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Abstract 

Background:  Narrowing a large set of features to a smaller one can improve our understanding of the main risk fac‑
tors for in-hospital mortality in patients with COVID-19. This study aimed to derive a parsimonious model for predict‑
ing overall survival (OS) among re-infected COVID-19 patients using machine-learning algorithms.

Methods:  The retrospective data of 283 re-infected COVID-19 patients admitted to twenty-six medical centers (affili‑
ated with Shiraz University of Medical Sciences) from 10 June to 26 December 2020 were reviewed and analyzed. An 
elastic-net regularized Cox proportional hazards (PH) regression and model approximation via backward elimination 
were utilized to optimize a predictive model of time to in-hospital death. The model was further reduced to its core 
features to maximize simplicity and generalizability.

Results:  The empirical in-hospital mortality rate among the re-infected COVID-19 patients was 9.5%. In addition, the 
mortality rate among the intubated patients was 83.5%. Using the Kaplan-Meier approach, the OS (95% CI) rates for 
days 7, 14, and 21 were 87.5% (81.6-91.6%), 78.3% (65.0-87.0%), and 52.2% (20.3-76.7%), respectively. The elastic-net 
Cox PH regression retained 8 out of 35 candidate features of death. Transfer by Emergency Medical Services (EMS) 
(HR=3.90, 95% CI: 1.63-9.48), SpO2≤85% (HR=8.10, 95% CI: 2.97-22.00), increased serum creatinine (HR=1.85, 95% CI: 
1.48-2.30), and increased white blood cells (WBC) count (HR=1.10, 95% CI: 1.03-1.15) were associated with higher in-
hospital mortality rates in the re-infected COVID-19 patients.

Conclusion:  The results of the machine-learning analysis demonstrated that transfer by EMS, profound hypoxemia 
(SpO2≤85%), increased serum creatinine (more than 1.6 mg/dL), and increased WBC count (more than 8.5 (×109 
cells/L)) reduced the OS of the re-infected COVID-19 patients. We recommend that future machine-learning studies 
should further investigate these relationships and the associated factors in these patients for a better prediction of OS.
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Background
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) disease 2019 (COVID-19) first started in China in 
December 2019. It rapidly spread around the world and 
became a pandemic and a major health issue. It is asso-
ciated with clinical symptoms [1, 2]. The World Health 
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Organization (WHO) stated that infected patients can 
be considered as non- infectious after complete sympto-
matic recovery and two negative real-time reverse tran-
scription polymerase chain reaction (RT-PCR) tests [3]. 
The median time from symptom onset to the detection 
of immunoglobulin (Ig) M antibody was reported twelve 
days and was determined as fourteen days for IgG anti-
bodies. However, it is not clear how long the protection 
will last [4].

Recently, global concern over the possibility of re-infec-
tion with SARS-CoV-2 has risen considerably [5, 6]. Stud-
ies from different parts of the world have reported that 
some patients (especially those with underlying diseases) 
treated and recovered from COVID-19 may have new 
symptoms with COVID-19 re-infection. The COVID-19 
re-infection can be confirmed through epidemiological, 
clinical, radiological, serological, and genomic studies [5, 
7–10]. It is worth mentioning that re-infection is possible 
in the other members of the coronavirus family. There-
fore, immunity to COVID-19 is not persistent and con-
taining the virus will be difficult [11].

So far, various studies have been conducted to explore 
the determinants of the overall survival (OS) of COVID-
19 patients [12–17]. Epidemiological studies have shown 
that several factors affect the OS of COVID-19 patients 
including gender, age, cardiovascular diseases, D-dimer, 
white blood cells (WBC) count, intensive care unit (ICU) 
admission, chronic kidney disease, hospitalization, neu-
trophil-to-lymphocyte ratio (NLR), and intubation [12, 
14, 15, 18].

In the study of time-to-event data (e.g. time to death or 
discharge), bigger sample sizes and more desired events 
are often preferable. Simulation studies have indicated 
that training multiple survival time models using tra-
ditional models with small sample size data can lead to 
bias in the estimation of the coefficients since the out-
come events per candidate feature (OEPCF) are too few. 
Accordingly, the model will most probably have unsta-
ble predictions and a poor performance on new datasets 
[19–21]. Among the different methods to model the sur-
vival data, the Cox proportional hazards (PH) model is 
the most popular approach because it has fewer assump-
tions than parametric models [22, 23]. Based on the rule 
of thumb, a minimum of between five and twenty OEPCF 
is needed for reliable results in the Cox-adjusted PH 
regression model [19–21]. For small sample size data, if 
the number of the candidate features is relatively large, 
the number of the OEPCF tends to be less than expected 
and using traditional survival models can be misleading 
[20, 21]. In such cases, using least absolute shrinkage and 
selection operator (LASSO) and elastic-net regularized 
Cox PH models through machine-learning (ML) algo-
rithms is the better option [21, 24].

Generally, narrowing a large set of features to a smaller 
one can improve our understanding of the most impor-
tant risk factors for in-hospital death in patients with 
COVID-19. The LASSO and elastic-net can be applied 
to a dataset to produce estimates of regression coefficients 
via adding a penalty term to the partial log-likelihood 
function. When combined with ML algorithms for fea-
ture selection we can get an externally validated parsimo-
nious regression model [24].

To the best of our knowledge, the prognosis and OS 
of patients with COVID-19 re-infection have not been 
determined so far. Hence, the current study aimed to 
derive a parsimonious regression model for predicting 
OS among re-infected COVID-19 patients. In this study, 
the elastic net ML algorithm (which has not been utilized 
for COVID-19 data so far) was used to optimize the pre-
diction of time to in-hospital death.

Methods
Design and study population
This retrospective cohort study was conducted on all 
inpatients with confirmed COVID-19 who were referred 
to 26 medical centers (affiliated with Shiraz University of 
Medical Sciences (SUMS)) from 10 June to 26 Decem-
ber 2020. Their disease was confirmed by RT-PCR test. 
The inclusion criteria were patients with the age of ≥18 
years who had previously recovered from COVID-19 
disease but were re-infected. Patients with unknown last 
status (in-hospital death or discharge from the hospital) 
and high missing data were excluded from the study. 
Finally, a total of 283 cases were analyzed. The patients’ 
demographics characteristics and clinical and laboratory 
test findings available soon after admission to the hospi-
tal were extracted from the Health Information System 
(HIS) of SUMS.

This study was conducted in accordance with the 
Declaration of Helsinki. Besides, it was approved by the 
Vice-Chancellor of Research and Technology (Grant No. 
21237) as well as the Ethics Committee of SUMS (IR.
SUMS.MED.REC.1399.337).

Statistical analysis
The qualitative features were presented as numbers and 
percentages and the quantitative data were presented 
as mean (±SD). The non-survivor and survivor groups 
were compared using independent sample t-test. The 
time interval from admission date to end of follow-up 
was regarded censored time if in-hospital death had not 
occurred. The patients’ OS probability was estimated 
using Kaplan-Meier (KM) curves and the different 
groups were compared using the non-parametric log-
rank test [23].
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Elastic‑net regularized Cox‑adjusted PH regression
For large sample size data, the regression coefficients 
can be accurately estimated using traditional maximum 
likelihood technique [20, 24]. In most medical studies, 
however, the sample size is not always large enough to 
estimate reliable and unique coefficients. In such situa-
tions, using a regularized version of the likelihood func-
tion (i.e. the log partial likelihood function plus a penalty 
term) can generate reliable results [19, 24]. Ridge and 
LASSO regressions are two different types of regulariza-
tion methods that shrink the regression coefficient esti-
mates towards zero to obtain reliable estimates [24, 25]. 
Unlike ridge regression that will always generate a prog-
nostic model involving all the candidate features, LASSO 
regression performs feature selection as well. Therefore, 
LASSO regression results in a sparse model, i.e. a model 
that involves only a small subset of the candidate features 
[25]. The elastic-net regularized regression is a convex 
combination of the ridge and LASSO algorithms [24, 25] 
and its log partial likelihood function (i.e. ℓelastic − net) can 
be formulated as follows:

(1)ℓelastic−net = ℓ+ penalty

where

Here, ℓ is a non-regularized log partial likelihood func-
tion, while α and λ are tuning parameters which are data-
dependent and some a priori values cannot be attributed 
to them. The ridge (α=0) and LASSO (α=1) regressions 
are specific cases of elastic-net regression [24, 25]. More 
details can be found in Appendix.

The major challenge is to determine these tun-
ing parameters for which the cross-validated likeli-
hood function of the model is maximum. The five-fold 
cross-validation (CV) approach was used in this study. 
To perform CV, the original dataset was randomly 
divided into five equal parts or folds. First, one fold was 
reserved and a separate model was trained on all the 
other folds. Then, the trained model was tested on the 
reserved fold and the partial likelihood deviance was 
calculated. After repeating this process and utilizing 
all the five folds as the test sets, the average of the five 
computed partial likelihood deviances was called the 
‘CV error’ [25].

(2)
penalty = �

(

α× LASSO penalty + (1− α)× ridge penalty
)

Table 1  Comparing the demographic and triage characteristics of the re-infected COVID-19 patients using the non-parametric log-
rank test analysis

Note: The bold numbers indicate the statistically significant factors (p-value≤0.05)

Abbreviations: EMS emergency medical services, No. number, PR pulse rate, RR respiratory rate, SpO2 saturation of peripheral oxygen
a The percentages (%) are calculated across the whole sample of 283 re-infected COVID-19 patients

Non-survivors Survivors Log-rank test

Features No. (%)a No. (%)a P-value

Type of patient transfer EMS 17 (6.0) 47 (16.6) <0.001
Not-EMS 10 (3.5) 209 (73.9)

Age at admission ≤50 years 4 (1.4) 137 (48.4) <0.001
>50 years 23 (8.1) 119 (42.0)

Gender Women 9 (3.2) 105 (37.1) 0.640

Men 18 (6.4) 151 (53.4)

SpO2 (%) ≤85 21 (7.4) 53 (18.7) <0.001
>85 6 (2.1) 203 (71.7)

PR (beats/min) <60 0 (0.0) 7 (2.5) 0.025
60-119 19 (6.7) 225 (79.5)

≥120 8 (2.8) 24 (8.5)

RR (breaths/min) ≤20 15 (5.3) 189 (66.8) 0.022
>20 12 (4.2) 67 (23.7)

Temperature (°C) <37.4 18 (6.4) 208 (73.5) 0.054
≥37.4 9 (3.2) 48 (17.0)

Triage level 1 15 (5.3) 27 (9.5) <0.001
2 11 (3.9) 125 (44.2)

3 1 (0.4) 104 (36.7)

Intubation No 22 (7.8) 255 (90.1) <0.001
Yes 5 (1.8) 1 (0.4)
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When the sample size is not large enough, instead 
of the traditional Cox regression, an alternative regu-
larized regression can be used. In the current study, 
an elastic-net regularized Cox PH regression was 
employed to model time to in-hospital death in the re-
infected COVID-19 patients. Similar to LASSO, the 
elastic-net algorithm performs feature selection by set-
ting some regression coefficient estimates to zero. The 
features selected by the elastic-net algorithm were then 
entered into a standard non-regularized Cox PH regres-
sion to specify a baseline for comparison during model 
development. The backward elimination approach was 
used to reduce the number of features in the baseline 
model and to obtain a parsimonious one [24, 25]. In 
addition, the supremum test was used to check the PH 
assumption. Finally, we determined the optimal cut-off 
values of continuous variables using receiver operating 
characteristic (ROC) curve analysis. The analyses were 
performed using the “glmnet” and “survival” packages 
in the R statistical software (version: 3.6.3) and “PROC 
PHREG” in SAS statistical software (version 9.2). The 
MedCalc software (version: 8.0.0.0) was also used to 
draw the ROC curve for continuous variables, as well 
as the area under the curve (AUC), 95% CI and p-value 
calculation.

Results
The analyses were restricted to 283 patients re-infected 
with COVID-19 (male: 60%). Out of this number, 178 
patients (63%) had underlying diseases (hyperten-
sion (28%), kidney diseases (14%), cardiovascular dis-
eases (11%), diabetes mellitus (10%), and others (37%)). 
The statistics also demonstrated that about 70% of 
the patients used steroids including dexamethasone, 
hydrocortisone, and methylprednisolone as adjuvant 
therapy. With the mean (±SD) age of 52.2 (17.6) years, 
the empirical in-hospital mortality rate was 9.5%. The 
descriptive results also indicated that about 81.5% of 
the deaths occurred during the first 7 days after admis-
sion. In addition, the results showed that the in-hospital 
death rate among the intubated re-infected patients was 
83.3%. More details of the baseline demographic char-
acteristics and clinical and laboratory test findings are 
presented in Tables 1 and 2.

Regarding drug treatment (steroids and antibiot-
ics), the majority of the re-infected patients received 
dexamethasone (n=177, 62.5%) followed by lopinavir/
ritonavir, branded as Kaletra (n=114, 40.3%), azithro-
mycin (n=80, 28.3%), remdesivir (n=38, 13.4%), chlo-
roquine (n=28, 9.9%), hydrocortisone (n=27, 9.5%), 
methylprednisolone (n=19, 6.7%), and favipiravir 
(n=7, 2.5%).

Non‑parametric analyses (KM plots and log‑rank tests)
The non-parametric KM plots for the survival prob-
abilities are given in Figs. 1 and 2. The curves detail the 
time to in-hospital death in the current study. The x-axis 
represents the elapsed time (in days) from the admission 
date and the y-axis stands for the survival probabilities. 
The median of survival time was 18.2 (range: 0.05-27.70) 
days. As Fig. 1 demonstrates (the dashed lines represent 
95% CI), 12.5% of the re-infected COVID-19 patients 

Table 2  Comparing the baseline laboratory test values of the 
re-infected COVID-19 patients (non-survivors vs. survivors) using 
independent sample t-test

Note: The bold numbers indicate the statistically significant factors 
(p-value≤0.05)

Abbreviations: ALKPH alkaline phosphatase, BUN blood urea nitrogen, 
CPK creatine phosphokinase, CRP C-reactive protein, DBP diastolic blood 
pressure, ESR erythrocyte sedimentation rate, HCT hematocrit, LDH lactate 
dehydrogenase, PT prothrombin time, PTT partial thromboplastin time, PLT 
blood platelet, SBP systolic blood pressure, SGPT serum glutamic pyruvic 
transaminase, SGOT serum glutamic oxaloacetic transaminase, WBC white blood 
cell

Non-survivors Survivors Independent 
sample t-test

Features Mean (±SD) Mean (±SD) P-value

DBP (mm Hg) 72.1 (17.4) 80.3 (13.8) 0.005
SBP (mm Hg) 126.1 (22.9) 127.7 (19.6) 0.682

Calcium (mg/dL) 8.6 (0.7) 8.8 (0.5) 0.029
Potassium (mEq/L) 5.2 (1.0) 4.5 (0.6) <0.001
Sodium (mEq/L) 141.3 (8.5) 140.4 (4.5) 0.380

BUN (mg/dL) 45.3 (27.5) 20.1 (12.8) <0.001
ESR (mm/h) 47.5 (19.8) 46.0 (19.4) 0.711

ALKPH (U/L) 236.3 (70.7) 207.0 (94.5) 0.120

SGPT (U/L) 75.3 (60.2) 57.0 (37.3) 0.024
SGOT (U/L) 86.4 (78.8) 52.9 (27.8) <0.001
Phosphore (mg/dL) 3.9 (1.2) 3.4 (0.7) 0.006
Albumin (mg/dL) 3.9 (0.4) 4.1 (0.5) 0.004
PLT (×109 cells/L) 221.7 (128.9) 267.0 (1.2) 0.055

HCT (%) 40.9 (8.4) 42.3 (5.3) 0.218

Hemoglobin (g/dL) 13.1 (3.0) 13.9 (2.1) 0.083

Creatinine (mg/dL) 2.4 (1.9) 1.3 (0.7) <0.001
WBC count (×109 
cells/L)

13.3 (6.3) 8.4 (3.8) <0.001

PT (seconds) 15.8 (2.4) 14.9 (1.7) 0.014
PTT (seconds) 43.9 (0.5) 40.1 (9.7) 0.072

T-protein (mg/dL) 6.8 (0.5) 7.0 (0.6) 0.184

Ferritin (ng/mL) 1026.9 (843.7) 891.6 (444.3) 0.178

CPK (mg/dL) 236.4 (234.8) 198.8 (185.4) 0.330

LDH (U/L) 1244.4 (1069.9) 705.9 (229.0) <0.001
D-dimer (ng/mL) 2257.0 (1338.8) 1908.3 (1054.5) 0.113

Magnesium (mg/dL) 2.7 (0.5) 2.5 (0.4) 0.001
CRP (mg/L) 23.4 (14.6) 24.2 (16.9) 0.819
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experienced in-hospital death by the end of the seventh 
day and 35.3% of them died from that point until the end 
of the 21-day COVID-19 data collection period.

Based on the non-parametric log-rank test, signifi-
cant associations with OS were found for the follow-
ing variables: age (P=0.001), type of patient transfer 

Overall Kaplan−Meier survival estimates
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Fig. 1  The overall non-parametric Kaplan-Meier survival estimates for the re-infected COVID-19 patients (solid line) and their corresponding 95% CI 
(dashed lines) (the total analysis time at risk and under observation was equal to 1250 days)
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Fig. 2  The overall non-parametric Kaplan-Meier survival estimates for the re-infected COVID-19 patients by: a age; b triage levels; c temperature; d 
type of patient transfer; e intubation; f SpO2; g pulse rate; h respiratory rate
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(P<0.001), temperature (P=0.053), SpO2 (P<0.001), pulse 
rate (P=0.024), respiratory rate (P=0.022), intubation 
(P<0.001), and triage level (P<0.0001). Moreover, there 
was no significant difference in OS by gender (P=0.638) 
(Fig. 2).

Results of elastic‑net regularized Cox‑adjusted PH 
regression
The elastic-net regularized Cox-adjusted PH model was 
trained using a combination of optimized λ values for 
the ridge (α=0) and LASSO (α=1) regressions. The val-
ues of the tuning parameters α and λ were optimized by 
averaging five repetitions of five-fold CV to minimize 
the partial likelihood deviance error (αoptimal=0.9 and 
λoptimal=0.03985) (Fig. 3).

The elastic-net regularized Cox PH model retained 
8 out of 35 candidate features of death. The estimated 
shrunken coefficients for all the retained features are 
summarized in Table  3. The model parameters may be 
interpreted in the same way as non-regularized regres-
sion parameters whereby lower values show a smaller 
magnitude of effect. Using the elastic-net regularized 
regression, the highest magnitude effects belonged to the 
patients who were transferred to EMDs by EMS (coef-
ficient=0.9145), followed by patients with the SpO2 of 
≤85% (coefficient=0.8145), intubated patients (coef-
ficient=0.5699), and cases with triage level 1 (coeffi-
cient=0.5067). The features selected by the elastic-net 
regularized regression were then entered into the 

non-regularized Cox-adjusted PH model to specify a 
baseline for comparison during model approximation. 
The stepwise backward elimination method was used to 
convert the baseline regression model into a parsimoni-
ous one.

The results of the elastic-net regularized Cox 
regression as well as the hazard ratio (HR) (95% CI) of 
in-hospital death are shown in Table 4. The dataset of 
the re-infected COVID-19 patients did not show any 
violation of the PH assumption based on the supre-
mum test results (all the p-values were >0.05). Hence, 
it was possible to use the analysis of the elastic-net 
regularized Cox-adjusted regression (Table  4). The 
coefficients estimated by the model can also be inter-
preted as the average value of the effect of each fea-
ture on the OS rate over time.

The elastic-net ML analysis indicated that transfer to 
EMDs by EMS (HR=3.90, 95% CI: 1.63-9.48), SpO2 of 
≤85% (HR=8.10, 95% CI: 2.97-22.00), increased serum 
creatinine (HR=1.85, 95% CI: 1.48-2.30), and increased 
WBC count (HR=1.10, 95% CI: 1.03-1.15) were asso-
ciated with higher mortality rates in the re-infected 
COVID-19 patients. In addition, the ROC curve analy-
sis suggested that the cut-off values of 8.5 (×109 cells/L) 
for WBC count and 1.6 mg/dL for serum creatinine 
were the best to distinguish between patient’s OS (WBC 
count: AUC=0.772 (95% CI: 0.719–0.820, P<0.001) and 
creatinine: AUC=0.742 (95% CI: 0.687-0.792, P<0.001) 
(Fig. 4).

Fig. 3  Left: The partial likelihood deviance of five-fold cross validation including lower and upper standard deviations (SDs) as a function of log 
(lambda) for the dataset of the re-infected COVID-19 patients. The dashed and dotted vertical lines demonstrate the lambda values with a minimal 
deviance (log λ=-3.2226) and the largest lambda value within one SD of the minimal deviance (log λ=-2.8506), respectively. Right: The elastic-net 
regularized coefficients on the dataset of the re-infected COVID-19 patients are shown as a function of log (lambda)
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Discussion
The review of literature showed that no research has 
been done so far on the predictive determinants of over-
all survival among re-infected COVID-19 patients. Only 
the systematic review conducted by SeyedAlinaghi et al. 
was a comprehensive study which assessed the risk of 
COVID-19 re-infection [6]. They found thirty-one eligi-
ble studies of which eight studies described the patients 
who recovered from COVID-19 re-infection and only 
one study reported death among them. However, the 
majority of the published works (26 studies) did not pre-
sent any extra information about the patients’ status (i.e. 
death or discharge) [6].

The underlying diseases, clinical conditions, use of 
glucocorticoids, and secondary bacterial infection were 
identified as the independent risk factors of COVID-19 
re-infection [6, 26, 27]. In addition, although re-infec-
tion is possible, it should be noted that the re-infection 
or reactivation diagnosed in some patients might in fact 

be a false negative at the time of discharge or not meet-
ing the discharge criteria completely. On the other hand, 
three main reasons including short-lived, ineffective, and 
strain-specific immune responses may lead to a positive 
PCR test result [28, 29].

Recent studies have reported that some patients who 
had recovered from COVID-19 had a positive PCR test 
result for the second time [5, 8, 30–36]. For instance, it 
was stated in a report that 116 patients in South Korea 
who had recovered from COVID-19 had positive PCR 
test results again [33]. In addition, most previously pub-
lished works which described patients with COVID-
19 re-infection were in the format of case reports [5, 8, 
30–32, 34–36] and no studies evaluated the OS and its 
related predictors among these patients.

Regularization algorithms such as elastic-net and 
LASSO can be used to perform feature selection and to 
improve the prediction accuracy by shrinking the coef-
ficients towards zero [24]. In this study, two ML algo-
rithms (elastic-net regularized Cox-adjusted PH model 
and backward stepwise elimination) were applied to the 
dataset of re-infected COVID-19 patients to predict the 
OS and the associated factors among them. The cur-
rent study is unique in that it incorporates all regular-
ized algorithms under the elastic-net umbrella. These 
algorithms created two models. One of them maxi-
mized parsimony and the other optimized the predictive 
power. The elastic-net Cox-adjusted PH regression kept 
8 out of 35 candidate features of time to discharge or 
in-hospital death. The strongest predictors (i.e. the fea-
tures with the highest magnitude of the estimated coef-
ficients) included the type of patient transfer (using the 
EMS or not), SpO2, intubation, and triage level (level 1 
vs. others). The backward elimination method further 
reduced the regularized model to retain four features: 
type of patient transfer, SpO2, WBC count, and serum 
creatinine.

Table 3  The selected features of time to in-hospital death or 
discharge and the regularized elastic-net coefficients in the 
re-infected COVID-19 patients (αoptimal=0.9 and λoptimal= 0.03985)

Abbreviations: BUN blood urea nitrogen, EMS Emergency Medical Services, LDH 
lactate dehydrogenase, SpO2 saturation of peripheral oxygen, WBC white blood 
cell
a  Estimated coefficients using regularized elastic-net analysis sorted by 
magnitude from highest to lowest

Features Coefficient a

Type of patient transfer (by EMS) 0.9145

SpO2 (≤85%) 0.8145

Intubation (yes) 0.5699

Triage level (level 1 vs. others) 0.5067

Creatinine (mg/dL) 0.3385

WBC count (×109 cells/L) 0.0098

BUN (mg/dL) 0.0082

LDH (U/L) 0.0003

Table 4  The hazard ratios (95% CIs) for time to in-hospital death in the re-infected COVID-19 patients using multiple regularized 
elastic-net Cox-adjusted PH regression

Note: The significant p-values (<0.05) are highlighted in bold

Abbreviations CI confidence interval, dof degree of freedom, EMS Emergency Medical Services, HR hazard ratio, SpO2 saturation of peripheral oxygen, WBC white blood 
cell

*The p-value for testing the proportional hazards (PH) assumption based on the supremum test

Features HR (95% CI) P-value PH 
assumption 
test*

Type of patient transfer Not-EMS Reference - -

EMS 3.90 (1.63-9.48) 0.002 0.782

SpO2 (%) >85 Reference - -

≤85 8.10 (2.97-22.00) <0.001 0.132

WBC count (×109 cells/L) for one unit increase 1.10 (1.03-1.15) <0.001 0.895

Creatinine (mg/dL) for one unit increase 1.85 (1.48-2.30) 0.003 0.332
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Since no similar studies were found about the sur-
vival of re-infected COVID-19 patients, the results 
of this study were compared with those of the stud-
ies related to survival and the related risk factors in 
patients with COVID-19. The results of the current 
research showed that the empirical in-hospital mortal-
ity rate was 9.5%. Furthermore, the OS rates for days 
7, 14, and 21 were obtained as 87.5, 78.3, and 52.2%, 
respectively, in the re-infected COVID-19 inpatients. 
These rates have been reported differently for COVID-
19 patients in other studies [12, 15, 37]. For example, 
Murillo-Zamora and Hernandez-Suarez found that 7-, 
15-, 21- and 30-day OS rates were respectively 72.2, 
47.6, 35.0, and 23.9% which were lower than the results 
obtained in the current study [37]. In another study by 
Sousa et  al., the 24-day OS rate in 2070 patients with 
COVID-19 was calculated as 87.7% [15].

Regarding the laboratory findings at the time of admis-
sion, it was found that increased serum creatinine (more 
than 1.6 mg/dL) and increased WBC count (more than 
8.5 (×109 cells/L)) were associated with a higher mor-
tality rate in re-infected COVID-19 patients. As com-
pared with the surviving re-infected COVID-19 patients, 
the levels of creatinine were independent predictors of 
abnormal kidney function at the time of admission in 
the non-surviving re-infected COVID-19 patients. The 
higher in-hospital mortality rate was related to the higher 
concentration levels of creatinine (>1.6 mg/dL) in the 

patients, suggesting a worse renal function at the time of 
hospital admission. This finding is in line with previous 
studies which revealed that the concentration levels of 
creatinine were significantly higher among the COVID-
19 patients who died [38–40].

Moradi et al. assessed the risk of one-month mortality 
from COVID-19 since the time of admission. They found 
that increased NLR and increased WBC count were asso-
ciated with a higher one-month death rate. Moreover, 
although hypoxemia (SpO2 <90%) increased the one-
month mortality rate, this association was not significant 
[18]. After adjustment for confounders, the results of 
the present study demonstrated that higher SpO2 levels 
(greater than 85%) after oxygen supplementation were 
associated with reduced mortality. In fact, profound 
hypoxemia (SpO2≤85%) could have a harmful effect on 
the OS of re-infected COVID-19 patients, increasing the 
risk of mortality eight-fold. The findings of the present 
study were consistent with previous studies in which pro-
found hypoxemia was associated with a higher in-hospi-
tal death rate [41, 42].

Another survey by Yan et  al. applied an ML-based 
algorithm to predict OS among 404 patients with 
severe COVID-19. They reported three biomarkers 
including lymphocyte, lactic dehydrogenase (LDH), 
and high-sensitivity C-reactive protein (hs-CRP) as the 
survival predictors with the accuracy of more than 90%. 
In particular, it was revealed that high levels of LDH 

Fig. 4  Receiver operating characteristic (ROC) curves for prediction of overall survival in the re-infected COVID-19 patients for creatinine (left: 
AUC=0.742 (95% CI: 0.687-0.792, P<0.001)) and WBC count (right: AUC=0.772 (95% CI: 0.719–0.820, P<0.001))
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might have an independent harmful effect on the OS 
rate [43].

We could not compare our results with other studies 
because we did not find any studies reporting transfer by 
EMS as an OS predictive factor. However, it could be said 
that the patients who were transferred to EMDs by EMS 
had a more severe status, increasing their mortality rate 
almost four-fold.

This study had several limitations which should be 
mentioned. We could not find any similar study in the lit-
erature to compare our findings with. Therefore, we had 
to compare our results with studies which used general 
COVID-19 datasets for their analyses. The impossibility 
of examining the risk factors associated with re-infection 
as well as the difficulty of confirming the diagnosis of 
COVID-19 re-infection were two other limitations of the 
present study. Another limitation of this study was that it 
was conducted during the peak period of infection espe-
cially when the virus had an active transmission chain 
among the populations. Hence, our findings may vary in 
non-pandemic conditions.

Conclusion
On the basis of the results it was concluded that transfer 
by the EMS, profound hypoxemia (SpO2≤85%), increased 
serum creatinine (more than 1.6 mg/dL), and increased 
WBC count (more than 8.5 (×109 cells/L)) reduced the 
OS of re-infected COVID-19 patients. Finally, we recom-
mend that future machine-learning studies should further 
explore these relationships and the associated factors in 
these patients for a better prediction of OS.
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