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Deep learning-based
self-induced emotion
recognition using EEG

Yerim Ji and Suh-Yeon Dong*

Department of Information Technology Engineering, Sookmyung Women’s University, Seoul,

South Korea

Emotion recognition from electroencephalogram (EEG) signals requires

accurate and e�cient signal processing and feature extraction. Deep learning

technology has enabled the automatic extraction of raw EEG signal features

that contribute to classifying emotions more accurately. Despite such

advances, classification of emotions from EEG signals, especially recorded

during recalling specific memories or imagining emotional situations has

not yet been investigated. In addition, high-density EEG signal classification

using deep neural networks faces challenges, such as high computational

complexity, redundant channels, and low accuracy. To address these problems,

we evaluate the e�ects of using a simple channel selection method for

classifying self-induced emotions based on deep learning. The experiments

demonstrate that selecting key channels based on signal statistics can reduce

the computational complexity by 89% without decreasing the classification

accuracy. The channel selection method with the highest accuracy was the

kurtosis-based method, which achieved accuracies of 79.03% and 79.36% for

the valence and arousal scales, respectively. The experimental results show that

the proposed framework outperforms conventional methods, even though it

uses fewer channels. Our proposed method can be beneficial for the e�ective

use of EEG signals in practical applications.

KEYWORDS

self-induced emotion recognition, high-density EEG, channel selection, deep

learning, convolutional neural network

1. Introduction

Emotion plays a crucial role in human decision-making. Hence, recognition

of different emotions can effectively improve communication between humans and

machines in human-computer interaction (HCI) systems. Human emotions have been

recognized using non-physiological signals, such as facial expressions (Ko, 2018), speech

(Khalil et al., 2019), and gestures (Noroozi et al., 2018). However, non-physiological

signals can be intentionally hidden. In contrast, physiological signals cannot be directly

altered because the human body produces them spontaneously. For this reason, many

researchers have attempted to identify emotions in physiological signals, such as those

detected by electroencephalograms (EEGs), electrocardiograms (ECGs), galvanic skin

responses (GSRs), and electromyograms (EMGs) (Wei, 2013; Goshvarpour et al., 2017;

Katsigiannis and Ramzan, 2017). In this study, we focus on recognizing emotions using

EEG signals.
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Previous EEG-based emotion recognition techniques have

performed well, but most of them focused on externally induced

emotion, using audiovisual materials as emotional stimuli

(Koelstra et al., 2011; Soleymani et al., 2011; Zheng and Lu,

2017). This type of method requires subjects to continually

pay attention to visual or auditory stimuli. External stimuli

may be useful to elicit strong emotions, but because there

are individual differences in emotional sensitivity, the selected

stimuli may not be suitable for all subjects. Accordingly, some

researchers have asked subjects to recall episodic memories or

imagine situations associated with certain emotions (Damasio

et al., 2000; Onton and Makeig, 2009). This enables the subjects

to self-induce emotions based on past experience instead of

audiovisual materials determined by researchers in advance. The

EEG signals produced by this method are more ecologically

valid because they capitalize on individual events that have

personal meaning (Salas et al., 2012). However, subjects may

lose their concentration when they close their eyes and perform

the emotional imagery (EI) task. Therefore, the raw EI signals

obtained through this method have a lower amplitude than

the signals generated by external stimuli (Iacoviello et al.,

2015). This increases the difficulty with which emotions are

classified using EEG signals. For this reason, classifying self-

induced emotions without using external stimuli remains

challenging.

In recent years, deep learning methods have been applied to

automatically classify emotions using raw EEG signals without

handcrafted features (Craik et al., 2019; Huang et al., 2021).

In particular, convolutional neural networks (CNNs) have

produced promising results for EEG-based emotion recognition

because of their ability to automatically extract robust features

(Yang et al., 2018; Hu et al., 2021). However, most CNN-based

studies still rely on complex preprocessing techniques, such as

the conversion of raw EEG signals into other representations

(Kwon et al., 2018; Wang et al., 2020). In this study, we employ

a CNN for end-to-end classification, which utilizes raw EEG

signals as the input and eliminates the need to perform a

complex transformation. Feeding raw EEG signals as input into

deep learning models is suitable for analyzing time-series EEG

signals (Liang et al., 2021). However, this results in a high

computational complexity because of the long training time

required when using a large number of EEG channels (Tong

et al., 2018). In addition, using all channels, including irrelevant

channels, causes the CNN to generate complex features, which

decreases the classification accuracy (Wang et al., 2019; Li et al.,

2020; Zheng et al., 2021). Consequently, EEG channel selection

is advantageous not only for reducing the time required for

computation, but also for improving the accuracy.

The most commonly used EEG channel selection methods

are the wrapper and filtering methods (Shi et al., 2021).

The wrapper method uses recursive techniques to select the

optimal subset of all EEG channel combinations (Lal et al.,

2004). Wrapper-based methods exhibit superior performance

in selecting the optimal channel subset, but they are time-

consuming (González et al., 2019) and are prone to overfitting

(Alotaiby et al., 2015). Two filtering methods are used to solve

this problem. The first involves manually selecting channels

related to emotions, and the second automatically selects a

subset of channels based on certain standards. For example,

many studies have selected EEG channels representing the

frontal lobe to capture emotions (Atkinson and Campos, 2016;

Thammasan et al., 2016; Xu et al., 2019) because previous

results have suggested that the neural activity in the frontal

lobe is related to emotional processing. However, manually

selecting channels based on previous observations does not

necessarily yield better results compared to using all EEG

channels. Therefore, this study proposes a statistical method for

selecting a smaller number of EEG channels in order to robustly

reduce the computational load while simultaneously increasing

performance. In this method, the most suitable channels are

automatically selected by calculating the EEG signal statistics for

each subject before the high-density EEG data are used as input

for the CNN.

In summary, we propose a novel framework for deep

learning-based systems using high-density EEG data. In this

framework, the optimal frequency band is first selected. Then,

after applying a channel selection method using the statistical

characteristics of the raw EEG signal data, a CNN is utilized

for feature extraction and classification. The flow diagram

of the proposed system is shown in Figure 1, and the main

contributions of this study are as follows: (1) To the best of our

knowledge, this is the first work to classify self-induced emotion

in EEG signals using a deep learning model and demonstrate the

efficiency of statistical channel selection methods using signal

amplitudes; (2) Frequency band and channel selection strategies

were applied to pre-select the prominent features of low-

amplitude EEG signals to improve the classification accuracy.

In particular, a signal statistics-based channel selection strategy

that used fewer channels reduced the computational complexity

of the system and improved the efficiency of the brain-computer

interface (BCI) system, and (3) Experiments were conducted on

the publicly available “Imagined Emotion Study” dataset (IESD)

to evaluate the performance of our deep learning-based method

for classifying self-induced emotion.

2. Related work

Many studies have investigated EEG-based emotion

recognition, but only a few have classified self-induced

emotions using internal EEG signals. For example, Kothe

et al. (2013) collected EEG signals of self-induced emotions

produced through the recall of experiences associated with

15 different emotions. They used the filter bank common

spatial pattern (FBCSP) algorithm to extract temporal-

spatial features from 124 channels in the EEG signals and
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FIGURE 1

Flow diagram of the proposed system for recognition of self-induced emotions.

a linear discriminant analysis (LDA) classifier for valence

level recognition. They reported an average accuracy of

71.3%, but excluded three ambiguous emotions (compassion,

disgust, and excitement). Similarly, Bigirimana et al. (2020)

used common spatial pattern (CSP) features to extract the

temporal-spatial-frequency representations. They obtained

an accuracy of 80% using LDA for imagery induced by

recalling sad and happy events. Iacoviello et al. (2015) proposed

an automatic real-time classification method based on a

discrete wavelet transform (DWT) that used a support vector

machine (SVM). They achieved an accuracy of 90.2% for

the emotion of disgust self-induced by remembering an

unpleasant odor.

Previous studies on self-induced emotions found that

emotion-inducing imagery tasks designed to elicit specific

discrete emotions (e.g., disgust) achieved higher performance

than other methods; however, emotions do not usually occur

in isolation (Mills and D’Mello, 2014). To consider emotions

similar to those that occur in real life, more studies are needed

to classify complex emotions that are mixed with previously

experienced emotions. This can be accomplished by including

a variety of emotions in the imagery task. Therefore, in this

study, we aimed to recognize various self-induced emotions at

the valence and arousal levels. In addition, all existing studies

on self-induced emotion are based on machine learning (ML)

methods. In contrast to these studies, we propose a deep

learning-based system to improve the recognition performance

and system efficiency. Deep learning methods outperform

traditional ML methods in several fields of research (Craik

et al., 2019; Roy et al., 2019), but deep learning techniques

have not been fully utilized in the classification of self-induced

emotion. To the best of our knowledge, this is the first

attempt to detect self-induced emotion in EEG signals using

a CNN.

3. Data description

The EEG dataset we used for training and testing was

the “Imagined Emotion Study” dataset (IESD) (Onton and

Makeig, 2021), which is publicly available on the OpenNeuro.org

platform. To the best of our knowledge, this is the only

publicly available dataset that contains EEG signals collected for

emotion-inducing imagery tasks. In this dataset, all 34 subjects

(with ages ranging from 18 to 35 years) listened to 15- to 30-s

audio clips that induced an emotional experience, which helped

them imagine what they had felt in the past. Next, the subjects

performed EI for an average of 3–5 min for each trial. The EI

trials consisted of 15 self-paced emotional images that reflected

the emotions of anger, awe, compassion, contentedness, disgust,

excitement, fear, frustration, grief, happiness, jealousy, joy, love,

relief, and sadness. While the subjects imagined the emotional

experience, they pressed the “feeling it” button when they felt

the suggested emotion strongly enough. Among the 34 subjects,

five were excluded from future analysis because they pressed the

“feeling it” button only once per emotion or did not press the

button at all. The EEG signals for each subject were collected

using a 250-channel BioSemi ActiveTwo system (Amsterdam,

Netherlands) with a sampling rate of 256 Hz.

4. Preprocessing

4.1. Data processing

The raw EEG signals were preprocessed using MATLAB

(R2021a, MathWorks Inc., Natick, MA, USA) and its EEGLAB

toolbox (EEGLAB, Boston, MA, USA) (Delorme and Makeig,

2004). Four channels (E3, G23, H25, and H26) were not used

in this study at all because they were bad channels for all

subjects (the E3 and G23 channels were located in the right
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TABLE 1 Number of samples for each class of emotion.

Classification scheme Class Number of samples

Valence Low (Negative) 498

High (Positive) 636

Arousal Low (Calm) 489

High (Active) 645

and left temporal regions, respectively, and the H25 and H26

channels were located in the prefrontal region). Thus, the

number of all available channels (C) was 246. Furthermore,

the data produced by electrodes with poor skin contact were

removed from the recorded signals, leaving 134–235 channels

per participant (the number of channels differed for each subject

because different selections of bad channels were removed for

different subjects). Subsequently, artifacts were eliminated by

performing independent component analysis (ICA). After the

channel subset for each subject was determined, we interpolated

across the channels by applying a spherical spline interpolation

(Perrin et al., 1989).

In this study, we only used the periods during which the

subjects felt the 15 emotions listed in Section 3. We did this

because most of the EI trial period covered neutral states

that were not related to emotions (Damasio et al., 2000), and

thus including the entire period for training could have led

to incorrect classification results. Taking this into account, the

continuous EEG signals were preprocessed by excluding periods

that did not contain data produced by EI. This generated 2-s

segments centered on the moment when the subjects pressed the

“feeling it” button. Therefore, the number of segments linked to

each subject was the same as the number of times the subject

pressed the “feeling it” button; this number ranged from 16 to

149 for each subject. The total number of segments used in our

study was 1,134.

4.2. Label processing

Each segment was associated with a label grouped according

to the valence and arousal scales, which are the emotional states

quantified using Russell’s circumplex model (Russell, 1980).

Low valence (LV) indicates “negative” emotions (anger, jealousy,

disgust, etc.), and high valence (HV) indicates “positive”

emotions (love, joy, happiness, etc.). Low arousal (LA) indicates

“calm” emotions (sadness, contentedness, grief, etc.), and high

arousal (HA) indicates “active” emotions (excitement, fear,

anger, etc.). Low and high values were assigned as 0 and 1,

respectively. The labeling results are summarized in Table 1. On

both the valence and arousal scales, the subjects felt the emotions

belonging to the “high” class more easily, which resulted in more

samples being generated for that class.

5. Methods

In this section, we present a novel method that quickly

recognizes self-induced emotions in EEG signals. It employs

a simple technique that selects frequency bands and channels

suitable for classification, and therefore it is computationally

efficient and suitable for real-time recognition of emotions

5.1. Problem formulation

Let Di = (X1, y1), . . ., (XNi , yNi ) denote the dataset and Ni

denote the number of segments for subject i. Given an EEG input

for the k-th segment, Xk, the task is to predict the emotion label

yk corresponding to the k-th segment. The input segment Xk of

the network is the tensor (P × C × Ni), where P denotes the

total number of data points in each segment and C denotes the

number of EEG channels. Furthermore, P = Fs × Ts where

Fs denotes the sampling frequency and Ts denotes the duration

of the segment. In this context, this study proposes a channel

selection method that reduces the number of necessary channels

from C (all available channels) to K without compromising

performance.

5.2. Frequency band selection

EEG signals are typically categorized according to rhythmic

characteristics, resulting in five different sub-bands: delta (δ),

theta (θ), alpha (α), beta (β), and gamma (γ ). In this study, the

EEG signals were band-pass filtered by applying a Butterworth

filter to each frequency band. The extracted frequency bands

included 1–4 Hz (δ), 4–8 Hz (θ), 8–14 Hz (α), 14–30 Hz

(β), 30–50 Hz (γ ), and a combination of all these bands. In

general, previous EEG-based studies that externally induced

emotions using dynamic stimuli, such as video clips, have

reported that high-frequency bands are suitable for classifying

emotions (Zheng and Lu, 2015; Song et al., 2018; Islam et al.,

2021; Rahman et al., 2021). Similarly, the γ band is known

to have more of a connection to emotional states than other

frequency bands, especially for static stimuli such as images (Li

and Lu, 2009; Yang et al., 2020). Accordingly, we hypothesized

that the γ rhythm will exhibit a larger difference with different

emotions compared to other bands.

However, self-induced emotions evoked by imagining

emotional situations in a static environment differ from

externally induced emotions. Because the optimal frequency

bands for classifying self-induced emotions have not been

sufficiently investigated, we investigated all sub-bands in an

effort to find a suitable frequency band that maximizes the

classification performance.
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TABLE 2 EEG signal statistics used for channel selection.

Statistic Equation

Mean µ(c) = 1
N

∑N
i=1 xc(i)

Variance V(c) = 1
N

∑N
i=1(xc(i)− µc)

2

Root mean square RMS(c) =

√

∑N
i=1 |xc(i)|

2

N

Skewness SV(c) = 1
N

∑N
i=1(

xc(i)−x̄c
σ

)3

Kurtosis KV(c) = 1
N

∑N
i=1(

xc(i)−x̄c
σ

)4

In the equations, xc(i) is the i-th data point of the EEG signal for channel c andN denotes

the total number of data points.

5.3. Channel selection

Channel selection removes irrelevant channels; this task

simultaneously reduces the calculation complexity and improves

the classification accuracy. An automatic channel selection

method has not been developed in the field of emotion

recognition, and studies in this field are mainly focused on

manually selecting channels based on experience (Xu et al.,

2019). A simple method for automatically selecting channels is

to use the amplitude statistics of EEG signals as a threshold

(Alotaiby et al., 2015). This selection criterion is based on the

fact that brain activity is most intense when emotional states are

being experienced.

To select channels suitable for classifying self-induced

emotions, we considered the typical statistics used in the

literature, such as the time-domain statistical values (mean,

variance, skewness, and kurtosis) and root mean square

(RMS), which can be derived from EEG time series. The

variance (standard deviation) has been used for channel

selection in epileptic seizure (Duun-Henriksen et al., 2012) and

motor imagery classification (Azalan et al., 2019). However,

appropriate statistics for channel selection in EI classification

have not been reported. Therefore, we propose optimal statistics

for classifying self-induced emotions based on the experiments

we conducted.

Table 2 presents the mathematical formulation of the

statistics used in this study. In these equations, xc(i) is the i-th

data point of the EEG signal for channel c and N denotes the

total number of data points. The signal statistics were calculated

for all channels, and the channels with the highest statistical

values were chosen in the channel selection algorithm. Finally,

the top K channels with the highest classification accuracies

were selected.

5.4. Convolutional neural network

After the frequency bands and channels were selected, a

CNN automatically extracted features from both the temporal

and spatial dimensions of the raw EEG segments. The CNN

TABLE 3 Architecture of ShallowConvNet.

Layer Operation and parameters

L1 40× Conv(3× 1), stride(1× 1)

40× Conv(1× C), stride(1× 1)

BatchNorm

Activation(Square)

AvgPool(30× 1), stride(4× 1)

Activation(Log)

Dropout(0.5)

Output Dense

Softmax classification

architecture used in this study 8was based on the shallow

CNN (ShallowConvNet) proposed in Schirrmeister et al. (2017).

Due to the shallow architecture of ShallowConvNet, a high

accuracy can be achieved without significantly increasing the

computational cost (Schirrmeister et al., 2017). The architecture

of ShallowConvNet is presented in Table 3.

The first convolutional layer was split into two layers,

performing temporal and spatial convolutions. This was

performed because splitting the first convolutional block is

known to yield better results when the number of channels is

large (Schirrmeister et al., 2017). Hence, this setup is suitable

for extracting features from high-density raw EEG signals.

Temporal convolution learns how the amplitude changes over

time for all channels of the input segment. Because temporal

convolution performs computations for all channels, the volume

of computations inevitably depends on the number of channels

C. Therefore, C was reduced to K through the channel selection

method proposed in Section 5.3. Spatial convolution was used

to extract the spatial features of each temporal filter. These steps

are similar to the band-pass and common spatial patterns (CSP)

spatial filter functions in FBCSP (Ang et al., 2008).

The initial convolutional layer was followed by squaring

nonlinearity, an average pooling layer, and a logarithmic

activation function. These steps are similar to the trial log-

variance computations in FBCSP. In the last output layer, the

dense and softmax layers were used for classification.

6. Experimental results

6.1. Implementation details

In this section, we evaluate our proposedmethod for the task

of classifying self-induced emotions in the IESD dataset, using

a CNN as the feature extractor and classifier. As mentioned in

Section 3, the EEG data for 29 subjects (subject numbers 1–8,

10–21, 23–27, and 29–32) out of a total of 34 were utilized in our

experiment. Continuous EEG data were processed into 2-s EEG
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TABLE 4 Hyperparameter values of ShallowConvNet.

Hyper-parameter Value

Optimizer Adam

Learning rate 0.000625

Batch size 8

Epochs 150 [valence]

50 [arousal]

Loss function Negative log likelihood

segments, as described in Section 4.1, and fed as input to the

CNN for training and testing. For each subject, 80% of the 2-s

EEG segments were used for the training set and 20% were used

for the test set. The average values from all fold results using five-

fold cross-validation were calculated. Next, we experimentally

set the appropriate hyperparameters for ShallowConvNet. The

optimized hyperparameters used in this study are listed in

Table 4. The experiment was performed on a computer with an

Intel(R) Core(TM) i7-10700K CPU @ 3.80 GHz 3.79 GHz and

NVIDIA GeForce RTX 3080 graphics processing unit (GPU).

6.2. E�ect of frequency band on
classification performance

In the first set of experiments, the influence of the frequency

band on the classification accuracy of the CNNwas investigated.

Prior to channel selection and feature extraction, all 246

channels were used to find sub-bands suitable for classifying the

self-induced emotions. ShallowConvNet was trained separately

for the EEG rhythms of the δ, θ , α, β , and γ bands, as well as

the entire frequency range of all these sub-bands (1-50 Hz). The

average classification results for the 29 subjects on the valence

and arousal scales for each sub-band and for all bands using all

the channels are shown in Table 5.

Among the five EEG frequency bands, the γ and β bands

achieved higher valence and arousal classification results than

did the other frequency bands. This result indicates that the

higher frequency bands are more closely associated with valence

and arousal than the lower frequency bands. The γ band

achieved recognition accuracies of 75.97 and 77.68% on the

valence and arousal scales, respectively; these were the highest

recognition accuracies for each scale. We also considered the F1

score, which is a class-balanced measure of accuracy. Compared

to the F1 score of the lowest frequency band (δ), the F1 score

of the γ band increased by 16.95% on the valence scale and

by 19.09% on the arousal scale. This indicates that the input

signals filtered in the γ band (30–50 Hz) improve the precision

and recall of the system. In addition, a high average recognition

accuracy was achieved for all bands (1–50 Hz). In summary, the

TABLE 5 Average classification performance for di�erent frequency

bands using all channels.

Frequency band Valence Arousal

Accuracy (%) F1 (%) Accuracy (%) F1 (%)

δ band 62.07 56.33 60.81 56.45

θ band 62.80 57.70 60.32 56.43

α band 64.67 59.62 65.30 61.61

β band 73.39 70.60 71.76 69.16

γ band 75.97 73.28 77.68 75.54

All (δ, θ ,α,β , γ ) 72.37 68.93 71.24 68.87

The best results are in bold.

FIGURE 2

Comparison of valence classification accuracies for di�erent

EEG channel selection methods.

CNNperformed the best when learning the features in the 30–50

Hz frequency range (the γ band).

6.3. Performance comparison of di�erent
channel selection methods

Before comparing the results of the channel selection

methods, we first evaluated the influence of the number of

selected channels (K) on the performance of the CNN. The

results produced by varying K from 1 to 123 (half the total

number of channels) for the valence and arousal scales are

presented in Figures 2, 3, respectively. We did not evaluate

the channel selection method using more than 124 channels

because, in that case, the channel selection had no significant

effect on the results. When K was too small (e.g., K =

10), the representation could not be maintained. This led

to a decrease in decoding performance, which degraded the

accuracy of self-induced emotion recognition. However, when

K was too large, similar channels that did not contribute
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FIGURE 3

Comparison of arousal classification accuracies for di�erent

EEG channel selection methods.

to the classification were also included, which limited the

representation capacity of the CNN. Moreover, although there

was a minimal improvement in performance, the computational

cost of the model significantly increased. In Figures 2, 3, the

black horizontal line indicates the accuracy that was achieved

when all the channels were considered. On both scales, the

accuracy of the kurtosis-based channel selection method began

to stabilize after 50 channels. Therefore, in order to determine

the optimal number of channels, it is necessary to include more

than 50 channels.

Table 6 shows the performance of all the channel selection

methods for the γ band. For the kurtosis-based channel

selection method, the self-induced emotion recognition

accuracy reached 79.03% for the valence scale using the top

68 channels and 79.36% for the arousal scale using the top

90 channels. For arousal classification, the skewness-based

channel selection method achieved the highest accuracy (but

only marginally) using the top 119 channels. Overall, therefore,

the kurtosis-based channel selection method performed the best

considering the low number of channels it used.

We also compared the performance of each method using

the same number of channels (K=64). This number of channels

is commonly used in EEG-based emotion recognition studies.

On the valence scale, the kurtosis-based method demonstrated

a higher performance than the other statistics. On the arousal

scale, the skewness-based method demonstrated the highest

accuracy, but it was only 0.08% higher than that of the kurtosis-

based method. This illustrates how selecting the minimum

number of EEG channels that yields the best or required

accuracy can balance the performance and computational

complexity (Arvaneh et al., 2011). Therefore, although there

was a slight difference in accuracy, the kurtosis-based channel

selection method exhibited higher accuracy with fewer channels,

and thus it is the most suitable channel selection method for

self-induced emotion recognition.

TABLE 6 Comparison of the accuracy (%) of di�erent channel

selection methods for the γ band.

Classification Statistic Maximum accuracy K = 64

scheme (K)

Valence Mean 77.13 74.23

(79)

Variance 77.28 75.06

(108)

RMS 78.15 75.22

(87)

Skewness 76.97 75.33

(78)

Kurtosis 79.03 76.50

(68)

Arousal Mean 79.01 75.86

(122)

Variance 78.52 76.38

(70)

RMS 77.78 75.33

(114)

Skewness 79.50 76.88

(119)

Kurtosis 79.36 76.80

(90)

K is the number of selected channels. The best results are in bold.

6.4. E�ect of frequency band on
kurtosis-based channel selection

Figure 4 shows the performance of each frequency band for

the kurtosis-based channel selection method. The classification

accuracies of the γ band were significantly higher than those of

the other frequency bands, regardless of the number of selected

channels. In contrast, the classification accuracies of the δ and

θ bands were the lowest for the valence and arousal scales,

respectively. These results are similar to those obtained using

all the channels, as shown in Table 5. This demonstrates that

using both the optimal frequency band and optimal channel

selection method in our proposed framework improves the EI

classification accuracy.

6.5. E�ect of computational cost
reduction

Table 7 presents a comparison of the overall results of the

experiments performed in this study. The table displays the

average accuracy and standard deviation of the 29 subjects

for the valence and arousal classification tasks in terms of

the classification accuracy and execution time. The execution
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FIGURE 4

Average classification accuracies of di�erent frequency bands

for the kurtosis-based channel selection as a function of the

number of selected channels. (A) Valence scale classification

accuracy. (B) Arousal scale classification accuracy.

time includes the time required for preprocessing, training,

and inference, and it represents the overall computational

complexity of the system. According to the results, the feature

selection (sub-band and channel selection) process significantly

reduced the execution time and improved the accuracy. The

BPF and channel selection methods were both effective in

improving the performance. In particular, the proposed channel

selection method exhibited superior performance in terms

of reducing the execution time. Here, the channel selection

time is less than 0.1-s and accounts for less than 0.01%

of the execution time. This confirms that effective channel

selection reduces the training time without compromising the

accuracy.

6.6. Channel selection results of di�erent
model

The advantage of the proposed method is that it does not

overfit a specificmodel. To validate this fact, we applied kurtosis-

based channel selection to DeepConvNet (Schirrmeister et al.,

2017), which is widely used as a comparison model for

ShallowConvNet. Although the optimal set of channels for

ShallowConvNet was used as the input for DeepConvNet, the

results produced a 79% reduction in execution time without

decreasing the accuracy. Thus, the proposed channel selection

method can be expected to further improve the accuracy by

determining the optimal number of channels for a given CNN.

6.7. Subject-independent evaluation

We also conducted experiments on subject-independent

evaluation to verify the effectiveness of the proposed method.

In this experiment, leave-one-out cross-validation was used for

evaluation. In each fold, the EEG data of 28 subjects are used

for the training, and the remaining 1 subject’s EEG data is used

for the testing. Since the data of all subjects except the target

subject are used for the training, subject-independent channel

selection was performed. Table 8 shows the performance of

ShallowConvNet on IESD in 10 epochs. The overall accuracy is

lower than that of the subject-dependent experiment. However,

after applying BPF and channel selection, performance was

improved by the proposed framework. This demonstrates that

the proposed method can improve performance in both subject-

dependent and subject-independent scenarios.

7. Discussion

In this study, we automatically classified self-induced

emotions via a CNN without using complex preprocessing

techniques. We demonstrated that the proposed kurtosis-based

channel selection method improved the classification accuracy

and significantly reduced the computational complexity. In

particular, selecting channels from the γ band maximized the

overall classification performance.

High-frequency bands have been widely used to study

advanced cognitive functions such as emotions (Yang et al.,

2020). As a result of evaluating different frequency bands in this

study, we also found that the high-frequency bands contributed

more significantly to self-induced emotion classification than

did the low-frequency bands. In particular, our results

demonstrate that the γ band can identify self-induced emotions

more clearly than other bands. However, because CNN-

based studies have not been conducted for EI classification

before, the classification accuracy achieved in this study by

ShallowConvNet for each frequency band can be used as a

suggestion for future studies.

Statistical channel selection is a classifier-independent

(filtering) method. As mentioned in Section 1, filtering methods

do not always find the optimal channel subset or improve

performance. Despite this fact, the proposed kurtosis-based

channel selection method achieved higher performance using

fewer channels. We also applied the proposed method to
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TABLE 7 Performance of the proposed framework in terms of average accuracy (%) and execution time.

Deep learning model Method Valence Arousal

Accuracy Execution time Accuracy Execution time

(K) (for 150 epochs) (K) (for 50 epochs)

ShallowConvNet (Schirrmeister et al., 2017) Baseline (1-50 Hz) 72.37± 15.40 6 m 60 s 71.24± 16.11 2 m 20 s

(246) (246)

BPF (30–50 Hz) 75.97± 16.24 6 m 50 s 77.68± 13.38 2 m 18 s

(246) (246)

BPF + channel selection (Ours) 79.03 ± 15.22 28 s 79.36 ± 12.33 22 s

(68) (90)

DeepConvNet (Schirrmeister et al., 2017) Baseline (1-50 Hz) 69.67± 16.66 30 m 31 s 65.93± 15.15 10 m 17 s

(246) (246)

BPF (30–50 Hz) 73.27± 17.63 30 m 02 s 72.89± 14.59 10 m 11 s

(246) (246)

BPF + channel selection (Ours) 75.29 ± 15.76 5 m 45 s 76.10 ± 13.98 2 m 42 s

(68) (90)

BPF stands for “band-pass filter”, which indicates the frequency band selection process. The best results are in bold.

another model (DeepConvNet) to verify the advantages of

the filtering method. Although we did not use the optimal

channel subset as the input for that model, the computational

complexity was significantly reduced without compromising the

performance. This is the first study to demonstrate the efficiency

of statistical channel selection methods using signal amplitudes,

which is based on the observation that self-induced emotions

have a lower signal amplitude than those induced by external

stimuli.

To the best of our knowledge, no previous study has

attempted to classify emotions using the same IESD dataset. In

a similar study, Hsu et al. (2022) proposed using unsupervised

learning approaches to characterize emotional state changes by

clustering emotional states in terms of EEG activity differences

rather than using subjective labels within the same dataset.

Kothe et al. (2013) used the same experimental paradigm

that we used, and their binary classification results for the

valence scale produced an accuracy of 71.3%. Therefore, our

study outperformed this study in that it yielded a valence

classification accuracy of 79.03% using all 15 emotions (as

opposed to the 12 emotions Kothe et al., 2013 used) and only

68 channels (as opposed to the 124 channels Kothe et al., 2013

used). Moreover, we achieved an accuracy of 79.36% using 90

channels for the arousal scale, which has not been achieved

before in previous studies. Furthermore, the FBCSP algorithm

used in the previous study is not suitable for deep learning-

based systems because it utilizes multiple sub-bands and incurs

high computational costs (Kumar et al., 2017). For this reason,

the proposed method is effective in that it selects channels

based on amplitude statistics without significant computational

demands and reduces the overall computational complexity of

the system.

TABLE 8 Performance of subject-independent classification using

ShallowConvNet.

Method Valence Arousal

Accuracy Execution Accuracy Execution

time time

Baseline (1-50

Hz)

59.95± 8.96 4 m 10 s 57.71± 8.40 4 m 11 s

BPF (30-50

Hz)

62.67± 8.57 4 m 08 s 60.29± 8.33 4 m 10 s

BPF + channel

selection

(Ours)

63.46 ± 8.34 53 s 63.75 ± 7.11 1 m 28 s

The best results are in bold.

Like other studies, this study has limitations. Based on the

fact that the optimal channel subset varies from individual to

individual (Almarri et al., 2021), we performed a subject-specific

channel selection, but we did not analyze the selected channels

themselves. Therefore, our results did not show the relationship

between self-induced emotion and selected channels. Further

studies need to be done to investigate the relationship between

the channels selected by the kurtosis-based channel selection

method and channels that are active in the EI tasks. In

addition, this study used only EEG signals collected from

29 subjects in the IESD dataset. Therefore, further work will

verify our findings and improve classification accuracy by using

larger datasets and data augmentation techniques. Furthermore,

fusion with other modalities, such as facial expressions, speech,
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and ECGs, will be considered to improve the classification

accuracy.

8. Conclusion

This paper presented a new deep learning-based framework

for self-induced emotion recognition using high-density EEG

signals. We proposed a channel selection method based

on signal amplitude statistics to improve the performance

by removing irrelevant channels, which avoided the large

computational load required by high-density EEG signals. The

kurtosis-based channel selection method was the most effective

method for maximizing the accuracy of self-induced emotion

classification. It achieved average classification accuracies

of 79.03 and 79.36% for the valence and arousal scales,

respectively, using the IESD dataset. We used only 68

channels for valence scale and 90 channels for arousal scale

instead of using all 246 channels in the gamma band.

This channel selection method reduced the computational

complexity of the system by approximately 89% without

causing a decrease in accuracy. In addition, we found

that selecting channels from only the γ band generated

the highest overall classification accuracy. The experimental

results demonstrate that appropriate sub-band and channel

selection improve the CNN’s ability to learn and extract

meaningful features. The selected channel combinations were

also applied to other models to evaluate the generalization

capability of the channel selection method. This analysis

shows that our proposed framework can be applied in

future CNN-based emotion recognition studies that use

high-density EEG signals. The results of this study may

contribute to the efficiency and real-time performance of BCI

systems.
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