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Abstract: A facile route to producing non-stoichiometric silicon suboxide nanoparticles (SiOx NPs,
0 < x < 1) with an adjustable oxygen content is proposed. The process is based on electrochemical
anodization involving the application of a strong electric field near the surface of a Si electrode to
directly convert the Si electrode into SiOx NPs. The difference in ion mobility between oxygen species
(O2− and OH−), formed during anodization, causes the production of non-stoichiometric SiOx on
the surface of the Si while, simultaneously, fluoride ions in the electrolyte solution etch the formed
SiOx layer, generating NPs under the intense electric field. The adjustment of the applied voltage and
anodization temperature alters the oxygen content and the size of the SiOx NPs, respectively, allowing
the characteristics of the NPs to be readily controlled. The proposed approach can be applied for
mass production of SiOx NPs and is highly promising in the field of batteries and optoelectronics.
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1. Introduction

Nanoparticles are highly valuable for an extensive range of applications due to their high specific
surface area. Silicon suboxide nanoparticles (SiOx NPs, 0 < x < 1), in particular, exhibit unique
electrical, optical, chemical, and mechanical properties, allowing the particles to be actively used as
semiconductors and a coating material [1–3]. The properties of SiOx NPs are heavily dependent on the
oxidation state of the Si [4–6], which determines the oxygen content of the NPs.

SiOx NPs are being studied largely for their application as the anode material in lithium-ion
batteries to potentially meet the high demand for batteries with higher capacity and longer service
life [1,4,7–9]. Currently, the batteries are reported to have a high charge capacity [2,10–12] and
a low volume expansion ratio [8,13]. Lithium oxides (e.g., Li2O and Li4SiO4), produced by Li
ion insertion into SiOx during initial charging, serve to buffer volume changes, improving charge
cycle performance [14,15]. It has been previously reported that the charge capacity and coulombic
efficiency increase while the cyclability of the batteries decreases as the oxygen content of SiOx NPs
decreases [4,8,10,13]. Therefore, the optimal oxygen content of SiOx NPs must be considered in order
to produce efficient lithium-ion batteries.

SiOx NPs are also commonly applied as anti-reflective coating due to their attractive optical
properties [16,17]. Many studies have found that the refractive index of SiOx decreases as the oxygen
content increases [3,18]. Therefore, being able to alter the oxygen content of SiOx NPs allows the
refractive index of the NPs to be controllable and, with adjustable refractive index, applications of SiOx

NPs are diverse in the field of optics. Furthermore, the anti-reflectivity of SiOx NPs is not limited to a
particular wavelength; the NPs can improve the photovoltaic efficiency at various wavelengths [6,19].
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The excellent passivating property of SiOx NPs also makes the NPs suitable for incorporation into
organic light-emitting diodes [3,6,20]. SiOx NPs are chemically and mechanically stable in general,
but by adjusting the oxygen content of the NPs, the reactivity of the NPs can be increased. In addition,
SiOx NPs have abundant oxygen vacancies, allowing the NPs to be potentially utilized as a sensing
material [21–23]. Oxygen vacancies become more prevalent and electrical conductivity increases as the
oxygen content of SiOx NPs decreases [24,25]. Both the passivating and insulating properties of SiOx

play an important role in determining the sensitivity and selectivity of gas sensing, thus, synthesizing
SiOx NPs with adjustable oxygen content is highly important.

Si is not very reactive at low temperatures; therefore, conventional SiOx NPs synthesis procedures
involve high-temperature reactions. The high-temperature reactions can be classified into two
categories: melting-condensation [9] and chemical vapor deposition [1,2,4]. In the former, Si (or Si
mixed with silica) is melted and oxygen is injected. The formed molten SiOx is then evaporated,
after which, the vaporized SiOx is condensed rapidly and extracted in the form of NPs. In the chemical
vapor deposition reaction, microwave is used to induce the plasma state of Si-based precursors,
allowing oxygen to be deposited into Si. Non-stoichiometric SiOx is created by altering the pressure
and the amount of oxygen present during the reaction, and the volatile molecules are extracted as
NPs. Nonetheless, both approaches have difficulties fabricating SiOx particles smaller than 200 nm,
are highly time-consuming, and require complicated setups for housing high-temperature systems.

In this paper, we propose the use of anodization, an electrochemical process, to synthesize
SiOx NPs with adjustable oxygen content. Anodization is typically employed to fabricate a uniform
nanostructured (nanotubular or nanoporous) oxide layer on metallic surfaces [26–29]. The two key
reactions required to form nanostructures are oxidation and etching. When a metal surface is oxidized,
etching agents in the electrolyte react with the oxide layer to form nanostructures. A recent study
reported that metal oxide NPs can be directly obtained from anodizing metal wires [30]. However,
to the best of our knowledge, there have been no attempts to synthesize oxide NPs from anodizing
poorly conductive metalloids like Si. In addition, unlike the previously synthesized metal-based
NPs (e.g., Al2O3, TiO2, ZrO2, etc.), the SiOx NPs synthesized in this work are non-stoichiometric.
The anodization process provides multiple advantages, such as immediacy, simplicity, capability to
synthesize at low temperatures, and economic efficiency, over the conventional procedures. In this
study, we have successfully synthesized SiOx NPs with adjustable oxygen content and size, and the
NPs will have significant applications in the fields of batteries and optoelectronics.

2. Materials and Methods

2.1. Materials

Doped Si is conductive enough to allow for anodization. P-type Si is generally used, but n-type
Si can also be employed under specific illumination conditions [31,32]. To simplify the experimental
process, boron-doped p-type Si wafers (<100>) with a resistance of 0.001–0.003 Ω cm (Tasco, Miami,
FL, USA) were used in this work. In order to generate a very intense electric field adjacent to Si,
the wafers were cut into 1.0 mm × 0.5 mm thin rods with a high aspect ratio by arc discharging in
water. Halogen elements are generally used as etching agents, thus, in this study, fluorine anions
from reagent-grade ammonium fluoride (NH4F) (Sigma-Aldrich, St. Louis, MO, USA) were chosen.
The electrolyte solution was prepared with deionized (DI) water.

2.2. SiOx NPs Preparation

Prior to anodization, Si rods were sonicated in acetone and ethanol for 5 min each, followed by
rinsing with DI water to remove any impurities present on the surfaces of the rods. The rods were then
dried under a nitrogen stream and no further treatments were performed on the rods. Anodization was
performed in 10 M NH4F aqueous solution with a typical two-electrode setup employing a Si rod as the
anode and a platinum sheet (10 mm × 40 mm × 0.5 mm) as the cathode (Figure 1a). The two electrodes
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were placed 10 mm apart and a voltage was applied with a 900 W DC power supply (OPS-3003,
ODA Technologies, Incheon, Korea). The anodization process was carried out at a temperature that
was kept constant using a thermostatic bath (RW-3040G, Lab. Companion, Daejeon, Korea) and was
maintained for 1 h. During anodization, NPs could be observed precipitating. After anodization,
the NPs were extracted by vacuum filtration. The NPs were then rinsed thoroughly with DI water and
dried in a desiccator at room temperature under vacuum.
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Figure 1. (a) An illustration showing the two-electrode anodization process for SiOx nanoparticle
(NP) synthesis. FESEM images of a Si rod surface (b) before and (c) after anodization (digital images
shown on the right). (d) EDX spectrum of the Si rod surface after anodization at a constant voltage and
temperature of 7.5 V and 10 ◦C, respectively.
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2.3. Characterization

The synthesized NPs and the surface morphology of a Si rod before and after anodization were
characterized using a field emission scanning electron microscope (FESEM, Magellan400, FEI, Hillsboro,
OR, USA). The size of the NPs was determined from FESEM images collectively containing at least
100 particles utilizing the ImageJ software (Laboratory for Optical and Computational Instrumentation,
University of Wisconsin-Madison, Madison, WI, USA) [33]. The elemental composition of the anodized
Si rod surface was deduced using an energy-dispersive X-ray spectrometer (EDX) equipped with
the FESEM. Further investigation into the morphology and crystallinity of the NPs were carried out
with a transmission electron microscope (TEM, Titan cubed G2 60-300, FEI, Hillsboro, OR, USA).
Chemical bonds present in the NPs were analyzed with an X-ray photoelectron spectrometer (XPS,
K-alpha, Thermo VG Scientific, Waltham, MA, USA) for Al Kα radiation (1486.7 eV).

3. Results and Discussion

3.1. Synthesis of Silicon Oxide NPs

Electrochemical anodization was performed on a Si rod at a constant voltage and temperature of
7.5 V and 10 ◦C, respectively. After completion of the process, the surface of the Si rod was examined
for any changes. It was visibly noticeable that the rod became shorter and lost its luster due to etching
and oxidation, respectively (digital photographs shown beside Figure 1b,c). Figure 1b,c shows FESEM
images of the surface of the Si rod before and after anodization. The initially smooth surface of the rod
became highly rough after anodization. EDX spectrum, shown in Figure 1d, confirms that the roughness
indeed arises from the silicon oxide layer that has formed on the surface of the rod. The anodization
experiment was then repeated, but at different voltages of 7.5, 10.0, and 12.5 V. The temperature at
which the process was carried out was also set to 5 ◦C to mitigate the local heat buildup resulting
from the high electrical resistance of Si. In all cases, precipitation was observed; Figure 2a shows that
the formed precipitate consists of individual particles with a size of less than 100 nm. The intense
electric field near the Si surface allows the silicon oxide layer to be extracted as NPs. The obtained
FESEM image was adjusted to have high contrast for size distribution analysis. Each particle was
assumed to be spherical and the diameter of each particle was calculated using ImageJ. From the
high contrast image, as shown in Figure S1, it was determined that the NPs were approximately 41.4,
62.2, and 71.8 nm in diameter with only a slight variance when synthesized at constant voltages of
7.5, 10.0, and 12.5 V, respectively (Figure 2d). A possible explanation for this phenomenon is that the
local electrolyte temperature changes as the applied voltage varies due to Joule heating becoming
more prevalent as the voltage rises. Investigation into the crystallinity of particles suggests that the
particles have no specific crystallographic orientation as shown in the high-resolution TEM image
(Figure 2b). The selected area electron diffraction (SAED) pattern, shown in the inset of Figure 2b,
further confirms that the particles are amorphous. The XPS measurement of the synthesized particles
was collected to identify the elements present; prominent Si and O peaks can be observed in the XPS
spectrum (Figure 2c). The wt% of Si and O vary slightly with the applied voltage (Table S1). The result
supports that the particles are SiOx. The observable carbon peaks near 285 eV can be attributed to the
membrane filter utilized to extract the particles and the copper tape used during the XPS measurement,
and the sharp peak near 150 eV can be attributed to plasmons [34]. No peaks corresponding to the
presence of nitrogen and fluorine, two elements found in the electrolyte, can be observed. From these
results, it can be concluded that SiOx NPs can be directly synthesized via anodization.
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Figure 2. (a) FESEM image, (b) high-resolution TEM image (inset: SAED pattern), and (c) XPS survey
spectrum of SiOx NPs synthesized at a temperature of 5 ◦C and a constant voltage of 10.0 V. (d) Average
particle size of synthesized SiOx NPs as a function of anodization voltage.

3.2. Control of Oxygen Content in SiOx NPs

The oxygen content of SiOx can be described as the average oxidation number of Si. The oxidation
number is expressed as the x-value in “SiOx”. The x-value has a significant effect on the properties
of SiOx. In Si, the Si atoms are arranged in tetragonal formations with four atoms surrounding an
atom. When Si is oxidized, the four surrounding atoms are replaced with O atoms. The number of
replacements that occur determines the oxidation number of Si, and this number can range from 0
to 4; the possible resulting states are Si-(Si4), Si-(Si3O), Si-(Si2O2), Si-(SiO3), and Si-(O4). The binding
energy varies slightly for each oxidation state. According to the random-bonding model, SiOx is a
combination of the five states and is amorphous. In this connected SiOx state, Si-(Si3O), Si-(Si2O2),
Si-(SiO3), and Si-(O4) can be expressed as Si2O, SiO, Si2O3, and SiO2, respectively. The frequency
distribution of the five oxidation states determines the oxidation number, meaning that the x-value can
be adjusted by carefully controlling the production of each oxidation state. Through Si 2p scanning,
the x-value can be determined employing the equation given in Equation (1).

x =
0.0× a + 0.5× b + 1.0× c + 1.5× d + 2.0× e

a + b + c + d + e
, (1)

where a, b, c, d, and e are the peak areas of Si0, Si1+, Si2+, Si3+, and Si4+ peaks, respectively. There are
two distinguishable Si0 peaks resulting from spin-orbital splitting into Si 2p1/2 and Si 2p3/2; the peak
ratio between these two peaks is approximately 1:2, respectively [34]. Table 1 provides Si 2p peak
information for each oxidation state. The binding energy of each peak varies slightly with the x-value,
but the variance is insignificant [35].
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Table 1. Si 2p peak information for different oxidation states (0 to 4).

Oxidation State Group Binding Energy (eV) [34,36–38]

Si0 Si 98.9 (Si 2p3/2) and 99.5 (Si 2p1/2)
Si1+ Si2O 100.0
Si2+ SiO 101.0
Si3+ Si2O3 102.1
Si4+ SiO2 103.2

Si 2p spectra, shown in Figure 3, visualizes the chemical-bond distributions of SiOx NPs synthesized
at different anodization voltages. All spectra were referred to the C 1s line (285 eV). Six peaks can
be found in each spectrum with the highest peaks located near 99 and 103 eV, the former of which
corresponds to the amalgamation of Si 2p1/2 and Si 2p3/2 peaks. The presence of these two prominent
peaks are attributed to Si–Si bonding and O–Si–O bonding. Much less noticeable peaks can be found
near 100, 101, and 102 eV, indicating relatively little formation of Si2O, SiO, and Si2O3. Thus, the result
supports that the most frequent oxidation state present in the NPs is the +4 (SiO2) state, excluding the
zero-oxidation state. This uneven formation of oxidation states can be explained as SiO2 being the
most stable oxidation state. Furthermore, as anodization voltage increases, SiO2 peak becomes even
more dominant. The x-values of SiOx synthesized at voltages of 7.5, 10.0, and 12.5 V were calculated to
be 0.42 ± 0.05, 0.64 ± 0.09, and 0.89 ± 0.09, respectively, indicating that the oxygen content of SiOx NPs
increases with rising anodization voltage.
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and (c) 12.5 V at a constant temperature of 5 ◦C.

The mechanism behind the oxygen content change resulting from anodization voltage adjustment
is visualized in Figure 4. During anodization, anions of oxygen species (O2− and OH−) are created by
field-assisted deprotonation of water [26,39,40]. It is generally accepted that ion mobility greatly affects
the oxidation process during anodization [41,42]. Ion mobility, in a solution, is directly proportional to
the charge of the ion and inversely proportional to the mass of the ion. Thus, O2− ions are transported
much more quickly than OH− under a constant electric field. This difference in mobility between
the two anions leads to the observed variations in oxygen content of SiOx. As depicted in Figure 4a,
at a low voltage, the low electric field produces little O2−, while also allowing the formed anions to
recombine with H3O+. In addition, there is not a significant difference in mobility between the two
aforementioned anions under low electric field. These two factors permit OH− to readily bond with
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Si without having to compete with O2−, leading to the formation of Si–OH bonds, which are very
soluble in the aqueous solution. Figure 4b shows that as the voltage rises, the electric field increases,
producing more anions and increasing the mobility difference between O2− and OH−. With the higher
mobility, O2− outcompetes OH− and O–Si–O bonds become more dominant (SiO2 in Figure 3c).
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3.3. Size Control of SiOx NPs

When SiOx NPs were synthesized at a voltage and temperature of 7.5 V and 5 ◦C, respectively,
the particles were on average 41.4 nm in diameter. Fabrication at higher temperatures increases the
size of the synthesized NPs as shown in Figure 5; when fabricated at the temperatures of 25, 45,
and 65 ◦C, the average sizes of the synthesized NPs were 99.2, 147.0, and 192.3 nm, respectively.
Additionally, more spherical NPs were observed as the fabrication temperature rose. The x-value,
however, was generally unaffected by the temperature.
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at a constant voltage of 7.5 V (insets: digital photographs of synthesized SiOx NPs dispersed in DI
water). (e) The size distributions of synthesized NPs.

Anodization temperature is typically one of the most important factors regarding the morphology
of the synthesized oxides. When anodization occurs at a high temperature, the aqueous electrolyte
solution has a low viscosity, allowing a high diffusion of F−, an etching agent [43]. Consequently,
a high etching rate leads to a high oxidation rate [28,43], ultimately resulting in a production of large
particles. Thus, through the adjustment of the anodization temperature, the size of the synthesized
SiOx NPs can be controlled.
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4. Conclusions

Controlling the oxygen content of SiOx NPs allows the NPs to exhibit diverse properties.
We successfully synthesized non-stoichiometric SiOx NPs by anodizing a doped Si rod in an aqueous
electrolyte solution. A silicon oxide layer formed on the surface of the rod after anodization, indicating
that oxidation and etching took place, and the electric field induced near the surface led to the
production of NPs. Raising the applied voltage increased the oxygen content of the synthesized SiOx

NPs, a phenomenon that can be attributed to the greater generation and higher mobility of O2− in
comparison to OH− under a high electric field. Furthermore, a higher anodization temperature caused
more diffusion of F−, subsequently increasing the etching rate and the size of the synthesized NPs
significantly. The anodization process, described in this work, is much simpler than the conventional
procedures and can be used to quickly mass-produce SiOx NPs by implementing a large number of
Si electrodes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/11/2137/s1,
Figure S1: FESEM images and their high contrast counterparts of SiOx NPs synthesized at voltages of (a) 7.5 V,
(b) 10.0 V, and (c) 12.5 V at a constant temperature of 5 ◦C, Table S1: Wt% of the elements in SiOx NPs synthesized
at voltages of (a) 7.5 V, (b) 10.0 V, and (c) 12.5 V at a constant temperature of 5 ◦C.
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