microenvironments
in diseases [93].
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Epigenetic changes acquired during life may affect the
expression of genes related with the mitochondrial function.
Metabolic alterations in mitochondria probably impact on
the availability of metabolites for chromatin-modifying
enzymes, promoting epigenetic signals that change the chro-
matin and, therefore, gene transcription. In fact, the avail-
ability of some metabolites synthetized in mitochondria,
such as ATP, CoA, NADH, and α-ketoglutarate, among
others, promotes different kinds of epigenetic modifications.
Therefore, mitochondrial sensitivity caused by environmen-
tal factors and lifestyle changes, like sedentarism, physical
activity, overnutrition, and balanced nutrition, may support,
or prevent, many of the effects that promote metabolic disor-
ders. Increasing reports show that the damage on mitochon-
drial DNA plays an important role in disease development
[94, 95].

5.1. Oxidative Damage to Epigenetic Cues on DNA and
Histones.Methylation compacts DNA and inhibits transcrip-
tion; this process depends on a balance of the activities of
methylases and demethylases. There are passive and active
DNA demethylation processes. An example of passive
demethylation could be a loss of balance between methyla-
tion and demethylation. This imbalance could result from a
cascade of epigenetic alterations starting with histone modi-
fication enzymes and/or altered methyltransferase activity.

ROS regulate local hypermethylation through cytosine
methylation and hydroxymethylation [74], which is associ-
ated with repression of transcription. The main enzymes
involved in DNA methylation are DNA methyltransferases
(DNMTs). DNMT1 is recruited by base excision and mis-
match repair proteins which recognize 8-oxo-dG in CpG
island promoter regions [96, 97]. OSmay cause relocalization
of DNMTs resulting in hypermethylation of CpG islands and
global hypomethylation. In mammalian cells, H2O2 may acti-
vate at least 40 genes [98].

OS also triggers the depletion of S-adenosyl methionine
(SAM) which is used to transfer a methyl group by DNMTs,
acting on cytosine bases in DNA. Another mechanism for
DNA hypermethylation by OS is the inhibition of the ten-
eleven translocation (TET) methylcytosine dioxygenase
enzymes that promote reversal of DNA methylation [99,
100]. Krebs cycle intermediates succinate and fumarate
inhibit TET enzymes [101].

In histones, OS does not always influence methylation of
lysine marks in the same way. Some lysine residues may be
hypermethylated while others may be unaffected or hypo-
methylated [102]. This may be due to different sensitivities
toward oxidation, competitive inhibition, or SAM depletion
of the different enzymes or of the microenvironment of the
enzyme complex [103]. Hence, specific and local rather than
global regulation of histone methyl transferase (HMT) and
histone demethylase (HDM) activities might predominate
in vivo.

In addition to DNA and histone methylation, histone
acetylation also produces global changes associated with
chromatin relaxation and transcriptional activation. Histone
acetylation is controlled by histone acetyltransferases
(HATs) and histone deacetylases (HDACs) [104–106]. OS

is an important modulator of HDAC function. HDACs are
alkylated and inhibited by several reactive aldehydes, which
results in changes in gene expression [107, 108]. Further-
more, inhibition of HDACs by OS might confer resistance
[109].

Cysteine carbonylation may inactivate a class of HDACs
named sirtuins (SIRT) that also have monoribosyltransferase
activity; SIRT1 inactivation leads to an increased acetylation
and inhibition of the transcription factor forkhead box O-3
(FoxO3) that is a key player in a variety of cellular processes
including metabolism, apoptosis, and proliferation [110]. In
contrast, activation or overexpression of SIRT1 protects cells
fromOS during senescence [111, 112]. When SIRT3 is carbo-
nylated, it leads to the upregulation of stress-induced genes
[113, 114]. Nuclear SIRT3 is rapidly degraded when cells
are exposed to OS.

Other class II HDACs translocate from the nucleus to the
cytoplasm in a ROS-dependent manner increasing transcrip-
tion of myocyte enhancer factor-2- (MEF2-) dependent
genes [114, 115]. These transcription factors regulate differ-
entiation and play important roles in stress resistance. Fur-
thermore, ROS can also increase histone deacetylation by
directly stimulating HDAC expression despite being potent
inhibitors [116, 117] or indirectly enhance HDAC activity
[118].

OS also indirectly modifies the global levels of histone
phosphorylation. Phosphorylation of histone serine, threo-
nine, and tyrosine residues regulates gene expression, DNA
repair, and mitosis [119]. OS results in the formation of
DNA double-strand breaks, which lead the phosphorylation
of H2AX to trigger DNA repair [120–122]. Oxidation
inhibits the histone-targeting protein phosphatases PP1 and
PP2A by their catalytic metal ion [123].

OS also induces the formation of methionine sulfoxide
from methionine, and this molecule can immediately react
with OH· to generate a methyl radical that nonenzymatically
and nonspecifically methylates cytosine in the DNA [124].
This phenomenon could produce deleterious effects in the
epigenome [125]. Furthermore, it was recently reported that
OS affects methionine synthase, an important enzyme in the
regeneration of methionine from homocysteine [126].

Although nuclear DNA methylation is well established,
mitochondrial DNA methylation is a matter of debate. Even
if it had been reported that methylases could not access mito-
chondria and that mtDNA had no histones, recent evidence
has suggested that mtDNA can be epigenetically regulated
by methylation [127]. Methylase, 5-methylcytosine (5mC),
and 5-hydroxymethylcytosine (5hmC) at CpG dinucleotides
have been reported in mitochondria. Recently, a variant of
the DNA methylase 1, mitochondrial (mtDNMT1), which
uses an upstream alternative translation start site, which
might lead to the inclusion of a mitochondrial targeting
sequence was described. This mtDNMT1 attaches to the
mitochondrial genome in proportion to the density of CpG
dinucleotides. Therefore, cytosine methylation in mtDNA
may play a role in establishing epigenetic cues [127, 128].

5.2. Reductive Stress and Epigenetic Cues. Oxidized GSH
inhibits the activity of SAM synthetase and methionine
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adenosyltransferase 1A (MAT1A). This key enzyme is
involved in the synthesis of SAM, which is used by DNMTs
and HMTs as a substrate for DNA and histone methylation,
respectively [129, 130]. Therefore, it is possible to alter the
methylation status of the genome and modify the epigenetic
signature in cells by modulating SAM levels. Methylation of
DNA and histone constitutes one of the most studied chem-
ical modifications in the epigenetic code, which shapes gene-
expression patterns usually, but not always, repressing gene
transcription. Interestingly, replenishment of GSH levels
recovers the activity of MAT1A [131] thereby contributing
to the homeostasis of DNA and histone methylation.

S-Glutathionylation of histone H3 is a PTM in the his-
tone code [132]. In this modification, GSH binds to Cys110
in histone H3 producing changes in the stability of the nucle-
osomes and altering the chromatin structure by decreasing
the proportion of α-helices. Interestingly, S-
glutathionylation of H3 is increased in proliferating cells
but not in quiescent cells, suggesting that GSH modifies the
structure of the chromatin during cell proliferation. Further-
more, the ability of GSH to open the chromatin may increase
the susceptibility of DNA to the attack of DNA-interacting
drugs [133, 134].

GSH may be involved in epigenetic events. There is a
GSH-dependent enzymatic mechanism that prevents the
production of the methionine sulfoxide induced by OS. The
GSH/glutaredoxin system can regenerate the activated form
of methionine sulfoxide reductase, the enzyme that converts
methionine sulfoxide to methionine [135]. Therefore,
GSH/glutaredoxin/MSR prevents the generation of the
methyl radical and contributes to the regeneration of methi-
onine, which, in turn, is introduced in the methionine cycle
to recover the SAM levels. Glutathionylation also inactivates
SIRT1 [136].

H2S in plasma decreased with age, and this decrease is
associated with a decreased expression of the mRNA of
CSE which synthetizes it, while DNMT expressions are
increased. In the CSE promoter, transcription was downreg-
ulated by enhanced DNA methylation. The expression and
activity of DNMT was upregulated by oxidized low-density
lipoprotein, and suppression of DNMT reversed the
decreases of CSE mRNA [137].

There is also a significant upregulation of CBS which also
synthetizes H2S. Its mRNA levels are associated with the
demethylation of CBS gene in rats injected with Mycobacte-
rium butyricum. Promoter DNA hypermethylation is tradi-
tionally recognized to repress gene expression. CBS-H2S
signaling is crucial for inflammatory hyperalgesia and the
DNA demethylation of the CBS promoter region.

Furthermore, H2S exerts some of its beneficial effects
through SIRT1, and treatment with H2S donors such as
Na2S abolishes OS in cardiomyocytes via SIRT upregulation.
H2S also attenuates inflammation partially by promoting
SIRT3 [136].

5.3. Nitrosative Stress and Epigenetic Cues. NO synthesis and
release are epigenetically controlled, and in turn, NOmay act
as an epigenetic regulator. However, many of the epigenetic
properties of this agent remain unknown [54]. NO inhibits

HDAC complexes by enhancing histone acetylation and pro-
motes a chromatin state that supports gene expression. NO
might also regulate other targets of redox molecules such as
methyltransferases and demethylases [138].

Cell cycle arrest and differentiation are also regulated by
epigenetic changes associated with NO. HDACs are intra-
nuclear targets of NO, but, due to the highly diffusible nature
of NO, it is possible that many other nuclear factors may be
regulated by NO [139].

NO participates in histone PTMs that control histone-
modifying enzymes. The capacity of NO to regulate the activ-
ities and cellular localizations of these enzymes is due to its
capacity to form iron–nitrosyl complexes and S-
nitrosothiols that mediate the epigenetic effects of NO [140].

NO diffuses from the cytosol to the nucleus or can be pro-
duced directly by the nuclear eNOS. NO may also be gener-
ated by ligand-activated receptors and by environmental
factors including shear stress. The production of NO leads
to the activation of the PI3K/Akt pathway that results in
eNOS phosphorylation. Cytosolic NO regulates the translo-
cation and activation of nuclear class II HDACs. It also
induces PTMs such as tyrosine nitration and S-
nitrosylation of transcription factors. NO may also posttran-
slationally modify HDAC2 and transcription factors in the
nucleus [54, 141].

NSS affects DNA and histone methylation by inhibiting
the Jumonji C (JmjC) demethylases. NO inhibits the JmjC
domain containing demethylase KDM3A by binding to the
catalytic iron [142].

During differentiation, these processes may lead to the
repression of stem and nonmesodermal genes and to the acti-
vation of vascular genes [141]. NO determines miR-200a,
miR-200b, miR-200c, and miR-429 expressions, which
induce meso-endoderm and precursor vascular marker
expression.

NSS is also a potent modulator of HDAC function.
HDAC2 can be nitrosylated having controversial effects
[143]. Nitrosylation leads to displacement of HDACs from
chromatin to activate gene expression [144]. Moreover,
cysteine nitrosylation decreased HDAC2 activity [145].
SIRT1 and SIRT6 can be inactivated through
peroxynitrite-mediated nitrosylation, which could be onco-
genic [143, 146].

6. Induction of Other Possible Epigenetic
Modification on Proteins by Oxidative,
Reductive, and Nitrosative Stress

6.1. Carbonylation and Glycation of Histones Resulting from
Oxidative Stress. OS is an epigenetic modulator since ROS
induce epigenetic cues such as reactions with reactive alde-
hydes, glycation of histones, or carbonylation of proteins
[74]. Reactive aldehydes that modify histones could consti-
tute epigenetic cues induced by OS since these aldehydes
are produced intracellularly in a ROS-dependent way. Highly
reactive α,β-unsaturated aldehydes, such as glyoxal, malon-
dialdehyde, acrolein, 4-hydroxy-2-nonenal (4-HNE), or 4-
oxo-2-nonenal (4-ONE), are enzymatically or non-
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enzymatically produced by lipid peroxidation [147]. Alde-
hydes readily react with proteins to form carbonyl adducts.

ROS also promote the production of the glucose metabo-
lites, methylglyoxal and 3-deoxyglucosone [48, 148]. These
carbonyl species interact with cysteines, arginines, lysines,
or histidines in histones resulting in AGEs or advanced lipox-
idation end products thus elevating protein cross-linking and
may constitute epigenetic cues [149]. Histones are the com-
mon targets of AGEs and lipoxidation end products [150].
When histones H1, H2A, and H3 are altered with 3-deoxy-
glucosone, they turn less thermostable resulting in partial
unfolding which may cause alterations in chromatin struc-
ture and gene expression [151–153].

Another PTM resulting from OS is carbonylation. When
histones are carbonylated, they may disappear from the chro-
matin, diminishing nucleosome content since irreversibly
damaged histones are removed by the nuclear proteasome
[154, 155]. A global reduction of chromatin-associated H3
correlates with increased transcription at histone-depleted
loci [156]. Stabilization of histones has also been reported
in in vitro studies.

6.2. Glutathionylation of Histones Resulting from Reductive
Stress. There is an association between GSH metabolism
and the control of epigenetic mechanisms at different levels
such as substrate availability, enzymatic activity for DNA
methylation, and changes in the expression of microRNAs
and histones. The molecular pathways by which GSH can
control epigenetic events remain unknown; however, the role
of GSH in the epigenetic mechanisms is through structural
alterations and probably through other pathways. Mutations
in enzymes involved in GSH metabolism and the alterations
of the levels of cofactors affecting epigenetic mechanisms
may explain the link between GSH and the establishment of
epigenetic cues [157].

Reductive stress causes S-glutathionylation of proteins,
and this reaction may constitute an epigenetic cue.
Glutathione-S-transferases (GSTs) can glutathionylate cyste-
ines that have been oxidized to sulfenic acid using GSH. This
reaction protects residues from further, irreversible oxidation
to sulfonic acid [158, 159]. However, OS also increases the
oxidation of GSH to GSSG, decreasing the GSH/GSSG ratio.
Histone H3, which is one of the basic proteins in the nucleo-
somes, is S-glutathionylated giving rise to gamma-L-gluta-
myl-L-cysteinylglycine [157]. Increased glutathionylation
also correlates with higher GSH levels and drug resistance
[134].

Histone H3 is glutathionylated in proliferating cells. Glu-
tathionylation of H3 decreases nucleosome stability and
facilitates gene expression and DNA replication [79]. It is
conceivable that an OS-induced reduction in glutathionyla-
tion may protect cells from OS by leading to chromatin com-
paction and inhibition of replication of potentially damaged
DNA. Furthermore, reduced histone glutathionylation might
contribute to global gene regulation.

6.3. Epigenetic-Like Nitration of Histones Resulting from
Nitrosative Stress. In vitro exposure of recombinant histones
H1 and H3 to peroxynitrite leads to tyrosine nitration.

Nitrated histones show an increase in structured domains,
specifically β-sheet structures, and increased thermostability.
This nitration might contribute to protection of DNA from
oxidative damage during OS [160, 161].

ONOO- can cause nitration of tyrosine residues in intra-
cellular proteins. Nitration of tyrosine involves incorporation
of the ONOO- and ·NO2 production by heme proteins [162–
164]. 3-Nitrotyrosine may damage proteins or render them
less active. Nitrotyrosine has been considered an index of
RNS formation [165, 166].

7. Oxidative, Reductive, and Nitrosative Stress
Effects on Epigenetic Cues Participating in
Cardiometabolic Diseases

The three types of stress have been implicated in the patho-
physiology of many disorders including metabolic and car-
diovascular diseases. In the next sections, we will describe
their participation in obesity, metabolic syndrome, and dia-
betes; in atherosclerosis and cardiomyopathy; and in endo-
thelial dysfunction and hypertension. We discuss them in
separate paragraphs even if many of the mechanisms are
common to some of them.

7.1. Obesity, Metabolic Syndrome, and Diabetes.Obesity is an
important risk factor for cardiovascular diseases and has
been associated with inflammatory conditions. White adi-
pose tissue is recognized as an essential immunoendocrine
organ that controls energy balance and metabolism. Adipo-
cytes play pivotal roles through the secretion of a variety of
adipokines that are implicated in metabolic disorders.

Leptin is a pleiotropic adipokine whose plasma concen-
tration is generally proportional to adipose mass and is
involved in the regulation of food intake, in immune and
inflammatory responses, and in cell proliferation, among
other functions [167]. However, leptin may also have adverse
effects such as the induction of OS by activating NADPH oxi-
dase and the activation of iNOS that leads to NSS through
production of peroxynitrite resulting in protein nitration.
These reactions contribute to the activation of inflammatory
pathways [168]. These mechanisms have been identified in
steatohepatitis, an obesity-associated pathology [169].

Leptin also decreases glyceroneogenesis and fatty acid
reesterification, therefore resulting in fatty acid release by
white adipose tissue. This effect is mediated by the nitration
of the cytosolic isoform of phosphoenolpyruvate carboxyki-
nase (PEPCK-C), the key enzyme of glyceroneogenesis and
in hepatic gluconeogenesis [170].

Regarding epigenetic control in obesity, SIRT2 is the
most abundant sirtuin in adipocytes from white and brown
adipose tissues [171]. SIRT2 expression was decreased in
white adipose tissue from rats with metabolic syndrome
and might promote fat accumulation [172]. SIRT3 is the
major mitochondrial deacetylase regulating mitochondrial
metabolism, adaptive thermogenesis, energy homeostasis,
and apoptosis and is decreased in obese mice [173]. More-
over, SIRT3 plays an important role in adaptive thermogen-
esis of brown adipose tissue regulating uncoupling protein
one (UCP-1), peroxisome proliferator-activated receptor
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gamma coactivator 1-alpha (PGC-1α), cytochrome c oxidase,
and ATP synthase expression. White adipose tissue from
control and metabolic syndrome rats expressed SIRT3 in
the same proportion [172].

Epigenetic cues importantly participate in the develop-
ment of metabolic syndrome. SIRT1, which is an important
regulator of hepatic glucose metabolism, is underexpressed
in rats having metabolic syndrome. This sirtuin improves
insulin signaling and promotes fatty acid metabolism [174,
175]. However, SIRT1 overexpression does not have a signif-
icant effect on adipokine secretion in a metabolic syndrome
rat model [172]. SIRT1 is also increased in the aortas from
metabolic syndrome rats and may be responsible for hyper-
tension related to this metabolic disorder [176].

In diabetes, where hyperglycemia is present, high glucose
levels induce an excessive O2

- production which may consti-
tute a unifying link for the development and progression of
diabetes together with its micro- and macrovascular compli-
cations. OS and the activation of the antioxidant defense sys-
tems precede and constitute a consequence of the
development of the main diabetic complications including
diabetic coronary atherosclerosis. In diabetes and coronary
atherosclerosis, there are epigenetic changes such as DNA
methylation and histone PTMs that modify the chromatin
accessibility to transcriptional regulatory proteins. These epi-
genetic changes alter transcriptional programs to initiate ath-
erogenic and inflammatory phenotypes [177].

7.2. Atherosclerosis and Cardiomyopathy. Atherogenesis is
accelerated when there is an imbalance between the antioxi-
dant capability activity and ROS and cells may be injured
due to oxidation of DNA and cellular proteins including his-
tones and reparation proteins and of lipids. It also activates
cell death signaling pathways [178].

Epigenetic modulators are importantly involved in the
control of vascular, immune, and tissue-specific gene expres-
sion in the atherosclerotic lesion. Human atherosclerotic
lesions display hypomethylation of genomic DNA. These
epigenetic mechanisms change the accessibility of chromatin
by DNA methylation and histone modifications. There are
also changes in methylation in promoter regions of several
genes that participate in the pathogenesis of these disorders
including the gene of extracellular superoxide dismutase,
the estrogen receptor-α, the eNOS, and 15-lipoxygenase
[179]. There is also an important association between inflam-
mation and reprogramming of the epigenome [178].

Epigenetic changes may also be related to the pathoge-
netic features of diseases, such as smooth muscle cell hyper-
proliferation, accumulation of lipids, and modulation of
immune responses [179].

In monocyte-/macrophage-mediated inflammation and
atherosclerosis, there is deregulation of the CSE-H2S path-
way through the epigenetic alterations on DNA methylation
that leads to an inflammatory disorder [137].

H2S is involved in inflammation where it alters the
expression and activity of DNMTs [180]. In some tissues,
the exposure to H2S results in apoptosis [181]. Moreover,
H2S may react with the reactive oxygen/nitrogen species pro-
duced under inflammatory conditions [182]. It has a protec-

tive role against cellular damage by inflammation, and it also
participates in angiogenesis, cytoprotection, nociception,
stimulation of ATP-sensitive potassium ion channels, myo-
cardial contractility, vascular tone, blood pressure, and
ischemia-reperfusion [183].

The epigenetic alterations found in atherosclerosis
explain, in part, the dietary effects on this disease. Since epi-
genetic processes are reversible, they may provide an excel-
lent therapeutic target for therapies directed toward
modification of the epigenetic status of vascular cells which
might constitute new tools to control atherosclerosis-related
cardiovascular diseases.

Hypertrophic cardiomyopathy (HC) is characterized by
RS, protein aggregation, and heart failure in transgenic mice.
HC is characterized by excessive ubiquitination by activation
of Nrf2. Pathological hypertrophy and remodeling are
induced by Nrf2 in the heart. Nrf2 deficiency is linked to
GSH depletion in vivo and in vitro which in turn prevents
RS in the myocardium [184].

Development of cardiac hypertrophy and heart failure
causes deregulation of GSH homeostasis that leads to RS
and Nrf2 activation in heart failure. Mutant protein aggrega-
tion in cardiomyopathy is initially due to ROS generation
and then maintained by keap1 dysfunction through its
sequestration into the protein aggregates. Thus, activation
by nuclear translocation of Nrf2 is sustained leading to con-
tinuous upregulation of the transcription of antioxidant
enzymes contributing to RS [185]. Increased and sustained
activation of Nrf2 leads to RS where the reductive capacity
of the cell and/or the concentration of reducing equivalents
increase the levels of GSH and NADPH, exceeding ROS pro-
duction [186]. Excess activation of Nrf2 is also associated
with a variety of other cardiac pathologies [187].

In addition, ONOO- inhibits the mitochondrial respira-
tory chain and triggers apoptosis at the subcellular level in
cardiomyocytes [188].

In cardiomyopathy, there is a decrease in proper protein
ubiquitination and degradation due to RS which causes intra-
cellular oxidative modifications [189].

7.3. Endothelial Dysfunction and Hypertension. Vascular tis-
sues express abundant enzymes producing H2S such as
CSE, CBS, and 3MST and therefore produce a large amount
of H2S that participates in vascular modulation [190]. Defi-
ciency of CSE reduces H2S production in vascular tissues
leading to endothelial dysfunction and high blood pressure
in an age-dependent manner [191].

The reparation of DNA damage is fundamental to nor-
mal cell development and replication, and H2S attenuates
DNA damage in human endothelial cells and fibroblasts by
S-sulfhydration of MEK1. H2S also protects vessels from cel-
lular aging. When it reaches the nucleus, it may inhibit the
proliferation of vascular smooth muscle cells by epigenetic
mechanisms involving inhibition of the transcription and
expression several transcription factors [191].

ONOO- increase is associated with a reduced PARP-1
pathway which contributes to the endothelial dysfunction
[192]. In vitro, DNA damage and PARP-1 activation occur
in endothelial cells exposed to various ROS and the ONOO-
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infusion in isolated perfused hearts resulting in severe
impairment of the endothelial-dependent relaxation [193,
194].

Hypertension is associated with other pathologies such as
diabetes, metabolic syndrome, and obesity, and the popula-
tion may be predisposed to develop it by the genetic back-
ground and unhealthy lifestyles. An elevated sucrose
ingestion which leads to OS has been associated to the devel-
opment of hypertension. We have previously published that
the administration of sucrose during a short period near
weaning in rats (postnatal days 12 to 28) increases the risk
of developing hypertension when the organisms reach adult-
hood and that this elevation in blood pressure is accompa-
nied by OS [195, 196].

Regarding arterial essential systemic hypertension, the
epigenetic cues that link it with OS at the vascular level have
also been described [6, 197]. Sirtuins may play an important
role as epigenetic cues for the development of hypertension
[198]. SIRT1 increases and promotes the activity of coupled
eNOS, and SIRT3 activates SOD, which has an antioxidant
capacity [200]. SOD reduces the ROS that uncouple eNOS
and increase NO levels [199]. SIRT3 was found to be
decreased at the end of a short period near weaning when rats
received sucrose [195, 196].

In hypertension, H2S-producing enzymes CBS, CSE, and
3MST are diminished. In the kidney vasculature, CBS, CSE,
and 3MST enzymes constitute prime targets of OS and
NSS, leading to a decrease in H2S concentration [192].

Table 1: Changes induced by OS, RS, and NSS on DNA and associated proteins and on proteins that establish classical epigenetic cues.

Effects on DNA and associated proteins OS

-Activation of DNMTs [74, 98]

-Depletion of SAM [99–101]

-Inhibition of TET enzymes [99–101]

-Methylation through formation of methionine sulfoxide [124–126]

RS

- Activation of DNMT by H2S [137]

- Inhibition of SAM by GSH [129, 130]

-Decreased production of methionine sulfoxide [135]

-Damage to DNA repair mechanisms [23, 50]

NSS

-Inhibition of HDAC by NO [138]

-Inhibition of JmjC demethylases [142]

-Activation PARP-1 [23, 50]

Effects on proteins that establish epigenetic cues OS

-Controversial effects on methylation of lysines by HMT [102]

-Increased acetylation through inhibition of HDAC [107–109]

-Increased acetylation through inactivation of SIRT1 [111, 112]

-Degradation of SIRT3 [113, 114]

-Increased phosphorylation [119]

RS

-Glutathionylation of H3 causing instability of the nucleosome [133, 134]

-Inactivation of SIRT1 by GSH [136]

-Upregulation of SIRT3 by H2S [136]

NSS

-Increased histone acetylation by NO [138]

-Controversial effects on HDAC [143]

-Inactivation of SIRT1 and 6 [143, 146]

OS: oxidative stress; RS: reductive stress; NSS: nitrosative stress; DNMT: DNA methyltransferase; SAM: S-adenosyl methionine; TET enzymes: ten-eleven
translocation (TET) methylcytosine dioxygenases; GSH: glutathione; H2S: sulfhydric acid; HDAC: histone deacetylase; NO: nitric oxide; JmjC: Jumonji C;
PARP1: poly [ADP-ribose] polymerase 1; HMT: histone methyl transferase; SIRT: sirtuin deacetylase.

Table 2: Establishment of new nonclassical epigenetic cues by OS, RS, and NSS.

Type of
stress

Mechanism Effect

OS
Formation of AGEs and advanced lipoxidation

end products
Elevated cross-linking which could act as an epigenetic cue [149–153]

Carbonylation Loss of histones that leads to increased transcription [154–156]

RS Alterations in GSH metabolism
Decreased nucleosome stability that facilitates gene expression and DNA

replication [157–159]

NSS Nitration of tyrosine residues Protection of DNA against oxidative damage [160, 161]

OS: oxidative stress; RS: reductive stress; NSS: nitrosative stress; AGEs: advanced glycation end products; GSH: glutathione.
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Angiotensin II (Ang II) can induce through PARP-1 acti-
vation the formation of protein 3-nitrotyrosine, eNOS
uncoupling, tetrahydrobiopterin (BH4) reduction, and DNA
breakage [200]. The Ang II-PARP-1 pathway is present in
endothelial dysfunction, in human diabetes, and in a rat
model with essential hypertension [201]. There is also evi-
dence that Ang II may induce NSS in peripheral organs and
blood vessels [202]. In addition, Ang II can directly activate
NFĸB and/or indirectly through induction of O2

- production,
which leads to iNOS induction, resulting in NO and ONOO-

overproduction. ONOO- overproduction results in BH4 oxi-
dation and leads to uncoupling of eNOS [203]. However,
BH4 supplementations might reduce the vascular damage
by Ang II thereby preventing uncoupling of eNOS and
decreasing NSS [204].

8. Conclusions

OS, RS, and NSS are interrelated since RS results from an
overactivation of antioxidant systems and NSS is the result
of the overactivation of the oxidation of NO. OS, RS, and
NSS, acting alone or through their interaction, result in dam-
age to the DNA structure, causing strand breaks and the for-
mation of 8-oxo-dG. The three types of stress modify
histones and enzymes that determine epigenetic cues (DNA
methyl transferases, histone acetyltransferases, and deacety-
lases) by posttranslational mechanisms. Some of these
changes are shown in Table 1.

The three types of stress also alter intracellular signaling
pathways and regulate the activity of DNA reparation
enzymes. The posttranslational alterations they produce
include reactions such as carbonylation, glycation, glutathio-
nylation, sulfhydration, nitration, and nitrosylation. Further-
more, the three types of stress may induce the establishment
of new epigenetic marks and may impair the reparation
mechanisms of DNA damage. These changes are summa-
rized in Table 2.

The changes induced by OS, RS, and NSS on epigenetics
could underlie cardiometabolic diseases including obesity,
metabolic syndrome, diabetes, endothelial dysfunction,
hypertension, atherosclerosis, and hypertrophic cardiomy-
opathy as discussed in this review. The development of car-
diometabolic disorders in adult life may be programed
since early stages of development by epigenetic cues which
may be established or modified by OS, RS, and NSS.

Therefore, OS, RS, and NSS importantly participate in
the mediation of the impact of the early life environment
on later health heritability. These modifications depend on
the union and release of chemical residues on a DNA
sequence and/or on amino acid residues in histones, and
therefore, they are reversible and potentially treatable. Epige-
netic cues importantly participate in the development of car-
diometabolic diseases.
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