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ABSTRACT

Brain network characteristics’ potential to serve as a neurological and psychiatric pathology
biomarker has been hampered by the so-called thresholding problem. The minimum spanning
tree (MST) is increasingly applied to overcome this problem. It is yet unknown whether this
approach leads to more consistent findings across studies and converging outcomes of either
disease-specific biomarkers or transdiagnostic effects. We performed a systematic review on
MST analysis in neurophysiological and neuroimaging studies (N = 43) to study consistency
of MST metrics between different network sizes and assessed disease specificity and
transdiagnostic sensitivity of MST metrics for neurological and psychiatric conditions. Analysis
of data from control groups (12 studies) showed that MST leaf fraction but not diameter
decreased with increasing network size. Studies showed a broad range in metric values,
suggesting that specific processing pipelines affect MST topology. Contradicting findings
remain in the inconclusive literature of MST brain network studies, but some trends were seen:
(1) a more linelike organization characterizes neurodegenerative disorders across pathologies,
and is associated with symptom severity and disease progression; (2) neurophysiological
studies in epilepsy show frequency band specific MST alterations that normalize after
successful treatment; and (3) less efficient MST topology in alpha band is found across
disorders associated with attention impairments.

AUTHOR SUMMARY

The potential of brain network characteristics to serve as biomarker of neurological and
psychiatric pathology has been hampered by the so-called thresholding problem. The
minimum spanning tree (MST) is increasingly applied to overcome this problem. We
performed a systematic review on MST analysis in neurophysiological and neuroimaging
studies and assessed disease specificity and transdiagnostic sensitivity of MST metrics for
neurological and psychiatric conditions. MST leaf fraction but not diameter decreased
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Minimum spanning tree in neuropsychiatric pathology: Systematic review

Minimum spanning tree:

A spanning tree is defined as a
subgraph that includes all N nodes of
the original graph and N — 1 links
(m). When the sum of the weights of
the links is minimized, this is called
a minimum spanning tree of the
connected weighted graph.

Network Neuroscience

with increasing network size. Contradicting findings remain in the literature on MST brain
network studies, but some trends were seen: (1) a more linelike organization characterizes
neurodegenerative disorders; (2) in epilepsy there are frequency band specific MST alterations
that normalize after successful treatment; and (3) less efficient MST topology is found across
disorders associated with attention impairments.

INTRODUCTION

A biomarker can be defined as a characteristic that is objectively measured and evaluated to
indicate normal biologic processes, pathogenic processes, or pharmacologic responses to a
therapeutic intervention ( ). In psychiatry, and to a lesser extent in neu-
rology, clinical practice and therapeutic innovation lack biomarkers ( ).

Disturbances in the organization of macroscale brain networks are increasingly recognized
as a pathophysiological characteristic of brain disease ( ). A recurrent
finding across neurological and psychiatric disorders is the loss of network efficiency or inte-
gration, and damage to hub regions ( ; ;

). Brain network metrics may thus have the potential to serve as biomarkers
that will aid the diagnostic process and guide treatment, provided that one or more reliable
and reproducible indicators can be established ( ; ). Thus far,
however, different studies describing changes in brain networks for the same disorder have
yielded contradictory results. These results can at least in part be explained by methodological
issues ( ; ; ;

). In brain network research, one key issue is the definition of a ‘true’ connection or
edge based on empirical data. Weighted connection estimates from inherently noisy data will
introduce false positive connections in the network. Furthermore, comparing networks with
differences in mean connection weights introduces possible bias since this influences graph
measurements such as clustering coefficient and path length ( ).

A frequently used solution is to threshold connection weights, but this introduces the so-called
“thresholding problem”: the choice of a threshold is often arbitrary ( ;

; ; ). Fixed thresholds may lead to different
connection densities across subjects that bias higher order graph characteristics, while fixed
densities include noisy edges or discard true edges ( ). Attempts to
normalize data may thus inherently introduce bias to graph theoretical measures. The thresh-
olding problem contributes to poor reproducibility and limited interpretability of results.

Stam and others put forward a theoretical solution, at least at the macroscale brain network
analysis level, by reconstructing the minimum spanning tree (MST) ( ). A tree is
defined as a connected graph with a path between each pair of nodes, without forming any
loops. A spanning tree is defined as a subgraph that includes all N nodes of the original graph
and N — 1 links (m). When the sum of the weights of the links is minimized, this is called a MST
of the connected weighted graph ( ; ). Importantly, the MST will serve
as the backbone of information flow in the network under conditions where link weights in the
original graph show strong fluctuations ( ). Advantages of
this approach are that the MST of the weighted connectivity matrix is unique, provided that its
weights are unique. MST connections may be binarized to avoid density effects, and the num-
ber of links in the MST is fixed ( ). And, importantly, MST characteristics can be
interpreted along the lines of conventional metrics that characterize network topology
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( ). Tewarie and others further demonstrated in silico that MST analysis
indeed is reliable and reproducible, in the sense that it is relatively insensitive to bias and noise
in simulated connectivity data ( ). MST metrics were unaffected by
changes in density and average connectivity of a network, and global MST metrics are even
robust against substantial levels of noise in the input data.

Other, more data-driven thresholding approaches are also available, including efficiency
cost optimization, proportional thresholding, and probabilistic thresholding (

; ; ). The
MST has been proven to be theoretically and methodologically reliable for specific imaging
modalities ( ). Over the last few years, MST analysis has been applied to

neuroimaging and neurophysiological data obtained with various acquisition techniques, such
as magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion
tensor imaging (DTI), electroencephalography (EEG), and magnetoencephalography (MEG).

Here, we performed a systematic literature review and critically assessed whether the use of
MST analysis to characterize brain networks holds promise for establishing the reproducibility
and reliability necessary for the development of brain network-based biomarkers for neuro-
logical and psychiatric disorders. First, we analyzed how MST metrics are affected by different
imaging modalities, node, and link definitions by comparing MST characteristics in empirical
studies of healthy controls.

Secondly, we assessed how results from different MST studies compare within and across
categories of pathology, and attempted to interpret the changes in brain networks that occur in
brain disease from a transdiagnostic perspective. After a systematic search for clinical MST
studies, we categorized findings on (1) neurodevelopmental disorders, (2) adult psychiatric
disorders, (3) neurodegenerative disorders, (4) multiple sclerosis, (5) epilepsy, and (6) other
neuropsychiatric disorders.

METHODS
Search Term and Search Strategy

References were identified through searches of PubMed and EMBASE, using an array of terms
covering brain connectivity in combination with MST. Exact search terms are specified in the
. Furthermore, Google Scholar was used to search for articles from
2005 and onward citing the following key papers: , a seminal paper on graph
theory; , an extensive review on the methodological state of affairs in brain
network research which has proposed the MST as a possible solution for various methodolog-
ical issues; , a study showing the relevance and reliability of MST graph
theoretical approach for studying brain networks ( ; ;
). For the paper by Kruskal, search results were further narrowed down by using
the following search terms “brain OR neuronal OR cerebral.” Searches were conducted from
inception to May 2020.

The resulting articles were reviewed for relevance on title and abstract by two independent
raters (FG and NB and/or BdR). If the article was deemed potentially relevant, the full text was
also reviewed. In case of uncertainty about whether an article was eligible for inclusion, a third
rater (EvD) coreviewed the article and was then included or excluded by consensus.

Articles were included when they met the following criteria: published in English, assessing
macroscale, whole-brain network topology through the use of one or more of these four imag-
ing techniques that are broadly used in studies on neurological and psychiatric disorders:
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Diameter:

The largest distance (in number of
edges) between any two nodes,
normalized for the total number of
edges. Diameter is a measure of
network efficiency. An increase in
diameter, means a decrease in global
efficiency, whereas a low diameter
indicates a more efficient information
flow between brain regions.

Leaf fraction:

The leaf fraction (Ly) is the leaf
number (L) divided by the maximum
possible leaf number. Leaf fraction is
considered measure of centrality.

Leaf number:
The number of nodes in graph with
only one connection.

Kappa:

A measure that relates to the spread
of information across the tree. When
kappa is low there is a low number of
highly connected nodes.

Tree hierarchy:

Tree hierarchy quantifies the trade-off
between large-scale integration in
the minimum spanning tree and the
overload of central nodes.

Network Neuroscience

electroencephalography (EEG), magnetoencephalography (MEG), functional MRI (fMRI), DTI;
conducted during resting-state and without intervention; having constructed a minimum span-
ning tree and reported at least one of the following MST measures: diameter, leaf fraction, leaf
number, and kappa and tree hierarchy in a population with a neurological or psychiatric dis-
order. When available, numeric values for these measures were extracted from the original
articles or

MST Metrics

MST measures that were analyzed included diameter, leaf fraction, and kappa and tree hier-
archy, which describe the integration and efficiency of the network. A description of these
measurements is provided in
MST topologies and corresponding characteristics.

, where provides a schematic overview of

A small diameter combined with a high leaf fraction characterizes a more starlike, central-
ized network. In contrast, a large diameter with a low leaf fraction indicates a more linelike
topology and decentralized network. A starlike network is characterized by short paths
between the most remote nodes and thus facilitates efficient transfer of information across
the network. However, the central node is burdened by a relatively large flow of information
in such a network, possibly creating a greater chance of overload. Starlike networks will also
be more vulnerable to targeted attacks to central hub nodes ( ).

Meta-Analysis

Due to limited available data, kappa and tree hierarchy were excluded from quantitative anal-
ysis. The MST variables diameter and leaf fraction were included in further quantitative anal-
yses. First, we tested if MST variables were affected by network size. Mean values of MST
metrics from healthy control groups were used for this analysis. Due to a limited number of
data points, and the fact that some fMRI-based studies had considerably more nodes, we
decided to use nonparametric linear regression method according to Siegel and others, to
ensure robust regression ( ). For EEG and MEG data, we followed
the authors’ frequency bands.

Second, to analyze the network deviations in various brain disorders and interpret results
from a transdiagnostic perspective, mean group effects on MST metrics were analyzed based
on comparisons between clinical and control groups. We performed both fixed-effect and
random-effects meta-analysis on the standardized difference of the mean estimates of mean
leaf fraction per study and mean diameter per study. Studies were stratified by imaging modal-
ity. MEG/EEG studies were aggregated, but stratified for each frequency band. Heterogeneity
was assessed using ["2 calculated based on Cochran’s Q. Analyses were performed using the
meta package in R 3.6.1.

Finally, we provided a narrative review to evaluate if MST analysis holds promise for bio-
marker development of brain disease, where insufficient data were available to draw definitive
conclusions on quantitative outcomes.

RESULTS

The search resulted in 43 included studies in this review, 34 described a patient-control study
design, and 9 studies included children. The 43 studies were further subdivided into papers on
neurodevelopmental disorders (N = 7), adult psychiatric disorders (N = 7), neurodegenerative
disorders (N = 15), epilepsy (N = 6), multiple sclerosis (N = 4), and other disorders (N = 4). An
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Table 1.  Explanation of the MST measurements included in this review

Symbol Concept

Explanation

D Diameter

LF Leaf fraction

Th Tree hierarchy

K Kappa

A measure of network efficiency and refers to the largest distance (in number of links) between any two
nodes and is normalized for the total number of links: D = d/M, where M is the total number of links or
maximum leaf number (M = n — 1, with n the number of nodes). An increase in diameter, means a
decrease in global efficiency, whereas a low diameter indicates a more efficient information flow
between brain regions.

A measure of centrality and is based on the leaf number; the number of nodes with only one connection.
The leaf fraction (Ly) is the leaf number (L) divided by the maximum possible leaf number: L; = [/M.
This measure ranges between 2/M, which indicates a linelike topology and a maximum value of
M = n—1 (n = number of nodes), which indicates a star topology. A lower value of the leaf fraction
indicates a less centralized network topology and a high leaf fraction means that communication
depends strongly on hub nodes (i.e., nodes that play a central role in the network).

Quantifies the trade-off between large-scale integration in the MST and the overload of central nodes,
calculated by Th = L/(2mBCmax) (Boersma et al., 2013), where BCmax stands for the maximum value
of the betweenness centrality among all the nodes in the MST, and BC itself is computed as the fraction
of shortest paths that go through a node. Note that nodal BC and BCmax were not considered
macroscale network characteristics and therefore excluded from analysis in this review. To assure tree
hierarchy ranges between 0 and 1, the denominator is multiplied by 2. Th ranges between 0 and
1, where Th approaches 0 if L = 2 (linelike topology) and M approaches infinity. For L = M (starlike
topology), Th approaches 0.5. A network topology that optimizes a trade-off between integration and
segregation is hypothesized when Th approaches 1 (Stam et al., 2014).

A measure of the broadness of the degree distribution or the heterogeneity of degrees and relates to the
spread of information across the tree (Stam et al., 2014). A low value of kappa indicates a low number
of highly connected nodes (hubs). High kappa values are especially seen in scale-free networks (Stam
& van Straaten, 2012).

B KA L e

—— ——

Epilepsy (higher frequency bands) Epilepsy (lower frequency bands)
Epilepsy (succesful treatment)

Neurogenerative disease:
Normal maturation bvFTD < AD < DLB < PDD *

Conditions with disturbances in
the cognitive domain of attention
(i.e. ADHD, delirium)

Figure 1. Schematic depiction of three different minimum spanning trees, with a starlike, intermediate and linelike configuration from left to
right. The green nodes represent leaf nodes. Central nodes are depicted in orange. Diameter is depicted in red. Individual conditions and the
correlated changes in network topology as described in the discussion section are displayed, with an arrow depicting the direction of the
change. For neurodegenerative diseases conditions are displayed left to right from having the least shift toward a more linelike topology
(bvFTD) to the most (PDD). AD, Alzheimer’s disease; bvFTD, behavioral variant of frontotemporal dementia; DLB, dementia with Lewy bodies;
PDD, Parkinson’s disease dementia.

Network Neuroscience
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DTl 2 p-value: 0.232 ot
sieme Intercept: 0.238 =
* MEG Slope: -0.000505 * MEG

Leaf Fraction
.
.
Diameter

Intercept: 0.621
Slope: -0.000691

p-value: 0.00257 . \\
; N i = -

0 150
Number of Nodes Number of Nodes

Figure 2. Nonparametric linear regression for number of nodes and normalized leaf fraction (A) and diameter (B). The gray line indicates the
same regression, but excluding studies with more than 250 nodes; in this analysis for leaf fraction (2.1) the p value is 0.023, with an intercept of
0.63 and a slope of —0.0007. For diameter the p value is 0.426, with an intercept of 0.279 and a slope of —0.001.

overview of the included studies is given in and a flowchart of
the systematic selection process can be found in

Network Size and Imaging Modality Effects

To analyze network size effects, control groups from studies in adult populations were used.
For 12 studies data were available: 5 EEG studies, 2 MEG, 2 fMRI study, 2 DTI study, and 1
combined MEG/MRI study. Regression analysis showed that leaf fraction decreased with the

number of nodes in the network (slope = —6.91 x 107, p = 0.00257; ). Values for leaf
fraction in healthy controls ranged from 0.35 to 0.859. Diameter did not show significant cor-
relation with the number of nodes (slope = —5.05 x 10™%; p = 0.232; ). Values for

diameter in healthy controls ranged from 0.108 to 0.401. Insufficient data were available to
provide a quantitative analysis of imaging modality effects, frequency band effects in
EEG/MEG studies, or effects using different connectivity measures/connection definitions
within one modality.

MST Characteristics of Neurological and Psychiatric Disorders

Data from 16 studies were available to calculate transdiagnostic, standardized effects of brain
disorders on MST metrics. Fixed-effect and random-effects meta-analysis were performed on
the standardized difference of the mean estimates of mean leaf fraction per study and mean
diameter per study. EEG and MEG studies were aggregated per frequency band. fMRI studies
and DTI studies were analyzed separately because of unknown imaging modality effects and
differences in network size compared to EEG/MEG studies. and show the
disease effect for diameter and leaf fraction, respectively.

A significant effect is seen for delta-band diameter (SMD = 0.322, 95% Cl = 0.092; 0.551)
and leaf fraction (fixed effects model: SMD = —0.295, 95% Cl = —0.483; —0.107; random-
effects model SMD = —0.336, 95% CI = —0.594; -—0.078), and for diameter in gamma band
(SMD = 0.470, 95% CI = 0.087; 0.853), implying a cross-disorder effect of a shift toward a
more linelike network.

Due to overall levels of heterogeneity (see and ), we concluded that it is
not possible to show any generic disease effects across disorders and modalities on diameter
and leaf fraction in our meta-analysis. Because of the small number of studies per disease cat-
egory, no separate analyses for each disease category was conducted; instead these effects are
described in a qualitative matter in the following sections.

Network Neuroscience 306
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Standardised Mean Weight  Weight
Study TE seTE Difference SMD 95%-Cl (fixed) (random)
Van_Diessen_2016 Generalized_epilepsy_chid (EEG_delta) 0.194 0.207 — 0194 [0211;0509) 321%  324%
Wang_2019 Internet_addiction (EEG delta) 0243 0.259 —-a:—- 0243 [0.265,0.751] 204%  204%
Gonzalez_2016 Dyslexic_children (EEG delta) 0215 0.319 —— 0215 [0.410;0.841) 135%  13.5%
Pozar_2020 MCI (EEG delta) 0731 0.348 Hese— 0731 [0.048;1.414] 113%  11.3%
Tewarie_2015 MS (MEG delta) 0432 0245 |z 0432 [0.049,0912] 228%  22.8%

Fixed effect model 0.322 [0.092; 0.551] 100.0% -

i
i
e
Random effects model <> 0.322 [0.092; 0.551] - 100.0%
r T T 1

Heterogeneity: /2 = 0%, % =0, p = 0.71

4 2 0 2 4
Van_Diessen_2016 Generalized_epilepsy_chid (EEG_theta) -0.049 0.206 —°._: -0.049 [-0.453;0.356] 27.9%  212%
Janssen_2017 ADHD_children (EEG theta) 0.161 0217 R 3 0.161 [-0.2650.586] 25.2%  20.9%
Gonzalez_2016 Dyslexic_children (EEG theta) 0.630 0326 e 0630 [-0.009;1.268] 11.2%  18.2%
Xue_2020 Dyslexic_children (EEG theta) 0.257 0250 a 0257 [-0.234;0.747) 19.0%  20.1%
Tewarie_2015 MS (MEG theta) 1.589 0.267 —_— 1589 [1.065,2113] 16.6%  19.7%

"
t
"
"

Fixed effect model < 0.411 [0.197; 0.625] 100.0% -
Random effects model = 0.502 [-0.058; 1.062] - 100.0%

Heterogeneity: 12 = 85%, +* = 0.3428, p < 0.01 r T T 1

4 2 0 2 4
Janssen_2017 ADHD_children (EEG alpha) -0.445 0.220 i -0445 [0.875,-0.014] 268%  25.9%
Gonzalez_2016 Dyslexic_children (EEG alpha) 0.550 0.324 i 0.550 [-0.085; 1.185] 12.3% 22.3%
Gonzalez_2018 Dyslexic_adults (EEG alpha) 0412 0255 —— 0412 [0.911; 0.088] 19.9%  24.7%
Van_Dellen_2015 DLB (EEG alpha) 0578 0.178 - 0578 [0.230; 0.926] 40.9%  27.2%

Fixed effect model 0.103 [-0.120; 0.326] 100.0%

3 =
Random effects model = 0.063 [-0.525; 0.651] - 100.0%
T T 1

2 4

Heterogeneity: I = 84%, * = 02995, p < 0.01

0
Van_Diessen_2016 Generalized_epilepsy_chid (EEG lower_alpha) 0.019 0.206 — 0019 [-0.386;0.423] 584%  56.6%
Tewarie_2015 MS (MEG lower_alpha) 0.382 0.245 . 0382 [-0.098;0.862] 41.6%  434%

1
1
Fixed effect model > 0.169 [-0.140; 0.479] 100.0% -
Random effects model < 0176 [0.176; 0.529] ~ 100.0%
Heterogeneity: I = 22%, ©* = 00146, p = 0.26 . L i 1

-4 2 0 2 4
Van_Diessen_2016 Generalized_epilepsy_chld (EEG_upper_alpha) -0.284 0.207 4 0284 [-0.689; 0.122] 50.7%  34.0%
P
Wang_2019 Internet_addiction (EEG upper_alpha) -3.290 0404 «—%— H -3.200 [-4.082;-2498] 133%  323%
Tewarie_2015 MS (MEG upper_alpha) 0.467 0.246 P 0467 [-0.015; 0.948] 36.0%  33.7%
FI |
I
Fixed effect model 1> -0.413 [-0.702; -0.125] 100.0% -

Random effects model i A1.001 [2734; 0.731] - 100.0%
T T T 1

Heterogeneity: I* = 97%, ©* = 2.2575, p < 0.01

4 2 0 2 4
Van_Diessen_2016 Generalized_epilepsy_chld (EEG_beta) 0.198 0.207 L 0.198 [-0.207;0.603] 23.1%  19.6%
Wang_2019 Intemet_addiction (EEG beta) -0.348 0.260 — -0.348 [-0.858;0.162] 14.6%  15.8%
Janssen_2017 ADHD_children (EEG beta) -0.343 0.219 — -0.343 [-0.771;0.086] 20.6% 18.7%
Gonzalez_2016 Dyslexic_children (EEG beta) 0.000 0.318 —— 0.000 [-0.623;0623] 9.7%  12.6%
Xue_2020 Dyslexic_children (EEG beta) 0.398 0.252 o 0.398 [-0.095;0.891] 15.6%  16.4%
Tewarie_2015 MS (MEG beta) 0.405 0.245 L 0.405 [-0.076;0.885] 16.4% 16.8%
Fixed effect model 0.053 [-0.142; 0.247] 100.0% -
Random effects model <> 0.053 [-0.227; 0.333] -~ 100.0%
Heterogeneity: I* = 51%, ©* = 0.0613, p = 0.07 f J ! !
oamey N : -4 2 2 4
Gonzalez_2016 Dyslexic_children (EEG gamma) 0.505 0.323 0505 [-0.128;1.138] 36.6%  36.6%
Tewarie_2015 MS (MEG gamma) 0.450 0.245 0450 [-0.031;0.931) 634%  634%
Fixed effect model 0.470 [0.087;0.853] 100.0% -
Random effects model 0.470 [0.087; 0.853] - 100.0%
Heterogeneity: I* = 0%, 7" = 0, p = 0.89 f ! ! ¥
o SN 4 2 2 4
Van_Dellen2020 Bipolar (MRI) 0.162 0.109 0.162 [-0.053;0.376] 79.1%  79.1%
Tewarie_2015 MS (fMRI) 0.000 0.243 0000 [-0.477,0.477) 16.0%  16.0%
Van_Montfort_2018 Delirium (fMRI) 0.435 0.440 0435 [0.427;1.296] 4.9% 4.9%
Fixed effect model 0.149 [-0.042; 0.340] 100.0% -
Random effects model 0.149 [-0.042; 0.340] - 100.0%
Heter ity: 12=0%, ¥ =0, p =067 y ! ’
leterogeneity: v P 4 2 o 2 4
Van_Dellen2016 Psychotic disorder (DTI) 0.140 0.238 i 0.140 [-0.326;0.606] 69.0%  69.0%
1
Jonak_2021 LHON (DT1) 0.072 0.354 : 0072 [0.623;0.767) 31.0%  31.0%
Fixed effect model 0.119 [-0.268; 0.506] 100.0% -
Random effects model 0.119 [-0.268; 0.506] - 100.0%
Hete ity: 2= 0%, ¥ =0,p =0.87 i : )
leterogeneity: “=0,p b 5 Y b

Figure 3. Forest plots for fixed-effect and random-effects meta-analysis on the standardized difference of the mean estimates for mean diam-
eter. Studies are stratified by imaging modality. MEG/EEG studies are aggregated, but stratified for each frequency band. Low heterogeneity
indicates that the included studies agree about the magnitude and direction of effect. The p value indicates whether the calculated hetero-
geneity deviates significantly. Meta-analyses with more studies tend to have a higher power to detect significant heterogeneity. SMD, stan-
dardized mean difference; 95%-Cl, 95% confidence interval; TE, estimate of treatment effect, for example, log hazard ratio or risk difference;
seTE, standard error of treatment estimate; ADHD, attention-deficit hyperactivity disorder; LHON, Leber’s hereditary optic neuropathy; MClI,
mild cognitive impairment; MS, multiple sclerosis; DLB, dementia with Lewy bodies.

Network Neuroscience 307



Minimum spanning tree in neuropsychiatric pathology: Systematic review

Figure 4.

Study

Van_Diessen_2016 Generalized_epilepsy_chid (EEG_delta)
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Neurodevelopmental Disorders

We included two studies on attention-deficit/hyperactivity disorder (ADHD), one study on
autism spectrum disorder (ASD), three studies on dyslexia, and one study on language-based
learning disorder, of which 6 were EEG studies and 1 was an fMRI study. An overview of
the mean MST values and standard deviation (SD) is included as

. The studies comprised a total number of 261 patients with neurodevelopmental
disorders.

Children with ASD showed a lower EEG alpha-band leaf fraction than healthy controls
( ). Wang and others found a lower fMRI leaf fraction and kappa and tree
hierarchy in children with ADHD compared to normal developing children (
). In contrast, Janssen and others found a lower EEG alpha-band diameter and higher leaf
fraction and tree hierarchy in children with ADHD than typically developing children and a
higher beta-band leaf fraction ( ).

Fraga Gonzélez and others found dyslexic children to have a significantly lower leaf frac-
tion and higher diameter in EEG theta band than typically reading children (
), while Xue and others found no significant differences ( ). Fraga
Gonzalez and others found a higher kappa in dyslexic young adults (
). Infants at risk for developing a language-based learning disorder showed a higher leaf
fraction than typically developing children ( ).

Adult psychiatric disorders. We included seven studies on adult psychiatric disorders, with 483
patients: four studies on psychotic disorders, one study on bipolar disorder and psychotic dis-
order, one study on major depressive disorder, and one study on internet addiction. Imaging
modalities included EEG (N = 4), fMRI (N = 1), and DTI (N = 2). An overview of the available
mean MST values and SD is included as

Anjomshoa and others found a higher DTI diameter and lower kappa and leaf number in
schizophrenia patients than healthy controls ( ). In contrast, Van Dellen
and others found no significant differences in MST topology between patients with a psychotic
disorder, individuals with subclinical psychotic symptoms, and healthy controls, neither with
fMRI nor with DTI-based networks ( ; ). Krukow
and others reported findings seemingly inconsistent with the studies above, that is, a smaller
diameter and leaf fraction in EEG delta and lower gamma band and smaller diameter in EEG
beta band. Importantly in this EEG study, all patients were treated with atypical antipsychotics
( ). Jonak and others found a higher gamma-band hierarchy but lower beta-
band hierarchy in first-episode psychosis patients compared to patients with longer illness
duration, but found no differences in diameter, leaf fraction, or kappa between these groups

( ).

Bipolar-I patients were found to have a lower fMRI leaf fraction and kappa than controls
and patients with subclinical psychosis, and a lower leaf fraction than patients with schizo-
phrenia ( ). This study found no differences in global MST network
topology between patients on antipsychotic medication or lithium and those who did not use
medication. Li and others found a higher EEG theta-band leaf fraction for patients with major
depressive disorder than healthy controls ( ).

Finally, Wang and others found that alpha- and beta-band EEG MST was more starlike in
subjects with internet addiction than controls ( ): a higher kappa and lower
diameter correlated with higher addiction severity.
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Neurodegenerative diseases. Fifteen studies were included, comprising 760 patients with neu-
rodegenerative disorders: seven EEG, five MEG, two fMRI and one DTI study. An overview of
the available mean MST values and SD is included as

Synucleinopathies are neurodegenerative diseases characterized by the abnormal neural
accumulation of alpha-synuclein proteins. Parkinson’s disease (PD) and dementia with Lewy
bodies (DLB) are types of synucleinopathies, which may be diagnosed based on the neuroan-
atomical spreading pattern of the proteins and clinical presentation. Three studies reported
MST disturbances in synucleinopathies, which may also reflect disease progression.

Olde Dubbelink and others studied MEG recordings of de novo PD patients, 43 chronic PD
patients and 14 controls, and included a follow-up measurement after 4 years (

). They found lower leaf fraction and tree hierarchy in the (upper) alpha
band in PD patients compared to controls. Leaf number (theta band) and tree hierarchy (delta
band) were decreased at follow-up in the PD group. In the control group, alpha-band leaf
fraction and beta-band tree hierarchy decreased at follow-up.

Utianski and others also found a lower diameter and higher leaf fraction in EEG delta and
theta-band recordings of cognitively normal PD (PD-CN) than healthy controls. Patients with
PD and mild cognitive impairment (PD-MCI) or dementia (PDD) had a lower leaf fraction
(upper alpha band) when compared to PD-CN patients ( ). The (lower
alpha band) diameter was also higher in the PDD compared to PD-CN patients.

Peraza and others found higher theta-band diameter and lower alpha-band leaf fraction in
EEGs of patients with PDD, DLB, and AD compared to controls, indicating more linelike net-
works in the patient groups. A classifier between AD and DLB based on MST and connectivity

values reached 80% sensitivity and 85% specificity ( ). A second study also
reported a higher diameter and lower leaf fraction in DLB compared to patients with AD and
control subjects, but only in the alpha band ( ).

Of interest, (theta and alpha band) leaf fraction was associated with cognitive decline in
cross-sectional analyses of three EEG studies of DLB and PDD patients ( ;
; ). The severity of PD motor symptoms was asso-

ciated with lower MEG delta-band leaf number and tree hierarchy.

Taken together, these studies found disease effects in different frequency bands. A tendency
toward less integrated, more linelike MST topology was reported across studies and was asso-
ciated with clinical deterioration in synucleinopathies.

AD is the most common cause of dementia, and is subject of six EEG studies that char-
acterize MST topology. Das and Puthankattil found a higher diameter in 13 mildly cognitively
impaired AD patients compared to 20 healthy controls across a range of (delta, theta, lower
alpha, upper alpha, and beta) frequency bands and in a variety of recording protocols (

). A lower leaf fraction was observed in lower alpha band in AD compared
to controls. Yu and others found a similarly higher diameter and lower leaf fraction and kappa
in AD patients” alpha-band EEG recordings compared to subjects with subjective cognitive
decline. A lower leaf fraction and kappa in AD compared to patients with the behavioral
variant of frontotemporal dementia (bvFTD) ( ). Studies by van Dellen (EEG
alpha band) and Peraza (EEG theta and alpha band) found MST characteristics of AD patients
to be in between those of the DLB patients and controls ( ;

).

Five studies reported MST metrics related to at-risk states for AD dementia, with inconsis-
tent results. An fMRI study showed that compared to controls, patients with MCI had a more
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starlike network, while AD patients had a more linelike network ( ). Two MEG
studies found regional but no global metric differences in MCI patients compared to controls
( ; ), while an EEG study found a more linelike MST in the
delta band, which contributed to a classifier for MCI versus controls (

).

Sorrentino and others studied MEG networks concerning insulin growth factor-1 (IGF-1),
which has been suggested as a brain atrophy marker related to the risk of developing AD
( ). IGF-1 was correlated with beta-band leaf fraction, tree hierarchy,
and theta-band leaf fraction, suggesting an association with less integrated network topology.

Frontotemporal dementia (FTD) is characterized by progressive cell loss in frontal and
temporal lobes. One variant of FTD is the behavioral variant mentioned above. Two studies
report on MST topology in bvFTD. Yu and others found no MST disturbances in EEG record-
ings of 48 bvFTD patients compared to subjects with SMC, and, as mentioned above, did find

disturbances in AD compared to bvFTD ( ). In contrast, Saba and others found a
higher diameter and lower leaf fraction in resting-state fMRI recordings of patients with bvFTD
than controls ( ). MST findings in FTD thus remain inconclusive.

Fraschini and others compared resting-state EEG networks of 21 patients with amyotrophic
lateral sclerosis (ALS) (a degenerative motor neuron disease affecting upper and lower motor
neurons) and 16 control patients ( ). A lower beta-band leaf fraction was
found in ALS patients compared to controls, and lower leaf fraction, kappa, and tree hierarchy
correlated with worse disability scores. In contrast, Sorrentino and others found more pro-
nounced disturbances in MEG recordings of patients with advanced stage ALS (N = 24) than
early stage ALS (N = 26) compared to healthy controls (N = 25), with a pattern of higher tree
hierarchy, kappa and leaf fraction across frequency bands, suggesting more starlike networks
with progressive ALS ( ).

Finally, Jonak and others found lower leaf fraction and tree hierarchy in DTI networks of 15
Leber’s hereditary optic neuropathy (LHON) patients to 17 controls ( ). The
more linelike MST in LHON patients correlated with illness duration.

Multiple sclerosis. Tewarie and others performed three subsequent MST studies in multiple
sclerosis (MS) using MEG recordings, while Nauta and colleagues performed a fourth analysis
partially on the same cohort. An overview of the available mean MST values and SD is
included as

First, Tewarie and others found a frequency-specific effect on MEG networks compared to
21 early MS patients (relapsing-remitting subtype) to 17 controls ( ).
Similarly, diameter was lower in the theta band but higher in the upper alpha band in the
MS group, while the opposite pattern was seen for the leaf fraction. Furthermore, the upper
alpha-band kappa and hierarchy were lower in the MS group. Taken together, these results
pointed toward a more starlike theta-band network but more linelike alpha- and beta-band
network in MS patients.

Secondly, this group compared MEG data of 102 MS patients (67% relapsing-remitting
subtype, 21% secondary- and 12% primary-progressive subtype) and 42 controls (

). Patients showed lower leaf fraction, hierarchy, and kappa than controls in
the upper alpha band, but not in other frequency bands. A third study analyzed MEG and fMRI
recordings of 86 MS patients (around 6 years after diagnosis) and 21 healthy controls (

). They found group differences in MEG recordings but not in fMRI data; MS
patients had a lower leaf fraction in the upper alpha band and a lower kappa in the frequencies
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from 0.5 to 13 Hz. Furthermore, in MS patients, a more linelike topology was associated
with clinical disability (delta/theta-band leaf fraction and kappa; lower alpha-band kappa),
thalamic atrophy (theta/alpha-band leaf fraction and kappa) and cognitive functioning
(alpha-band kappa).

Nauta and others then showed in an extended sample of this cohort that a lower beta-band
diameter and lower delta-band leaf fraction predicted 15% of the variance in cognitive decline
after 5 years, independent of structural damage. Cross-sectional analyses showed that lower
tree hierarchy was especially related to worse cognition, independent of the frequency band

( ).

MST studies in MS patients are based on studies from one research group and partially the
same cohort of respectable sample size. A complex, frequency-dependent pattern of alter-
ations in MST characteristics emerges from these studies, which relates to clinical impairments,
but a straightforward interpretation seems impossible.

Epilepsy. Six studies on MST metrics and epilepsy were included in this review, consisting of
four EEG studies, one MEG study, and one fMRI study, with a total number of 231 patients. An
overview of the available mean MST values and SD is included as

. All studies focused on interictal recordings. Three studies included patients with
childhood epilepsy.

Van Diessen and others found a higher MST diameter and lower leaf fraction in the delta
band in EEGs of drug-naive children with newly diagnosed focal epilepsy than in controls (

). They found an opposite difference in topology in the upper alpha band,
with a lower diameter and higher leaf fraction in the focal epilepsy group. No differences
were found when comparing children with generalized epilepsy to the focal epilepsy group
or controls.

The same authors studied the effect of sleep deprivation, which lowers the seizure threshold
and increases interictal EEG abnormalities, on functional EEG networks in children with focal
epilepsy compared to age-matched controls ( ). Alpha-band diameter
increased and the leaf fraction decreased after sleep deprivation in patients, while the opposite
pattern was seen in controls. They speculated that this shift in network organization after sleep
deprivation in epilepsy patients follows literature showing a more regular alpha-band network
organization during the ictal state; sleep deprivation may thus cause a shift toward an ictal
network state. Kinney-Lang and others analyzed the EEG networks of preschool children with
epilepsy (both focal and generalized) and cognitive impairment ( ).
They found that worse performance on cognitive tasks was associated with lower (alpha/beta
band) diameter and higher leaf fraction.

Interictal MST characteristics may be associated with disease severity and treatment resis-
tance. DeSalvo and others studied fMRI data of 40 patients with medically intractable tempo-
ral lobe epilepsy who were to undergo epilepsy surgery. They found that preoperative MST
topology differed between patients who became seizure-free after surgery as compared to
patients who would not ( ). Leaf fraction was 9% lower and tree hierarchy
was 10% lower in patients with ongoing seizures than in seizure-free patients, suggesting less
integrated networks in patients with worse outcomes. A similar finding was reported by Van
Dellen and colleagues, where the preoperative diameter in MEG recordings of patients with
lesional epilepsy correlated with higher seizure frequency (4-10 Hz) ( ).
The alpha-band leaf fraction increased in patients after successful epilepsy surgery, but
remained unchanged after surgery in patients with ongoing seizures. A third study reported
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on adults with pharmacoresistant epilepsy and found that theta-band MST diameter decreased
in responders to vagal nerve stimulation as an add-on treatment, but not in nonresponders
( ). These findings indicate that successful epilepsy treatment is associated
with a recovery toward a more integrated (i.e., more starlike) network organization.

Other studies. We included four studies with a total of 98 patients with other disorders, that is,
delirium (N = 2), migraine (N = 1) and meningioma (N = 1), including one EEG, two MEG,
and one fMRI study. An overview of the available mean MST values and SD is included as

One EEG and one fMRI study analyzed the MST topology related to delirium. Numan and
others studied EEG recordings of patients who had undergone cardiac surgery and compared
patients who developed hypoactive delirium to patients without delirium (

). They found a lower alpha-band leaf fraction in patients with hypoactive delirium
compared to the nondelirious controls. A resting-state fMRI study by Van Montfort and others
similarly found a higher diameter and lower leaf fraction in brain networks of patients during
delirium, which normalized after delirium resolved ( ). In this pilot
study of nine patients, a lower leaf fraction and tree hierarchy correlated to a longer delirium
duration, used as a proxy for syndrome severity. Both MST studies thus indicate a less inte-
grated network during a state of delirium.

One MEG study compared patients with migraine to controls but found no group differ-
ences in global MST metrics ( ). Finally, Van Nieuwenhuizen and others
found a lower theta-band maximum MST degree, but no other differences in global MST
metrics, in MEG recordings of 20 meningioma patients compared to healthy controls (

).

DISCUSSION

This systematic review shows that the past decade of MST analysis has not yet led to definitive
neuropsychiatric symptoms or disease biomarkers. This finding may partially explain network
size and modality differences across studies: MST leaf fraction (but not diameter) was found to
correlate with network size significantly.

Previous meta-analyses on cross-disorder data have shown general disease effects on brain

networks across different neuropsychiatric disorders ( ). For Alzheimer’s
disease and epilepsy, reviews have suggested modality-invariant disease effects on network
characteristics ( ; ). We therefore assessed whether

MST characteristics show modality- and disorder-independent alterations in neuropsychiatric
disorders. Our meta-analyses suggest a cross-disorder shift toward a more linelike topology in
EEG/MEG delta and gamma band. We found no significant heterogeneity for these frequen-
cies. Still, due to the relatively small number of included studies that had small sample sizes,
heterogeneity analysis may not have been sufficiently powered.

Insufficient data were available for stratified analysis based on imaging modality, node and
connection definition, or study population. Nevertheless, this review and meta-analysis has
several implications for the methodological approach in network neuroscience and a trans-
diagnostic perspective on network alterations in brain disease. Since a straightforward, trans-
diagnostic interpretation was not possible for all disorder categories, only the disorders that
suggested a trend are discussed below.
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Network Size and Modality Effects

The effects of network size and other differences in methodology most likely hamper repro-
ducibility necessary for the development of biomarkers in the field of network neuroscience.
The comparison of MST metrics in control populations across studies showed that the MST leaf
fraction but not the diameter decreases with increasing network size. Furthermore, the range of
values for both measures was large (leaf fraction = 0.35-0.859 and diameter = 0.108-0.401),
further illustrating effects of methodological differences across studies. MST analysis was most
frequently applied to band-pass filtered neurophysiological recordings, but applications to
functional and structural MRI scans have also been reported. Some individual studies did show
substantially different metric values, suggesting that as expected, the specific processing pipe-
line before MST reconstruction impacts the estimated MST topology. In addition, for EEG and
MEG data, it is important which connectivity measure is used. For example, phase-based mea-
sures such as the phase-lag index might be noisier than amplitude-based measures such as the
amplitude envelop correlation, which could reduce the ability to extract consistent functional
connectivity and subsequently influence MST parameters ( ). Lastly,
harmonization of node definitions may help to increase comparability between studies and
across modalities ( ).

Neurodevelopment and Neurodegeneration

During maturation, MST topology shifts from a linelike, decentralized topology toward a more
starlike (integrated) topology, while the inverted age-relation is seen with aging in the fifth-sixth
decade ( ; ; ; ). We
found no systematic pattern of network disturbances in the scarce MST literature on neurode-
velopmental disorders. Studies on neurodegeneration suggest a shift toward a more linelike
MST topology as a general characteristic in neurophysiological recordings, which is in line
with broader findings in brain-aging literature ( ). MST characteristics in
neuroimaging modalities remain understudied. Studies in ALS and patients at risk for (AD)
dementia show inconsistent findings; the latter outcome of this review suggests that currently
used MST characteristics are not a promising predictive biomarker in at-risk groups for devel-
oping dementia.

Interestingly, different subtypes of neurodegenerative disease seem to vary in damage to
MST organization. A pattern emerges of MST topology from starlike to linelike with HC <
bvFTD < AD < DLB < PDD. MST disturbances in neurophysiological recordings may thus
be a marker of disease progression and symptom severity in synucleinopathies.

Epilepsy and Attention Disorders

Preliminary evidence showing a loss of functional network integration in frequencies below
10 Hz is reported in association with focal epilepsy, which may be further provoked by sleep
deprivation. Interestingly, successful treatment seems to be associated with increased network
integration in this frequency range. Increased network integration in the upper alpha band is
found in focal childhood epilepsy. Increased network integration in frequencies above 10 Hz
may be associated with cognitive impairment in patients with childhood epilepsy.

In disorders characterized by disturbances in the cognitive domain of attention, a loss of
alpha-band network integration (lower leaf fraction, higher diameter) emerges as a recurrent
finding. It has been reported in delirium, in one study in ADHD (although the opposite finding
was also reported in ADHD), and DLB. Future studies may reveal if interventions that increase
alpha-band MST network integration and efficiency may be used to treat attention deficits,

314



Minimum spanning tree in neuropsychiatric pathology: Systematic review

Network Neuroscience

similar to early findings in epilepsy patients showing a network normalization after seizure
freedom. Of interest, van Lutterveld and others, found a higher MST maximum centrality in
the EEG alpha band in experienced meditators than in novice meditators, and leaf fraction
tended to be higher in this group ( ). Applications of this and other
interventions in clinical populations are needed to test if sufficient alpha-band network inte-
gration is a prerequisite for attentional tasks, and if interventions aiming to improve these char-
acteristics specifically can be used in clinical care.

Limitations

Our approach to reviewing and interpreting MST studies’ findings across modalities has several
limitations. First, several studies did not report actual MST metric values or effect sizes, limiting
the interpretability of findings. The limited availability of quantitative data makes it premature
to conclude if there is no pattern of consistent network disturbances across disorders, or if data
on this topic is simply underpowered. Secondly, most studies solely mentioned significant
values, leading to a positive outcome bias. We suggest that reporting guidelines are needed
in network neuroscience that emphasize reporting the numeric values for network metrics as
completely as possible.

We did not include node-specific MST metrics in this review; we found no indication that
consistent findings were reported with this approach, but the macroscale MST metrics analysis
may only be less sensitive to disease-specific effects on brain networks. Other graph theoret-
ical approaches bring complementary clinical insights, including individual nodal, edge and
modular characteristics.

Finally, we aimed to gain transdiagnostic insights from different studies with variable meth-
odology in the definition of nodes and edges, imaging modalities, and frequency bands in
MEG/EEG recordings; possible confounds due to (differences in) processing pipelines are no
longer apparent in our modality-invariant summation of these studies.

We used a transdiagnostic approach to neuropsychiatric pathology. There is increasing
interest in overarching mechanisms that are a final common pathway to general factors of
psychopathology. These include the p factor for psychopathology, the characterization of
psychiatric disorders from a symptom-network perspective, and studies of general cognitive
dysfunction based on graph analysis ( ; ;

; ; ). Another, complementary approach that may
advance the field is to look for convergence of evidence in isolating disease-specific effects
by comparing different network analysis approaches. Such within-disease approaches may for
example contribute to the development of staging or subtyping in specific pathological con-
ditions, and may help facilitate precision medicine approaches.

Conclusion

The MST approach has proven fruitful in capturing disease-related changes in brain network
topology. Harmonization of node definitions and especially network size remains a prereq-
uisite for comparing findings across studies and modalities. Empirical findings are more
consistent in neurological (in particular neurodegenerative) than psychiatric disorders and
neurodevelopmental disorders. They show that alterations in network topology are found
across disorders even after strict correction for network density effects. Most consistent (but
still preliminary) evidence was found for MST measures as markers of attention disorders,
particularly in epilepsy, and as markers of disease progression in neurodegenerative disease.
Importantly, contradicting findings within clinical populations were shown in previous
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reviews on conventional graph analysis, for example, in Alzheimer’s disease and epilepsy;
such contradictions were not found in the MST literature to date ( ;

). There is currently insufficient evidence for the use of MST metrics as sensitive and
specific biomarkers for neuropsychiatric disorders.
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