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Simplified model for pre‑code RC 
column exposed to fire followed 
by earthquake
Ioanna Ioannou1*, Tiziana Rossetto1, David Rush2 & José Melo3

The behaviour of pre-code reinforced concrete (RC) columns in sequence of fire and earthquake is 
not well understood and can be critical in case of buildings which experienced fire and are either 
unrepaired or poorly repaired when exposed to an earthquake. This study proposes a framework 
on how to construct a simplified model to assess the post-fire cyclic behaviour of such columns. 
Emphasis is given to the development of simplified material models which can be used to describe 
the performance of the confined concrete, as its post-fire behaviour is not well studied. The model’s 
performance is validated against the experimental results of a square, non-seismically designed RC 
column. Three scenarios are considered. The reference scenario, where the column is exposed only to 
cyclic loading. In the other two, the column is firstly exposed to an ISO-834 time–temperature curves 
in a furnace of 30 min and 90 min duration and after it cooled down, it is exposed to cyclic loading. The 
results showed that simplified material models can be used to capture the post-fire cyclic behaviour of 
an RC column, built without seismic design. It was also found that the confined model adopted played 
an important role after the peak strength is reached.

Reinforced concrete (RC) is often used for the construction of mid- and high rise- multifamily dwellings. 
Although this material is considered to behave well when exposed to fire, fire remains a potentially very damag-
ing hazard for such structures. Fire, as is well known, is a frequent hazard which affects a structure by increasing 
the temperature of some structural elements leading to the degradation of their material properties. However, 
fire is not the only hazard that RC structures could experience in their lifetime. In moderate or high seismicity 
areas, earthquakes are also an ever present hazard. Over the life of a structure, it is possible that these two hazards 
can affect the structure in sequence leading to a greater overall damage than the damage caused by either single 
hazard. In this study, we are concerned with the sequence of fire followed by an earthquake hazard. In seismic 
areas, this sequence has a high likelihood. A future earthquake is therefore likely to affect RC buildings that 
have had previous fire exposure. Recent experimental as well as analytical studies showed the negative impact 
of prior fire exposure to the seismic behaviour mainly of columns1–7 but also of structural walls8 as well as a 
non-seismically designed frame9. It should be mentioned that pre-cast4 as well as cast-in-place columns (with 
ordinary1–3,6 as well as sustainable concrete5) have been considered. Two studies also examined2,7 the post-fire 
cyclic behaviour of columns strengthened with fibre reinforced polymer (FRP). Nonetheless, in the absence of 
a high-profile case that such sequence can significantly affect RC buildings’ performance, such a scenario is not 
well studied and it is not clear how it affects the overall capacity of the building. This can be critical in case of 
buildings which experienced fire and are either unrepaired or poorly repaired when exposed to an earthquake.

Key to the analysis of the performance RC structures subjected to a fire and earthquake hazard sequence, 
is the use of reliable material models which can describe the cumulative effects of the hazards on the concrete 
(unconfined and confined) and reinforcing steel. The relevant literature is very limited; the most relevant stud-
ies focusing on the post-fire seismic behaviour of an ordinary seismically-designed column1 or structural wall8. 
There are established equations for accounting for the residual degradation of unconfined concrete strength and 
steel yield strength under fire. However, when considering the cyclic behaviour of a fire affected RC element, 
concrete confinement plays an important role. A review of existing literature shows that relevant existing studies 
have adopted only one confinement model (i.e. Mander et al. used by3 and Chang and Mander adopted by1,8), and 
that there is no assessment of the influence of confinement model choice on the resulting predicted behaviour 
of RC elements exposed to post-fire cyclic loading.
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In this study, a simplified model to assess the post-fire seismic behaviour of a RC column is developed. The 
proposed model aims to capture the decrease in the ductility of the RC column and its enhanced strength degra-
dation during the horizontal cycling loading caused by the decrease in the strength of concrete and steel due to 
their exposure in high temperatures. Key aspect of this study is the investigation of the influence of confinement 
model choice on the predicted behaviour of an RC column subjected to post-fire cyclic loading. Experimental 
data are adopted for the performance evaluation of different confinement models, with the aim of providing 
guidance on this topic. Given the important role of seismic design in the performance of an RC structure during 
an earthquake, a non-seismically designed RC structure is considered here which concerns a large number of 
existing buildings and is also associated with thinner concrete cover, which constitute the main fire protection 
for the reinforcing steel. The simplified models developed in this study are compared against the experiments 
conducted as part of the Challenging Risk project in the Structural and Fire Resistance Laboratory of the Aveiro 
University2. The experiments aimed to examine the impact of fire intensity in the seismic performance of an ordi-
nary 0.30 m square column, which was exposed to fire on all four sides. The column is designed to an old seismic 
code10 and is representative of the ground floor columns in a 4-storey RC building in the Mediterranean region.

In what follows, the framework to construct a simplified model to assess the post-fire cyclic behaviour of an 
RC column is described. Then the framework is applied to the pre-code RC column and the results are compared 
to their experimental counterparts. A detailed description of the experiments and a rigorous discussion of the 
results can be found in2, which presents them as part of a series of experiments on the post-fire cyclic behaviour 
of pre-code and strengthened RC columns. For this reason, in the present study the experimental design is only 
briefly described and the experimental results are used to validate the analytical solution developed here. The 
reader is advised to refer to2 for more information on the experimental results.

Framework for modelling post‑fire cyclic behaviour of RC column
The framework for modelling the seismic response of a non-seismically designed RC column that has previously 
been exposed to fire is presented in Fig. 1. Although similar frameworks have been proposed in the literature, 
the one proposed in this study focuses in greater detail on how to update the material properties. According to 
the proposed framework, a heat transfer analysis on the column is first conducted to estimate the temperature 
penetration in the column exposed to a given temperature–time curve. The modelled peak temperature of the 
whole heating–cooling phase is used to determine the deterioration of the steel and concrete properties based 
on existing material models. The seismic behaviour of the column, described by the residual post-fire material 
properties, is then investigated. Different material models are investigated in the following sections, and recom-
mendations are made on which models result in the best approximation of the force-drift response observed in 
experiments of RC columns that have been tested under sequential fire and cyclic loading. It should be mentioned 
that the framework also allows for the case where the column is exposed only to cyclic loading without having 
been exposed to elevated temperatures.

In what follows, the models necessary for the thermal and seismic analysis are described and special focus is 
given to the modelling of the material properties.

Figure 1.   The framework proposed in this study in order to model the post-fire seismic behaviour of a non-
seismically designed RC column.
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Heat transfer analysis.  A transient heat transfer analysis is performed to determine the heat penetration 
across the column for the duration of a specified fire scenario, expressed in terms of a fire temperature–time 
curve. Despite the availability of finite element software (e.g., SAFIR) which specialise on fire analysis, the heat 
transfer analysis is performed here in ABAQUS, a generic finite element software widely used by the engineer-
ing community. The analysis is based on the simplified consideration, in line with the experimental procedure, 
that the column is uniformly exposed to fire, with all four sides being subjected to elevated temperatures along 
its height. This allows for a simple 2D model of the column’s cross-section to be used to predict the temperature 
penetration across the column. By further considering that the cross-section is square and uniformly exposed 
to fire, in this case, symmetry can be exploited and only a quarter of the cross-section needs to be modelled. 
In general, the size of the mesh depends on the complexity of the structure. Nonetheless, due to the simplified 
model used here and the aggregation of the results (see "Post-fire residual materials properties" section for more 
details), a relative coarse mesh, e.g. an 8 × 8 grid as depicted in Fig. 2, can be used. Concrete is a highly insulating 
material and this means that when exposed to fire, its temperature is raised at a slower rate than the reinforcing 
steel. For this reason, only the concrete is modelled ignoring the reinforcing steel, whose maximum temperature 
is assumed equal to the closest concrete layer, in line with existing literature (e.g.11).

The key output from the heat transfer analysis is the maximum temperature experienced by each element 
throughout the heating–cooling phase. The surface of the concrete will experience higher temperatures than its 
core. Moreover, the corners of the square section will experience higher temperature than the middle. This is 
taken into account in estimating the temperature experienced by the longitudinal bars, which are assigned the 
maximum temperature of their closest element. By contrast, the properties of the concrete and transverse rein-
forcement are based on a procedure similar to the one proposed in12 for the estimation of the axial load capacity 
of a composite column. According to this approach, the cross-section is divided into rings of equal thickness, 
where the temperature is considered uniform. The maximum temperature for each ring is then determined by 
averaging the maximum temperature experienced by each element within the examined ring. The aforementioned 
values of maximum temperature will determine the level of degradation of the reinforcing steel and concrete 
properties, as described in "Post-fire residual materials properties" section.

Seismic analysis.  The nonlinear seismic behaviour of the column is modelled in OpenSees by a simplified 
2D model, which is constructed with a single force-based fibre beam column element. This type of element con-
siders that the nonlinearities are distributed across the length of the column in the form of fibre cross-sections 
at a user-specified number of integration points. Each fibre cross-section is assembled by assigning uniaxial 
stress–strain relationships to the concrete of the cover and core, as well as to the longitudinal reinforcement bars. 
The stress–strain relationship of the concrete in the core accounts for the confinement effect of the transverse 
reinforcement.

Stress–strain models frequently adopted in the construction of analytical fragility curves for RC structures 
to express the behaviour of the materials in cyclic loading such as Steel02 (e.g.13,14) and Concrete02 (e.g.13–15) are 
also adopted here. The Steel02 is a bi-linear response envelope based on the Giuffré–Menegotto–Pinto16 model, 
which accounts for the strain hardening and has three key properties: the yield strength, the modulus of elastic-
ity and the strain hardening ratio. The Concrete0217 model simulates the tensile strength of the concrete. Key 
properties for the selected concrete model are the maximum compressive strength and corresponding strain, 

Figure 2.   Example of 2D model of column’s square cross section, used for the thermal analysis.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8980  | https://doi.org/10.1038/s41598-022-13188-z

www.nature.com/scientificreports/

the ultimate strength and corresponding strain, and the tensile strength. Concrete02 is used to express the non-
linear behaviour of both the unconfined concrete in the cover as well as the confined concrete in the core. In 
line with existing literature (e.g.,1,9), the values of the aforementioned key variables for both steel and concrete 
are estimated either by experimental data, or where this is not possible, through existing stress–strain models 
(details in "Post-fire residual materials properties" section). With regard to the confined concrete, key properties 
are estimated using existing confined concrete stress–strain models for monotonic loading.

Having constructed the model, the seismic performance of the column exposed to cyclic loading and a con-
stant axial load is modelled with the aim of determining the drift-force relationship of the column.

Post‑fire residual materials properties.  The procedure used to estimate the values of the key properties 
for the steel and concrete models in OpenSees, assuming that the column was exposed to elevated temperatures 
and allowed to cool down, is presented in this section.

Reinforcing steel.  The post-fire residual material properties of the longitudinal and transverse reinforcing steel 
are estimated by the Tao et al.18 model based on the maximum temperatures assigned to the longitudinal and 
transverse reinforcement from the fire analysis described in "Heat transfer analysis" section. According to this 
model, the steel yield strength and the ultimate stress reduces after being exposed to temperatures of 500 °C and 
above.

Concrete.  The post-fire residual properties of the concrete in the cover and core are determined from the 
Chang et al.19 model, using as input the maximum temperature for each ring in the cross-section.

The overall residual maximum compressive strength of the unconfined concrete in the cover, fc,TCover , for a 
given fire scenario is estimated as the weighted average of the strength determined for each ring in the cover, as:

where fc,Ti is the peak residual compressive strength for cross-section ring i; Ai is the area of ring i; Acover is the 
area of the cover. Similarly, the cover’s strain corresponding to the maximum compressive strength, εc,TCover , is 
also estimated as the weighted average of the strain for each ring in the cover as:

where εc,Ti is the strain corresponding to the peak residual compressive strength for ring i; The stress–strain 
relationship proposed by Chang et al.19 is then used to obtain the straincorresponding to the ultimate compres-
sive strength, εcu,TCover , which is considered equal to 10% of its maximum value (i.e., fcu,TCover = 0.10fc,TCover ). 
Finally, the tensile strength of the unconfined concrete is reduced according to the increase in the temperature 
using the equations in Chang et al.19. The overall reduction of the tensile strength for the concrete in the cover 
is considered equal to:

With regard to the core, the determination of the post-fire residual properties (i.e., fc,TCore,εc,TCore , ft,TCore , 
fcu,TCore,εcu,TCore ) is hindered by the lack of appropriate confined concrete models. To overcome this problem, a 
simplified approach is proposed for use, which is in line with available literature1,9. Within the proposed simpli-
fied approach, the Chang et al.19 model is used to estimate the residual properties of the unconfined concrete 
for each ring of the core. Similar to the procedure used for the cover, Eqs. (1)–(3) are adopted to estimate the 
residual properties of the concrete in the core assuming it is unconfined. These residual properties are then used 
as input to a chosen existing confinement model to determine the confined concrete properties of the core. Given 
the lack of confined concrete models for elevated temperatures, it is a key assumption in this study that confined 
material models validated by experimental results on ambient temperatures can be used to estimate the material 
properties of confined concrete previously exposed to elevated temperatures and which have degraded properties 
at ambient temperature. There are numerous confinement models available for concrete in the literature, which 
are typically validated with experimental data at ambient temperatures. A few of the most widely used in the field 
of earthquake engineering are adopted in a sensitivity study to understand the influence on the post-fire cyclic 
response of columns modelled with different confinement models. The results of the sensitivity study show that 
either the Kappos20 or the Park et al.21 models can be used to determine the properties of the confined concrete 
in the core in the case of fire-affected columns subjected to cyclic loading.

Validation of the proposed simplified model
The reliability of the model, developed in "Framework for modelling post-fire cyclic behaviour of RC column" 
section, is validated through its application to a pre-code RC column and comparison of the results with experi-
mental counterparts.
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Description of specimens.  Three full-scale square RC columns are constructed with the geometrical 
properties and reinforcing details depicted in Fig. 3. The specimens are cantilevers with 1.5 m height and cross-
section dimensions 0.30 m × 0.30 m. Each column is connected to a square RC foundation block of cross-section 
dimensions 0.44 m × 0.44 m and height 0.5 m. The columns are constructed according to the pre-1970s Portu-
guese code10. The clear cover is 0.025 m, and the longitudinal reinforcement comprises 8 ribbed bars of 12 mm 
diameter and quality A400. Transverse reinforcement of 6 mm diameter and with 90° hooks is also present in 
each column (see Fig. 3). The centre-to-centre spacing of the transverse reinforcement is 0.15 m in the lower 
0.40 m of the column, and 0.10 m in the rest of the column. The material properties of the unconfined concrete 
and reinforcing steel, depicted in Table 1, are obtained experimentally for ambient temperature. It should be 
mentioned that calcareous aggregates have been used for the concrete and its moisture content in volume is 
Gravel/Sand/Cement is 3.3/3/1, respectively. Tests performed on concrete samples after 10 months of their cast-
ing showed that the mean compressive strength of concrete is equal to 33.5 MPa.

In the experimental programme, the specimens were all cast at the same time and cured for at least 6 months 
at ambient laboratory temperature and relative humidity conditions before the fire exposure. The first specimen 
(reference specimen termed ‘C’ in this study) is subjected to uniaxial cyclic loading (see Fig. 4 for the loading 
protocol) under a constant axial load equal to 410 kN approximately 6 months after it has been cast. The remain-
ing two columns (termed ‘M’ and ‘L’ herein) are first exposed to ISO-834 time–temperature curves (as depicted 
in Fig. 5) in a furnace of 30 min and 90 min duration without any applied load (or restraint). The two columns 
are allowed to cool down in the furnace to ambient temperature, and then tested after approximately 4 months 
under the same uniaxial cyclic loading (see Fig. 4) and axial load as the control specimen. All columns are tested 

Figure 3.   Details of specimens.

Table 1.   Experimental mechanical properties of longitudinal and transverse reinforcement. fsy: yield strength 
of steel. εsy: yield strain of steel. Es: modulus of elasticity of steel. fsu: ultimate strength of steel. εsu: ultimate strain 
of steel. bs: strain hardening of steel.

Scenario Type
fsy
(MPa)

εsy
(%)

Es
(MPa)

fsu
(MPa)

εsu
(%) bs

C
Longitudinal 445 0.23 195,000 571 17.5 0.0035

Transverse 540 639 18.0
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to failure. Figure 6 depicts the state of the columns at the end of their test in the furnace. It can be noted that after 
being exposed to 30 min fire curve the unconfined concrete in the cover appears to have suffered hairline cracks. 
By contrast, exposure to the 90 min fire curve results in clear signs of spalling (ranging between 10–20 mm) 
distributed along the length of the column and on each column face, with cracks on the cover seen on one 
face of the column. Further information on the concrete cover damage sustained is provided in2. During the 
uniaxial cyclic loading, all three columns failed with the formation of a plastic hinge at the base of the column, 
also depicted in Fig. 6. The 90 min fire exposure affected the concrete properties to a much greater extent than 
the 30 min fire. Consequently, the steel yield stress, and compressive and tensile strengths of the concrete in the 
90 min fire were lower. These reduced properties and greater yield penetration resulted in longer plastic hinges.

The experimental hysteretic curves for column C, M and L are compared in Fig. 7. It can be seen, that the 
30 min exposure of the column to fire results in lower initial stiffness for column M compared to the reference 
column C. By contrast, the peak force reached during the cyclic test, as well as the post-peak degradation, remain 
approximately the same for both columns. When the exposure to fire is increased to 90 min, it can be noted that 
apart from having a lower initial stiffness, the peak force and the ultimate displacement are also significantly 
lower for column L than for C. By contrast, the degree of degradation remains similar for all three columns. Α 
more detailed discussion on the behaviour of the three columns during the experiments can be found in2. This 
behaviour the proposed model aims to capture by applying the proposed framework in what follows.

Heat transfer analysis.  A transient heat transfer analysis of the column is performed with ABAQUS using 
a simplified model as outlined in "Heat transfer analysis" section for the two fire scenarios (i.e., fire duration 
30 min and 90 min), determined in "Description of specimens" section. A quarter of the cross-section is mod-
elled in 2D and subdivided in 8 × 8 elements as depicted in Fig. 8. The thermal properties of the concrete neces-
sary for this analysis are its density, specific heat capacity and its conductivity. Their values are assumed to vary 
with temperature and the curves are obtained from the recommendations of Eurocode 222. For ambient tem-
perature, the values considered are: ρ = 2,300 kg/m3, c = 900 J/kgK and λ = 1.9 W/mK, respectively. The emissivity 
level of concrete is equal to 0.7 and the convective flux coefficient is considered equal to 25 W/m2K. To allow the 

Figure 4.   Loading protocol.

Figure 5.   Experimental fire-temperature curves.
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direct comparison of experimental and analytical results, the furnace fire temperature–time curves depicted in 
Fig. 5 have been used.

The validity of the assumptions made in the modelling can be tested by comparing the temperature recorded 
by the thermocouples during the two experiments M and L to their counterparts recorded by the mesh element 
closest to their exact location. This, however, requires a finer mesh than the 8 × 8 adopted here. The authors have 
conducted this comparison in23 using a finer 16 × 16 mesh and the results were found to be satisfactory.

Having modelled the temperature distribution to the cross-section of the columns M and L, the maximum 
temperature experienced by the longitudinal reinforcement is determined by the mesh element closest to each 
bar. The maximum temperatures experienced by the concrete in the cover and core as well as the transverse 
reinforcement, required to update the material properties as described in "Post-fire residual materials properties" 
section, are determined as follows. The column’s cross-section is divided into 16 rings, which are equal in width 
and the temperature is considered uniform across each ring. For a given ring, the maximum temperature of the 
heating–cooling cycle is determined as the average of the maximum temperature of each element. A summary 
of the maximum temperature at each ring in the cover and core are depicted in Table 2.

Figure 6.   The three tested specimens (i.e., C, M and L) after being exposed to elevated temperatures (where 
applicable) and after their failure to cyclic loading.

Figure 7.   Lateral load–displacement relationship curves based on the performance of the three tested 
specimens (i.e., C, M and L).
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Material properties.  Reinforcing steel.  For ambient temperatures, the properties of the reinforcing steel 
are based on the experimental data, depicted in Table 1. For the two post-fire scenarios, however, the residual 
properties of the reinforcing steel are determined by the model of Tao et al.18 and the values are depicted in 
Table 3. It should be noted that the location of the longitudinal reinforcement (i.e., whether it is in the corner or 
the middle of the cross section) affects the reinforcing bar properties only for the most extreme scenario con-
sidered, and even in this case the changes are small (i.e., maximum difference in properties 13%). The post-fire 
residual properties of the transverse reinforcement are also estimated by the Tao et al.18 model and are presented 
in Table 3.

Figure 8.   2D concrete model used for the thermal analysis (the transverse and longitudinal reinforcement as 
well as the location of the thermocouples are included for guidance).

Table 2.   Maximum temperature experienced by the element closest to the longitudinal bars as well as each 
ring in the cover and core.

Column

Cover Core

Ring1
(outer) Ring2 Ring3 Ring4 Ring5 Ring6 Ring7

Ring8
(centre)

M 539.1 289.5 208.5 174.3 160.3 156.9 156.2 156.1

L 836.4 576.5 436.6 376.1 354.8 349.3 347.9 347.7

Table 3.   Key properties of reinforcing steel for the two post-fire scenarios.

Column Type Location
maxT
(°C)

fsy
(MPa)

Es
(MPa)

fsu
(MPa) εsu bs

M
Longitudinal

Corner 415.5
445 195,000 571 0.18 0.35%

Middle 252.7

Transverse – 289.5 540

L
Longitudinal

Corner 754.1 386 188,558 501 0.16 0.38%

Middle 510.8 443 194,726 568 0.18 0.36%

Transverse – 576.5 519



9

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8980  | https://doi.org/10.1038/s41598-022-13188-z

www.nature.com/scientificreports/

Concrete.  For column C, the maximum compressive strength of the unconfined concrete is experimentally 
determined to be equal to 33.5 MPa and the corresponding strain is determined by the provisions of Eurocode 
222. Eurocode 222 is also used to determine the tensile strength of the unconfined concrete. The ultimate strength 
and strain of the unconfined concrete are determined by the Chang et al.19 stress–strain model. With regard to 
the confined concrete, the values of key properties are estimated using four confined concrete stress–strain mod-
els: the Park, Priestley and Gill21, Kappos et al.20, Mander et al.24 and Chang and Mander25. These four models 
are widely used in the field of earthquake engineering to determine the properties of the confined concrete in 
the core of reinforced concrete columns subjected to cyclic loading. Furthermore, the latter two confinement 
models have been used by the past two studies that have modelled the impact of sequential fire and earthquakes 
on the performance of vertical structural elements1,8. This is done to determine which concrete confinement 
model can be used to best represent the post-fire behaviour of the concrete. Furthermore, the assumption that 
the transverse reinforcement offers no confinement is also explored. In the latter case, the Chang et al.19 stress–
strain model is additionally used to determine the core concrete properties. The values of the key properties 
of the concrete for both the core and cover concrete for modelling the cyclic performance of the column C are 
depicted in Table 4.

With regard to the post-fire scenarios, the residual properties of unconfined and confined concrete are deter-
mined by the procedure outlined in "Concrete" section and a summary of the estimates is presented in Table 4. 
For model ‘L’, spalling of between 10-20 mm was noted following the fire exposure in the experiments. Accord-
ingly, the material properties in Table 4 are estimated assuming half the original concrete cover width (i.e., 
0.0125 m of cover rather than 0.025 m).

The differences between the four concrete confinement models are depicted in Fig. 9 by plotting their 
strength-strain relationships. Park et al.21 proposed a piece-wise function, which describes the ascending branch 
as a parabola and the descending branch as a straight line and plateaus at a given threshold (i.e., 20% of the 
maximum strength). This simplified analytical model has been widely used to describe the confinement as it has 
been based on a sufficient number of reliable experiments. The relationship proposed by Kappos20 is a variation 
of the one proposed by Park et al.21. By contrast, Mander et al.24 and Chang and Mander25 proposed a single 
relationship which described both the ascending and descending branch to estimate the compressive strength of 
the confined concrete subjected to uniaxial concentric loading until the first fracture of the transverse reinforce-
ment. In Fig. 9, the maximum compressive strength and its corresponding strain is similar for all three models. 
However, the strength degradation is much sharper for the Park et al.21 and Kappos et al.20 models and less so for 
the Mander et al.24 model for all three scenarios. By contrast, the strength degradation is sharper for Chang and 
Mander25 model for scenarios C and M when compared to the other three models. However, it is less steep than 
Kappos20 and Park et al.21 for column L. The impact of these differences in the cyclic behaviour of the columns 
is examined in "Results" section.

Seismic loading.  The nonlinear seismic behaviour of the three columns is modelled in OpenSees by follow-
ing the modelling assumptions outlined in "Seismic analysis" section. A generic force-based fibre beam column 
element is used to model the cyclic performance of each column. The Steel02 and Concrete02 models are used 
to represent the behaviour of reinforcing bars and concrete in the cover and core based on the values in Tables 3 
and 4 for the C, M and L columns. The results were found to be sensitive to the number of integration points. In 

Table 4.   Key properties of concrete for the three scenarios.

Scenario Element Type Model
fcy
(MPa)

εcy
(%)

fcu
(MPa)

εcu
(%) factorft

C

Cover Unconfined Chang et al.19 33.5 0.21 3.4 0.72

1.0
Core

Unconfined Chang et al.19 33.5 0.21 3.4 0.72

Confined

Park et al.21 35.1 0.22 7.0 0.86

Kappos et al.20 35.4 0.24 8.9 0.83

Mander et al.24 35.5 0.27 7.1 3.77

Chang and Mander25 35.5 0.27 4.0 0.82

M

Cover Unconfined Chang et al.19 21.4 0.41 2.1 0.76 0.6

Core

Unconfined Chang et al.19 30.0 0.21 3.0 0.57

0.8
Confined

Park et al.21 31.6 0.22 6.3 0.89

Kappos et al.20 31.8 0.24 8.0 0.86

Mander et al.24 32.1 0.28 6.4 5.71

Chang and Mander25 32.0 0.28 6.2 0.84

L

Cover Unconfined Chang et al.19 15.2 0.64 1.5 0.90 0.2

Core

Unconfined Chang et al.19 23.2 0.31 2.3 0.66

0.6
Confined

Park et al.21 24.8 0.33 5.0 0.92

Kappos et al.20 24.9 0.35 6.2 0.91

Mander et al.24 25.3 0.45 17.7 2.69

Chang and Mander25 25.1 0.43 10.9 1.30
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this study, three integration points are used for each analysis as this number is found to produce results which 
best match the experimental results.

Results.  Having simulated the seismic behaviour of the three columns (i.e., C, M and L) using five different 
models for the concrete properties in the core, the numerical results are compared to their experimental coun-
terparts. This comparison is used to understand how well the models predicted the behaviour of the columns 
and to identify the model that fits the experimental data best. The comparisons are based on features of the 
hysteretic curve as well as on the dissipated energy evolution.

Figure 9.   Comparison of experimental vs modelled maximum temperature for the two fire scenarios (i.e., 
affecting columns M and L) at the location of the 11 thermocouples.

Figure 10.   Lateral load–displacement relationship: column C (top row); column M (middle row); column L 
(bottom row).
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Hysteretic curves.  The differences between the experimental and numerical results are examined here by com-
paring the lateral force-drift relationship of the columns under cyclic loading.

In Fig. 10, the lateral force–displacement curves are also used to assess how close the five numerical models 
are to the experimental results for the three columns: C, M and L. It can be noted that all models behave approxi-
mately the same until the peak lateral force is reached, after which significant differences are notable. This can 
also be clearly seen by the comparison of the experimental and numerical lateral force–displacement envelops in 
Fig. 11a–c. The Park et al.21 as well as the Kappos et al.20 models appear to capture well the post-peak behaviour of 
all three columns as depicted in Fig. 11a–c. Instead, the Chang and Mander25 model captures well the post-peak 
behaviour for columns C and M but fails to capture the strength degradation for L. The Mander et al.24 model 
also fails to represent the strength degradation past the peak lateral force for all three columns. Finally, the model 
which assumes no confinement systematically under-predicts the experimental behaviour of all three columns 
past the peak force. This highlights the important role of (limited) confinement in the post-peak behaviour of 
the pre-code columns, even when the transverse reinforcement has 90° hooks.

In Table 5, a summary of key values (for the positive direction of the columns’ drift) of the cyclic test is shown 
for the three columns. The summary includes the peak lateral force (Fc,max), and its corresponding drift (dc,max), the 
ultimate lateral force (Fc,ult), and corresponding drift (dc,ult), the drift at the yield point (dc,y), and the displacement 
ductility at ultimate point (μΔ,ult). The ultimate point is considered here as the point at which the strength drops 

Figure 11.   Lateral Force vs Displacement envelops: (a) column C, (b) column M, (c) column L.
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by 20% of Fc,max, according to26. Due to this assumption, the ultimate force and drift for the Mander et al.24 model 
for all three columns and for the Chang and Mander25 for column L cannot be estimated, as these models do not 
predict strength degradation. With regard to dc,y, the yield displacement is calculated according to Annex B.3 
of EC8-127. For each column, an elastic-perfectly plastic relationship is fitted to the experimental or numerical 
lateral load–displacement envelope up to the ultimate point, ensuring the following requirements are satisfied: 
(1) the areas under and above the envelope curve must have the same values; and (2) the area under (or above) 
the envelope curve is the lowest possible28. Finally, the displacement ductility at ultimate point is equal to the 
ratio of dc,ult over dc,y.

With regard to the maximum force (Fc,max), Table 5 shows that all five models predict well the maximum force 
for all three columns (i.e., C, M and L) with error less than 10%, in line with observations in Figs. 10 and 11. 
By contrast, the differences between the models and the experimental results are evident for the displacement 
ductility at ultimate point. For columns C and M, the ductility for the Park et al.21, Kappos et al.20 and Chang 
and Mander25 models is approximately equal to its experimental counterpart. The ductility for the model with 
no confinement is notably smaller (i.e., error 12%) than its experimental counterpart for both columns C and M. 
The observations differ for column L. The ductility for the Park et al.21 and Kappos et al.20 confinement models, 
(which are the only two models for which the ultimate point can be determined using the conventions of this 
study), is notably larger (i.e., error greater than 15%) than its experimental counterpart. By contrast, the ductility 
for the model without confinement is only 8% smaller than the experimental one.

As observed in Fig. 10, the fire influences the stiffness of the column as it reduces the concrete strength. The 
difference in stiffness appears to be more pronounced for column L. Ιn Fig. 12, the secant stiffness-drift rela-
tionship obtained experimentally and analytically for the five models is presented for the three columns. The 
secant stiffness is calculated by dividing the maximum compressive force for each cycle with the corresponding 
displacement. The calculations are based on the positive displacements at each cycle. It should be noted that for 
all five models the initial secant stiffness obtained analytically is smaller than the experimental one for all three 
columns. Nonetheless, the differences after 0.5% drift are negligible for all models.

Finally, the strength degradation between the first and third cycle of each drift level obtained experimentally 
and numerically for the three columns is shown in Fig. 13. It can be seen that for column C, the degradation 
of strength estimated analytically by all five models follows closely the experimental results up to 2% drift. For 
the final three cycles associated with larger drifts, the discrepancies are substantial for all models. A similar 
observation is true for column M. For column L, the discrepancies are substantial for all cycles highlighting 
the inadequacy of the analytical model to capture the strength degradation within the three cycles of the most 
severely damaged column.

Dissipated energy.  The evolution of the total hysteretic dissipated energy with the drift, based on the experi-
mental and numerical results, is depicted in Fig. 14. The dissipated energy is computed as the sum of the energy 

Table 5.   Maximum and ultimate lateral force and corresponding drift, drift at yield strength and ductility at 
ultimate strength. Experimental values are in bold.

Source Column

Fc,max dc,max Fc,ult dc,ult dc,y μΔ,ult Diss. energy

(kN) (%) (kN) (%) (%) (kNm)

Experim C 69.4 1.2 55.5 2.8 0.4 7.4 53.7

Anal

Mander et al.24 68.1 1.2 – – 0.4 – –

Kappos et al.20 68.3 1.2 54.6 2.9 0.4 7.8 42.4

Park et al.21 68.3 1.2 54.6 2.8 0.4 7.6 39.7

Chang and Mander25 68.1 1.2 54.5 2.7 0.4 7.3 35.5

No confinement 68.3 1.2 54.6 2.4 0.4 6.5 27.3

Experim M 69.7 1.6 55.8 2.7 0.7 4.2 45.1

Anal

Mander et al.24 64.3 1.2 – – 0.6 – –

Kappos et al.20 64.4 1.2 51.5 2.7 0.6 4.2 33.9

Park et al.21 64.5 1.2 51.6 2.6 0.6 4.1 31.9

Chang and Mander25 64.3 1.2 51.4 2.6 0.7 4.0 31.6

No confinement 64.3 1.2 51.4 2.0 0.7 3.1 17.1

Experim L 53.2 1.7 42.6 2.4 1.0 2.5 25.0

Anal

Mander et al.24 54.5 2.0 – – 0.8 – –

Kappos et al.20 53.4 1.7 42.7 2.4 0.8 3.0 19.8

Park et al.21 53.2 1.7 42.6 2.3 0.8 2.9 17.8

Chang and Mander25 54.1 2.0 – – 0.8 – –

No confinement 52.1 1.3 41.6 1.8 0.8 2.3 10.4
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dissipation for each hysteretic cycle and corresponds to the interior area of the lateral force–displacement loop 
of that cycle. The cumulative hysteretic dissipated energy value at the ultimate drift are also distinctly marked in 
Fig. 14 and their values reported in Table 5. For the experimental results, it is observed that the energy dissipated 
by columns M and L were respectively 16% and 53% lower that column C up to the ultimate drift. Therefore, 
the prior fire damage decreases the energy capacity of the columns. When compared to the numerical results, 
it can be seen that the energy curves overlap substantially and in all cases appear to dissipate less energy than is 
observed in the experiments.

In Table 5, the values of the cumulative dissipated energy at ultimate drift are reported. Values for the Mander 
et al.24 model for all three columns as well as the Chang and Mander25 model for column L are not reported as the 
ultimate drift could not be estimated as the strength did not deteriorate by 20% for these models. The comparison 
of the remaining models shows that the Kappos et al.20 and Park et al.21 models yield very similar results for all 
three columns. In particular, the energy dissipated by these models for column C is approximately 25% lower 
that its experimental counterpart. For the other two columns (i.e., M and L), the error from use of the Kappos 
et al.20 remains very similar. However, for Park et al.21 models, the error is raised to ~ 30%. By contrast, the no 
confinement model systematically dissipates substantially less energy than seen in the experiments for all three 
columns (error equal or larger than 45% for all three scenarios).

Overall, Kappos et al.20 model produced analytical results which matched better to the experimental than 
its alternatives, and Park et al.21 followed closely, this justified the recommendation for these two models in the 
proposed framework in "Framework for modelling post-fire cyclic behaviour of RC column" section.

Sensitivity to the mesh used in the heat transfer analysis.  The results presented so far are based on heat transfer 
analysis using a relatively coarse mesh of 8 × 8. In this section, the validity of this is tested by comparing the 
results with their counterparts based on a finer 16 × 16 mesh. The results of these analyses have been presented 
in detail in23 and a summary of the values of key variables is presented in Table 6. The results for the two meshes 
are in good agreement (i.e., for most cases the error between the two values is less than 10%) (see Tables 5, 6). 
This is in line with the literature which focused on estimating the axial capacity of a composite concrete column 
and suggested that between five29 and ten30 layers provides accurate results and justifies the recommendation for 
a coarser mesh in "Framework for modelling post-fire cyclic behaviour of RC column" section.

Figure 12.   Secant Stiffness: (a) column C, (b) column M, (c) column L.
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Conclusions
In this study, a framework was proposed on how to construct a simplified model to assess the post-fire per-
formance of a column. The model was validated against the experimental results of a square, non-seismically 
designed RC column collected as part of the Challenging Risk project in the Structural and Fire Resistance 
Laboratory of the Aveiro University2. Three scenarios are considered. The reference scenario, where the column 
is exposed only to cyclic loading. In the other two, the column is firstly exposed to an Iso fire for 30 min and 
90 min ad after it cools down it is exposed to cyclic loading.

This study concentrated on the sensitivity of the predictions to the confined concrete model used to determine 
the concrete properties in the core as well as the mesh used to determine the maximum temperature experienced 
by the cross-section. It was found that a coarser mesh predicts the post-fire cyclic behaviour of the column with 
very good accuracy. It was also found that the confined model adopted played an important role to describe the 
behaviour of the column after the peak strength is reached. For the column examined both Kappos et al.20 and 
Park et al.21 where found to predict well the overall cyclic behaviour of the column for all three scenarios. By 
contrast, the Mander et al.24 and Chang and Mander25 models were found to be unable to account for the post-
peak degradation for all three scenarios and only for the L scenario respectively.

Figure 13.   Strength Degradation between 1st and 3rd cycle: (a) column C, (b) column M, (c) column L.
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Figure 14.   Dissipated energy evolution: (a) Experimental Results, (b) column C, (c) column M, (d) column L.

Table 6.   Maximum and ultimate lateral force and corresponding drift, drift at yield strength and ductility at 
ultimate strength (for 16 × 16 mesh). Experimental values are in bold.

Source Column

Fc,max dc,max Fc,ult dc,ult dc,y μΔ,ult Diss. energy

(kN) (%) (kN) (%) (%) (kNm)

Experim C 69.4 1.2 55.5 2.8 0.4 7.4 53.7

Anal

Mander et al.24 68.1 1.2 – – 0.4 – –

Kappos et al.20 68.2 1.2 54.5 2.8 0.4 7.6 40.8

Park et al.21 68.2 1.2 54.6 2.9 0.4 7.8 40.2

Chang and Mander25 68.1 1.2 54.5 2.6 0.4 7.0 33.8

No confinement 69.8 1.2 55.9 2.4 0.4 6.5 29.7

Experim M 69.7 1.6 55.8 2.7 0.7 4.2 45.1

Anal

Mander et al.24 63.3 1.2 – – 0.6 – –

Kappos et al.20 63.3 1.2 50.7 2.7 0.6 4.2 33.6

Park et al.21 63.3 1.2 50.6 2.6 0.6 4.1 31.6

Chang and Mander25 63.3 1.2 50.6 2.6 0.7 4.1 32.0

No confinement 63.1 1.2 50.5 2.0 0.7 3.1 17.2

Experim L 53.2 1.7 42.6 2.4 1.0 2.5 25.0

Anal

Mander et al.24 53.2 2.0 – – 0.8 – –

Kappos et al.20 52.0 1.7 41.6 2.4 0.8 3.0 19.3

Park et al.21 51.8 1.3 41.4 2.3 0.8 2.9 17.2

Chang and Mander25 53.0 2.0 – – 0.8 – –

No confinement 50.9 1.3 40.8 1.8 0.8 2.3 10.3
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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