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Abstract
Genome-wide association studies (GWAS) have successfully discovered hundreds of

associations between genetic variants and complex traits. Most GWAS have focused on

the identification of single variants. It has been shown that most of the variants that were dis-

covered by GWAS could only partially explain disease heritability. The explanation for this

missing heritability is generally believed to be gene-gene (GG) or gene-environment (GE)

interactions and other structural variants. Generalized multifactor dimensionality reduction

(GMDR) has been proven to be reasonably powerful in detecting GG and GE interactions;

however, its performance has been found to decline when outlying quantitative traits are

present. This paper proposes a robust GMDR estimation method (based on the L-estimator

and M-estimator estimation methods) in an attempt to reduce the effects caused by outlying

traits. A comparison of robust GMDR with the original MDR based on simulation studies

showed the former method to outperform the latter. The performance of robust GMDR is

illustrated through a real GWA example consisting of 8,577 samples from the Korean popu-

lation using the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) level as

a phenotype. Robust GMDR identified the KCNH1 gene to have strong interaction effects

with other genes on the function of insulin secretion.

Introduction
A genome-wide association (GWA) study has become a common approach for testing the
association between a single nucleotide polymorphism (SNP) and a complex trait of interest
[1]. There have been many successful results from genome-wide association studies (GWAS).
However, SNPs that were identified by GWAS have been shown to explain only a small frac-
tion of disease etiology, because the relatedness between complex diseases and multiple genes
and/or their interactions are ignored. For this reason, the analysis of gene-gene (GG) and gene-
environment (GE) interactions have been emphasized as a new alternative for understanding
the etiology of common complex traits. However, GG and GE interactions are hard to detect
and characterize by using traditional parametric statistical methods, for the following reasons
[2]. First, high dimensional genetic data may be of a sparse nature. The issue of data sparseness
can be addressed by using exponentially large sample sizes when parametric statistical methods
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are used for determining GG and GE interactions. Second, detecting GG and GE interactions
using traditional procedures may lead to an increase in type II errors and a decrease in power.
As a result, detecting GG and GE interactions has been a well-known challenge in statistics and
data mining areas [3].

Ritchie et al. proposed a Multifactor Dimensionality Reduction (MDR) method for detect-
ing GG interaction [4]. This method is not affected by data sparsity because it allows multilocus
genotype combinations with very few or no data points. However, the original MDR method
can only be used in association studies for qualitative traits. The MDR method was extended to
more general types of traits, including quantitative traits, by Lou et al., who proposed the Gen-
eralized Multifactor Dimensionality Reduction (GMDR) method [5]. This method is quite flex-
ible in handling various types of traits and is even able to account for individual covariates.

Since the initial introduction of the original MDR and GMDRmethods, numerous exten-
sions of MDR have been developed. Calle et al. proposed model-based MDR (MB-MDR) for
the parametric extension of the MDR method [6]. Recently, Quantitative MDR (QMDR) was
proposed for handling quantitative traits [7].

These MDR methods have brought many remarkable successes in GG interaction analysis.
However, the effects of outlying trait observations on the results of MDR methods have not
been studied. Outlying trait observations are those traits that diverge from the global distribu-
tion of traits. Bennett et al., Most et al., and Yang et al. discussed the treatment of outliers in
GWAS and proposed simple approaches, such as removing outlying observations and trans-
forming traits, including log-transformation or inverse-normalization [8, 9, 10]. The R-pack-
age QCGWAS includes a process for detecting outliers by skewness or kurtosis. However, these
QC methods are very sensitive to the underlying distributional assumption and may lead to the
wrong conclusions when the distributional assumption is not met. In this paper, we first dem-
onstrate the effects of outlying trait observations on GMDR analysis. Next, we propose robust
GMDR for reducing the effects caused by outlying traits. Robust GMDR uses robust estimation
based on L-estimator and M-estimator. Simulation studies were used to compare the robust
GMDR developed in this work to GMDR, and was shown to outperform GMDR. The perfor-
mance of robust GMDR is illustrated through a real GWA example consisting of 8,577 samples
from the Korean population.

Materials and Methods

KARE data
The Korea Association Resource (KARE) is a project for gathering large-scale GWA analyses
in the Gyeonggi Province of South Korea [11]. Two community cohorts participated in the
KARE project: the Ansung and Ansan cohorts. The number of participants in the Ansung
cohort is 5,018 and that in Ansan cohort is 5,020. The age of the participants were between 40
and 69, and more than 260 traits have been extensively examined through epidemiological sur-
veys, physical examinations, and laboratory tests. In this paper, the Homeostasis Model Assess-
ment of Insulin Resistance (HOMA-IR) levels are used, which are widely employed to estimate
insulin resistance. As HOMA-IR has a nonnegative skewness distribution, a gamma distribu-
tion is commonly assumed [12]. DNA samples were genotyped on the Affymetrix Genome-
Wide Human SNP array 5.0, which is able to genotype 500,568 SNPs. The quality control pro-
cesses are well described in a study by Cho et al. [13]. For the purposes of our work, samples
without Body Mass Index (BMI) or HOMA-IR scores were disregarded. After removing the
samples with the missing phenotypes, a total of 8,577 individuals and 327,872 SNPs remained
in the study.
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Review of MDRmethod
The evaluation of genetic effects using the MDR method requires several steps. The first step
involves selecting genetic factors according to their effects on the phenotype. If GG interactions
of the nth order are required, n SNPs are selected and a 3n contingency table is created. Each
cell of the contingency table contains the number of cases and controls with the same genetic
factor combinations. The second step calculates the ratio of the number of cases to the number
of controls in each cell, and uses this ratio to determine whether a cell is “high risk” or “low
risk”. If the ratio of case to control in a cell exceeds the threshold (which is commonly specified
as 1), then those cells are labeled “high risk”; otherwise they are labeled “low risk”. This process
enables each cell to be classified as either “high risk” or “low risk”. In the third step, the ability
of selected SNP sets to perform these classifications based on the case / control ratio are evalu-
ated through accuracy and balanced accuracy (BA) measures, where BA is a measure for the
prediction ability of the model and is defined as follows:

BA ¼ 1

2
ðsensitivity þ specificityÞ ð1Þ

The larger the BA produced by the model, the more accurate the model’s prediction ability
[14]. These measures are computed from the 2×2 confusion table in which the first variable
represents the case / control ratio and the second variable high risk and low risk. Then, the sen-
sitivity is defined as the ratio of the number of cases to the number of high risk samples and the
specificity is defined as the ratio of the number of controls to low risk samples. All these steps
would be exhaustively performed for all SNP combinations.

The problem of over-fitting is usually avoided by performing a 10-fold cross-validation. It is
also possible to use the cross-validation consistency (CVC) as a measure for selecting SNP
combinations. This selection is based on the number of times the same SNP combination is
selected as best out of 10 cross-validated samples. Alternatively, the SNP combination with the
largest CVC measure can also be selected as the best SNP combination. BA and CVC measures
have been widely used in MDR analysis

Review of GMDRmethod
Although MDR has been used extensively in GG interaction analysis, it has several limitations.
First, the MDR method is only capable of handling qualitative traits such as case and control
data, because the method classifies each cell by using the case / control ratio. Second, it is not
possible for MDR to adjust for other individual covariates such as environmental factors.
Therefore, using MDR to analyze traits that are affected by environmental factors may produce
biased results. In an attempt to overcome these limitations, Lou et al. proposed the Generalized
Multifactor Dimensionality Reduction (GMDR) method [5], each step of which is very similar
to those of the original MDR method. However, instead of using the counts of individuals, the
GMDRmethod uses a residual-based score.

Let yi denote the phenotype of individual i, which can be either quantitative or qualitative.
Let E(yi) = μi. Consider the following generalized linear model (GLM):

lðmiÞ ¼ aþ xTi bþ zTi g ð2Þ

where l(μi) is the link function, α is the intercept, and xi is a vector that expresses possible geno-
type combinations of interest. zi is a vector representing environmental factors, and β and γ are
coefficient vectors.

The first step when using GMDR is to fit the null model only with environmental factors
under the null hypothesis, i.e., β = 0. The second step is to classify each SNP combination using
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the residuals from the null model. For each cell of the contingency table, the sum of the residu-
als is computed. Cells with a positive residual sum are classified as “high risk”; otherwise, they
are classified as “low risk”. Subsequent GMDR cross-validation steps are performed similar to
those of MDR.

It is noteworthy that, in this GMDR procedure, the distinction between high and low classi-
fication is based on the sum of the residuals. Thus, a few outlying observations may have a
large impact on the performance of GMDR, which provided the motivation for considering
robust GMDR. Although GLM can handle both quantitative and qualitative traits, our efforts
were focused on a quantitative trait with outlying observations. Thus, an identity link function
was used with the supposition that yi has an independent normal distribution with equal
variance.

Proposed Robust GMDRmethod
The effect of outlying observations can be reduced by considering robust scores such as an L-
estimator and an M-estimator type score. The L-estimator is a linear combination of order sta-
tistics that have to be measured. A well-known example of the L-estimator is least trimmed
square (LTS) [15]. LTS regression is formulated as follows.

arg minb

Xk

i¼1

jgðiÞðbÞj2; where giðbÞ ¼ ðyi � f ðxi; bÞÞ; i ¼ 1; . . . ; n: ð3Þ

Here, k is the number of samples that is actually used in the regression and n is the total
sample size. γi(β) is the ith residual for a fixed β that is ordered according to the absolute value
of the residuals. Bickel and Lehmann considered trimmed expectations to be the only ones
which are both robust and whose estimators have guaranteed high efficiency [16]. LTS is
known to outperform other least square estimators. Using LTS regression, our L-estimator
GMDR uses a studentized trimmed residual as a score for GMDR, where the trimmed studen-
tized residual is defined as follows:

_g iðbÞ ¼

yi � f ðxi; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðyi � f ðxi; bÞbr

Þ
if

yi � f ðxi; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðyi � f ðxi; bÞbr

Þ

�������
�������
� T

0 if
yi � f ðxi; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðyi � f ðxi; bÞbr

Þ

�������
�������
> T

ð4Þ

8>>>>>>>>><
>>>>>>>>>:

where T is the threshold value to determine whether the ith sample should be used, and it is
possible to adjust T to determine the extent to which outliers would have to be trimmed.

The second robust GMDR uses an M-estimator type score, which is derived as the minima
of the sums of the functions of the data. Least-squares estimators and many maximum-likeli-
hood estimators are examples of M-estimators. The M-estimator was first derived for the pur-
pose of introducing it into robust regression by Huber [17]. Tukey subsequently proposed a
biweight function, which is a type of M-estimator for robust regression. The M-estimator using
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Tukey’s biweight function is defined as follows.

rðgiðbÞÞ ¼
1

6
½1� ð1� giðbÞÞ2Þ3� if jgiðbÞj � 1

1

6
if jgiðbÞj > 1

; ð5Þ

8>><
>>:

arg minb

Xk

i¼1

rðgiðbÞ; where giðbÞ ¼ ðyi � f ðxi; bÞÞ; i ¼ 1; . . . ; n: ð6Þ

Solving the M-estimator requires differentiation of the ρ function, which usually requires
selection of an appropriate shape for the biweight function.

Using the biweight function, our M-estimator GMDR defines the threshold residual score
as:

_g iðbÞ ¼

yi � f ðxi; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðyi � f ðxi; bÞbr

Þ
if

yi � f ðxi; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðyi � f ðxi; bÞbr

Þ

�������
�������
� T

T � signðyi � f ðxi; bÞÞ if
yi � f ðxi; bÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðyi � f ðxi; bÞbr

Þ

�������
�������
> T

ð7Þ

8>>>>>>>>><
>>>>>>>>>:

In this formula, the threshold T is used to shrink all residuals exceeding T. As this function
does not require differentiation; the biweight function is modified by simply reducing the
weight caused by extreme loss.

Results

Simulation study
First, we simulated the phenotypes from the Normal distribution. In this case, samples were
generated by using the following model.

y ¼ envir1 þ b1SNP1 þ b2SNP2 þ b1�2SNP1SNP2 þ ε; ð8Þ

envir1 � Nð0; 1Þ; SNP1; . . . ; SNPp � Binð2;MAFÞ; ε � Nð0; 1Þ:

The effects of MAFs were checked by considering two MAF values: 0.1 and 0.3. Next, outly-
ing samples were generated by using the following model

y � Nð0; 400Þ ð9Þ

SNP1; . . . ; SNPp � Binð2;MAFÞ:

A series of designs were created by using different settings for the purpose of data simula-
tion, and the settings are summarized in Table 1. The first three columns of Table 1 denote the
effect of the size of SNP1, SNP2, and the interaction in pure samples, respectively. The fourth
column lists the mixed proportion, i.e., the proportion of outlying samples as generated by
Model (9). Larger mixed proportions indicate that the particular simulation design generates
more outlying observations. The fifth and sixth columns of Table 1 denote the heritability of
each simulation setting when MAF = 0.1 and 0.3, respectively. The detailed equations for calcu-
lating the heritability are described in the Appendix.
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Second, we performed simulation studies for the skewed distribution. The samples were
generated from the gamma distribution given in (10). The MAF of SNPs was set to 0.3. The
outlying observations were generated by the shifted Gamma distribution in (11). As the
Gamma distribution has a long tail to the right, outlying observations were only generated for
the right-hand side of the distribution. A series of designs are summarized in Table 2

y � Gammaða; bÞ ð10Þ

y � 0:1þ Gammaða; bÞ ð11Þ

a ¼ ðenvir1 þ b1SNP1þb2SNP2 þ b3SNPS1NP2Þ
2

; b ¼ 1=ðenvir1 þ b1SNP1 þ b2SNP2 þ b3SNPS1NP2Þ;

envir1 � Nð0; 1Þ; SNP1; . . . ; SNPp � Binð2; 0:3Þ’:

For these Normal and Gamma distributions, we considered two sample sizes of 1,000 and
3,000 to evaluate the effect of sample size, and assumed the number of SNPs to be 100 and
1000. Ordinary GMDR, L-estimator-based GMDR, and M-estimator-based GMDR were com-
pared in terms of their power of detecting a true SNP pair. We used Eq (12) for calculating the

Table 1. Models of simulation with Normal distribution.

SNP1 SNP2 interaction mixed proportion Heritability (MAF = 0.1) Heritability (MAF = 0.3)

Design1 0.2 0.2 0.18 0.067 0.010 0.041

Design2 0.2 0.2 0.18 0.033 0.010 0.041

Design3 0.4 0.4 -0.3 0.067 0.022 0.027

Design4 0.4 0.4 -0.3 0.033 0.022 0.027

Design5 0.25 0.25 0.15 0.067 0.014 0.048

Design6 0.25 0.25 0.15 0.033 0.014 0.048

Design7 0.2 0.2 0.18 0 0.010 0.041

The first to third columns denote the effect sizes of SNP1, SNP2 and interaction in pure samples respectively. The fourth column of Table 1 indicates

mixed proportion. The fifth and sixth columns of Table 1 indicates heritability and skewness respectively.

doi:10.1371/journal.pone.0135016.t001

Table 2. Models of simulation with Gamma distribution.

SNP1 SNP2 interaction mixed proportion Heritability Skewness

Design 1 0.6 0.6 0.3 0.067 0.117 0.770

Design 2 0.6 0.6 0.3 0.033 0.117 0.8

Design 3 1.2 0.4 0.3 0.067 0.197 0.617

Design 4 1.2 0.4 0.3 0.033 0.197 0.587

Design 5 0.8 -0.4 -0.2 0.067 0.074 0.965

Design 6 0.8 -0.4 -0.2 0.033 0.074 0.801

Design 7 0.6 0.6 0.3 0 0.117 0.602

The first column shows MAF of each design. Second to fourth columns denote the effect sizes of SNP1, SNP2 and interaction in pure samples

respectively. The fifth and sixth columns of Table indicates heritability and skewness respectively.

doi:10.1371/journal.pone.0135016.t002
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power, where N refers to the total number of iterations.

1

N

XN
i¼1

Iðset fSNP1; SNP2g is selected in ith iterationÞ: ð12Þ

The number of iterations was 1,000 when the number of SNPs is 100, while it was 100 when
the number of SNPs is 1000. The best SNP pair was selected by using the average CVC through
a 10-fold cross validation.

We also computed the false detection rate (FDER) [18], which was done by assuming that a
targeted non-causal SNP pair, say SNP1 and SNP2, exists. To detect this pair, we simulated
500,000 null datasets by permuting the response variables. Because there were at most 100
SNPs in each dataset, the randomly selected rate of each SNP pair is at least 1/499,500. We
counted how many times the pair of SNP1 and SNP2 was selected as the best model. We found
all three methods selected the pair of SNP1 and SNP2 at most twice when the number of SNPs
is 1000, which shows that the three methods have a very low FDER.

Fig 1 shows the results of the power comparison when SNPs are generated by Bin(2,0.3) and
the phenotypes are obtained by Normal distributions. Designs 1 to 6 show the results when
outlying observations exist and Design 7 when outlying observations do not exist. For Design
7, the ordinary GMDR and M-estimator GMDR outperform L-estimator GMDR. As L-estima-
tor GMDR uses a smaller number of samples than other methods, the power of L-estimator
GMDR is less than that of the others. For all the other designs, the performance of L-estimator
GMDR and M-estimator GMDR exceeds that of ordinary GMDR.

Fig 2 shows the results of the power comparison when SNPs are generated by Bin(2,0.1) and
the phenotypes are obtained by Normal distributions. The patterns are quite similar to those in
Fig 1. For Designs 1 to 6, when outlying observations exist, the two robust GMDRs were found
to outperform ordinary GMDR. For Design 7, when outlying observations do not exist, the per-
formance of ordinary GMDR and M-estimator GMDR exceeds that of L-estimator GMDR.

Fig 3 shows the results of the power comparison when SNPs are generated by Bin(2,0.3) and
the phenotypes are obtained by Gamma distributions. The residuals were calculated by gener-
alized linear models under the Gamma distributional assumption. For Designs 1 to 6, when
outlying observations exist, the two robust GMDRs were found to outperform ordinary
GMDR to a large extent. In particular, L-estimator GMDR performed better than M-estimator
GMDR. Note that the performance of L-estimator is highly dependent on the threshold values,
whereas this is not the case for M-estimator. For Design 7, when outlying observations do not
exist, all GMDRs perform similarly, probably due to the large SNP size effect.

Fig 4 shows the results of the power comparison when SNPs are generated by Bin(2,0.3) and
the phenotypes obtained by Gamma distributions. The residuals were calculated by generalized
linear models under the Normal distributional assumption (left panel) and under the Gamma
distributional assumption (right panel). In general, the use of GMDR in combination with the
correct distributional assumption is much more powerful than with an incorrect distributional
assumption. For Designs 1 to 6, when outlying observations exist, two robust GMDRs perform
much better than ordinary GMDR. In particular, L-estimator GMDR outperforms M-estima-
tor GMDR.

The effect of threshold values were investigated by using the robust GMDRmethods with
various threshold values, i.e., T = 1.5, 1.75, and 2. As shown in our simulation results in Figs 1,
2, 3 and 4, the dependence of L-estimator GMDR on T is much stronger than that of M-estima-
tor GMDR. When the distribution of phenotypes is non-skewed (e.g., a Normal distribution),
the effect of T is not large. On the other hand, when the distribution of phenotypes is skewed
(e.g., a Gamma distribution), the effect of T is quite large. Although our simulation setting is
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limited, T = 1.5 consistently performed better than or equal to other threshold values in the
presence of outlying observations. Thus, for practical applications, we recommend using
T = 1.5.

Fig 1. Results of Simulation: Normal distribution with MAF 0.3. The upper and lower figures show the results when the number of samples is equal to
1,000 and 3,000, respectively. These four figures almost show the same patterns, but the simulation power is different.

doi:10.1371/journal.pone.0135016.g001
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Fig 2. Results of Simulation: Normal distribution with MAF 0.1. The upper figures show the results when the number of samples is equal to 1000 and the
lower figures show the results when the number of samples equals 3,000. These four figures almost show the same patterns, but the simulation power is
different.

doi:10.1371/journal.pone.0135016.g002
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Fig 3. Results of Simulation: Gamma distribution with MAF 0.3. The upper figures show the results when the number of samples is equal to 1000 and the
lower figures show the results when the number of samples equals 3,000. These four figures almost show the same patterns, but the simulation power is
different.

doi:10.1371/journal.pone.0135016.g003
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Real data analysis
Our proposed robust GMDR was applied to KARE data with a HOMA-IR phenotype. Fig 5
displays the boxplots of HOMA-IR without and with log-transformation. The skewed distribu-
tion of Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) levels prompted
many researchers to perform a log-transform before conducting the regression analysis (shown
in the upper panel of Fig 5) [12]. Thus, a log-transform was also performed in our work and its
boxplot is given in the lower panel of Fig 5. In spite of performing a log-transformation, the
distribution of HOMA-IR levels still remained skewed, with many samples apparently qualify-
ing as outliers. Fig 6 shows the normal quantile-quantile (QQ) plots of the HOMA-IR levels:
the left panel represents the case without log-transformation and the right panel the case with
log-transformation. The distribution that was obtained after the log-transformation appears to
be more symmetrical than without log-transformations. Thus, our GMDR analysis was per-
formed using log-transformed HOMA-IR levels.

Before the GMDR analysis, a single SNP analysis was first performed to reduce the compu-
tational burden on GMDR. A single SNP analysis was performed for all SNPs.

logðHOMA� IRiÞ ¼ a0 þ a1SEXi þ a2AGEi þ g3AREAi þ a4BMIi þ a5jSNPij þ εi; ð13Þ

Noteworthy is that i (= 1,. . .,8577) represents individuals; whereas, j (= 1,. . .,327,872) repre-
sents SNPs. All SNPs are ranked in the order of ascending p-values. SNPs are filtered out again

Fig 4. Results of Simulation: Power comparison between the residuals calculated under the Normal assumption and under the Gamma
assumption. The residuals were calculated by generalized linear models under the Normal distributional assumption (left panel) and under the Gamma
distributional assumption (right panel).

doi:10.1371/journal.pone.0135016.g004
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by the linkage disequilibrium (LD) coefficient r2. Only one SNP was selected among the SNP
pairs with r2 � 0.8. Thus, the SNPs can be treated independently. After filtering SNPs via LD,
we set the total number of selected SNPs as n / log(n)	 585 by the sure independence screen-
ing (SIS) criterion for the purpose of performing the GMDR analysis [19].

The same model that was used for selecting SNPs was used for the GMDR analysis. Sex, age,
area, and BMI were used as environmental covariates. The regression models for GMDR are
given as follows:

logðHOMA� IRiÞ ¼ b0 þ b1SEXi þ b2AGEi þ b3AREAi þ b4BMIi þ εi; ð14Þ

Fig 5. Boxplots of HOMA-IR. Before log transformation to HOMA-IR, HOMA-IR has much skewed
distribution. In contrasts, after log transformation, HOMA-IR has almost symmetric distribution.

doi:10.1371/journal.pone.0135016.g005
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The residual scores were then calculated based on this model. The threshold value of T was
assumed as 1.5, 1.75, or 2 in the L-estimator and M-estimator. Table 3 shows the results
obtained with the three GMDR methods. Each method provided a different SNP combination.
These three pairs of SNPs have not previously been reported in the literature in relation to
HOMA-IR. When we performed the analysis using the real data, the computational times
required by the M-estimator GMDR were similar to those required for ordinary GMDR analy-
sis. However, the L-estimator required slightly more computational time, because it contains
an additional step to compute residuals.

We performed the network analysis with the top 100 SNP pairs with the highest BAs. Each
node represents an SNP and each edge connecting two nodes represents an SNP pair. We
defined the hub genes as genes with at least four edges. Table 4 summarizes the list of hub
genes for log-transformed HOMA-IR identified by robust GMDRs and ordinary GMDR. The
KCNH1 gene, which has the largest number of edges, was reported to have the function of
insulin secretion [20]. Both M-estimator GMDR and L-estimator GMDR successfully

Fig 6. QQ-plot for HOMA-IR data. This figure shows the QQ-plots for HOMA-IR data comparing with standard normal distribution. It is found that HOMA-IR
with Log-transformation acts more like samples of normal distribution in right figure.

doi:10.1371/journal.pone.0135016.g006

Table 3. GMDR Analyses for log-transformed HOMA-IR in KARE data.

Method Best Combination CVC Average Test BA

Ordinary GMDR rs576563 rs2920792 4 0.512535

L-estimator GMDR rs4915657 rs7500315 9 0.518679

M-estimator GMDR rs11125090 rs9353581 9 0.522633

Table 3 shows the results of three GMDR methods. Each GMDR method provided different SNP combination.

doi:10.1371/journal.pone.0135016.t003
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identified the KCNH1 gene as a hub gene regardless of the threshold values. In addition, M-
estimator GMDR with a threshold of 1.5 and L-estimator GMDR with all three threshold val-
ues identified the RYR2 gene as a hub gene. This gene is reported to be related with diabetes
[21]. The PBX1 was found by M-estimator GMDR with a threshold of 2 and an ordinary
GMDR. It was also reported that the PBX1 gene is related to type 2 diabetes [22]. In summary,
the network analysis that was performed with the top 100 SNP pairs showed supporting evi-
dence that the robust GMDR methods identified a larger number of hub genes that were
reported in the literature than the ordinary GMDRmethod.

For a selected SNP pair, we investigated the high /low risk prediction results of individual
cells. Fig 7 shows the boxplots of residuals that were calculated by ordinary GMDR, M-estimator
GMDR, and L-estimator GMDR, respectively. Each cell displays three boxplots of GMDRmeth-
ods. The red boxplot represents the high-risk group with the sum of the residuals larger than 0,
whereas the blue boxplot represents the low-risk group with the sum of the residuals smaller
than 0. The high/low classification pattern of L-estimator GMDR is the same as that of M-esti-
mator GMDR. However, the pattern of ordinary GMDR differs from that of robust GMDRs. For
example, in the first cell, when the numbers of minor alleles of rs4915657 and rs7500316 are
(0,0), respectively, ordinary GMDR classified this cell as a low-risk group, whereas the two robust
GMDRs classified it as a high-risk group. Note that the sum of residuals for ordinary GMDR
becomes negative, which is due to the negative outlying observations in the tail part. Similarly,
when the numbers of minor alleles in rs4915657 and rs7500316 are (0,1), (1,1), and (2,0), the
cells showed the same tendency. The different results between the robust GMDRs and ordinary
GMDR could be explained by the negative outlying residuals in the tail part. Because ordinary
GMDR uses the original outlying residuals as they are, the sum of the residuals is highly affected
by these outlying residuals. Thus, these outlying observations can cause errors in high/low classi-
fication. This investigation demonstrates the usefulness of robust GMDRs.

Discussion
When searching for hidden heritability, it is important to use an efficient method to establish
the effects of GG interactions. To this effect, GMDR is a powerful method. However, using a

Table 4. Hub-genes for log-transformed HOMA-IR in KARE data with several methods.

Method threshold = 1.5 No. nodes threshold = 1.75 No. nodes threshold = 2 No. nodes

L-estimator KCNH1* 4 KCNH1* 9 KCNH1* 13

RYR2* 7 RYR2* 5 RYR2* 9

LAMB3 5 LAMB3 4 HPCAL4 4

C1orf168 3 SMYD3 5 SMYD3 4

LMX1A* 3

M-estimator KCNH1* 43 KCNH1* 52 KCNH1* 52

RYR2* 6 PBX1* 4

KIF26B 4

TXNRD2 3

Ordinary GMDR PBX1* 31

TMEM51 5

VSIG2 4

KIF26B 3

Table 4 shows the hub-genes for log-transformed HOMA-IR with different threshold. KCNH1 and RYR2 are commonly detected in L-estimator and M-

estimator GMDR. However, Ordinary GMDR could not detect those genes.

doi:10.1371/journal.pone.0135016.t004
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simple example, it is demonstrated that the power of the GMDRmethod may decline in the
presence of outlying observations. This problem was addressed by proposing the robust
GMDR: L-estimator GMDR and M-estimator GMDR.

Simulation studies indicated that outlying observations caused the power of ordinary
GMDR to decline critically. In contrast, the L-estimator and M-estimator GMDR methods

Fig 7. Boxplots of residuals calculated by ordinary GMDR, M-estimator GMDR and L-estimator GMDR. Each cell displays three boxplots of the GMDR
methods divided by the combination of rs4915657 and rs7500316. The red and blue boxplots represents the high-risk and low-risk groups with the sum of the
residuals larger than and smaller than 0, respectively.

doi:10.1371/journal.pone.0135016.g007
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were found to perform reasonably well even when outlying observations existed. When the
samples are generated by assuming a Normal distribution, the L-estimator GMDR appears to
outperform the other methods when the proportion of outlying observations is large. Other-
wise, M-estimator GMDR and L-estimator GMDR perform similarly. If the samples are gener-
ated by assuming a Gamma distribution and there are outlying observations, L-estimator
performs best. The results of the simulation study indicate that the power of GMDR with a cor-
rect distributional assumption is shown to be much larger than with an incorrect distributional
assumption. Therefore, if we know the distribution of yi, a parametric approach, such as maxi-
mum likelihood estimation, would be recommended.

In our robust GMDR analysis, we used BA as an evaluation measure for the prediction abil-
ity. BA uses less information than continuous evaluation measures when used for quantitative
traits. However, as the GMDR approach is based on transforming quantitative traits into
binary high/low responses, incorporating the continuous scale information directly into the
robust GMDR framework is complicated. On the other hand, QMDR does not use binary
responses; instead, it uses t-statistics to measure for quantitative traits [7]. Although the
GMDR and QMDR methods use different frameworks, the concept of robustness used in
GMDR can be used in QMDR. Thus, in future studies, we will extend our robust scheme to t-
statistics with the classical statistical method.

Appendix
Without loss of generality, we could consider all kinds of 2nd order genetic models with a nor-
mal distribution by using the following formula (15).

y ¼
X2

j¼0

X2

i¼0

bijIðSNP1 ¼ i; SNP2 ¼ jÞ þ ε ð15Þ

Then, we could consider the variance of y to be represented by the following equations.

varðyÞ ¼ s2 ¼ s2
envir þ s2

genetic ¼ EðvarðyjSNP1; SNP2ÞÞ þ varðEðyjSNP1; SNP2ÞÞ ð16Þ

¼ Eðs2
envirÞ þ varð

X2

j¼0

X2

i¼0

bijIðSNP1 ¼ i; SNP2 ¼ jÞÞ

With this equation, we could calculate the narrow sense heritability h2 as:

h2 ¼ s2
genetic

s2
¼

varð
X2

j¼0

X2

i¼0

bijIðSNP1 ¼ i; SNP2 ¼ jÞÞ

s2
ð17Þ
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