Journal of Intelligent Information Systems (2022) 58:535-559
https://doi.org/10.1007/510844-021-00677-2

®

Check for
updates

A spiral-like method to place in the space
(and interact with) too many values

Yannis Tzitzikas'? © . Maria-Evangelia Papadaki'? - Manos Chatzakis'+

Received: 30 December 2020 / Revised: 3 September 2021 / Accepted: 5 September 2021 /
Published online: 15 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract

Modern information systems have to support the user in managing, understanding and inter-
acting with, more and more data. Visualization could help users comprehend information
more easily and reach conclusions in relative shorter time. However, the bigger the data is,
the harder the problem of visualizing it becomes. In this paper we focus on the problem of
placing a set of values in the 2D (or 3D) space. We present a novel family of algorithms that
produces spiral-like layouts where the biggest values are placed in the centre of the spiral
and the smaller ones in the peripheral area, while respecting the relative sizes. The derived
layout is suitable not only for the visualization of medium-sized collections of values, but
also for collections of values whose sizes follow power-law distribution because it makes
evident the bigger values (and their relative size) and it does not leave empty spaces in the
peripheral area which is occupied by the majority of the values which are small. Therefore,
the produced drawings are both informative and compact. The algorithm has linear time
complexity (assuming the values are sorted), very limited main memory requirements, and
produces drawings of bounded space, making it appropriate for interactive visualizations,
and visual interfaces in general. We showcase the application of the algorithms in various
domains and interactive interfaces.

Keywords Visualization - Visual interfaces

1 Introduction

Visualization is important for understanding data, and this concerns almost every data man-
agement task: from schema visualization, to query answer visualization, analytics, data

P4 Yannis Tzitzikas
tzitzik @ics.forth.gr

Maria-Evangelia Papadaki
marpap @ics.forth.gr

Manos Chatzakis
chatzakis @ics.forth.gr

I Institute of Computer Science, FORTH-ICS, Heraklion, Greece

Computer Science Department, University of Crete, Heraklion, Greece

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10844-021-00677-2&domain=pdf
http://orcid.org/0000-0001-8847-2130
mailto: tzitzik@ics.forth.gr
mailto: marpap@ics.forth.gr
mailto: chatzakis@ics.forth.gr

536 Journal of Intelligent Information Systems (2022) 58:535-559

mining, data cleaning, and workload visualization. Moreover, modern information systems
should enable the user to understand, and interact with larger number of objects than in the
past (e.g. the results of summarization, sentiment analysis, dataset discovery and search,
etc). However the bigger the data is, the more difficult it is to visualize and understand it.
In this paper we focus on a fundamental problem: how to visualize a set of values in the 2D
(or 3D) space. Quite often we have to visualize a function f, i.e. a set of (x, f(x)) pairs
where x ranges a finite domain X, and commonly a plot is used where all x values are
placed in the x-axis and f(x) are presented as dots in the (x, y) coordinate. If f represents
functions like frequency, size, popularity, wealth, etc, then the (x, f(x)) pairs are ordered
in descending order with respect to f (x) and then are plotted. However if X is big and f(x)
follows power law then the resulting plot is not suitable for inspection by humans: its long
heavy tail makes almost invisible the first points, i.e. the big elements (let alone the small
elements). The commonly used approach for such cases is to make a plot in the log-log
scale. In such cases the points tend to form a line and it can be approximated with various
functions (Faloutsos et al., 1999). However such drawings are not convenient for interactive
visualization systems: the user cannot easily inspect and interact with each value.

In this paper we introduce a complementary approach that is based on a circular draw-
ing. We introduce the algorithm Concentric Spiral that yields a plot that is (a) more compact
than a plain plot, and (b) more informative in comparison to a log-log plot. It is like “coil-
ing” the big tail of the normal plot. To grasp the idea, Fig. 1 shows the populations of the
1000 biggest cities in descending order! in five forms: (a) normal plot, (b) log-log plot and
(c) Concentric Spiral, (d) tree-maps and (e) sunburst diagrams. Notice that tree-maps and
sunburst diagrams do not show each individual value (the small values are collapsed to con-
tinuous areas); in general they cannot scale to large numbers while showing each individual
element (something that is important for inspection and interaction purposes).

The drawings produced by Concentric Spiral can be considered as aesthetically pleas-
ing probably because (i) spiral is a very natural (frequently occurring) shape, and (ii) the
drawing does not leave unnecessary blank spaces. Note that the derived spiral-like layout, is
not the Archimedean spiral (where the distances between the turnings are constant), nor the
logarithmic spiral (where the distances between the turnings increase in geometric progres-
sion); instead the spiral follows the variations of the data, i.e. the width of each “circle” of
the spiral depends on the sizes of the objects that are placed in that circle. Another impor-
tant merit of the algorithm is that it has linear time complexity (if the values are not sorted
then we have to sort them first, i.e. O(n logn) in that case) and very limited main memory
requirements, making it appropriate for the placement of too many objects in the space.

We build upon the preliminary ideas for the visualization of the Linked Open Data Cloud
(Papadaki et al., 2018), and in this paper we refine and extend the algorithm, we introduce
several extensions and variations of it that differ on how they manage the empty internal
space, we analyze its properties, we show how to combine several such layouts for visual-
izing more than one functions, we propose extensions allowing the visualization of millions
of objects, we elaborate on its suitability for visualizing values that follow power-law, we
discuss efficiency and implementation, and finally we report feedback from users.

In a nutshell, the contribution of this paper is that it describes and analyzes a family
of layout algorithms for producing compact circular diagrams, with linear time complex-
ity (or nlogn if the values are not sorted), minimal main memory requirements, subject
to several variations. We prove that the algorithm yields drawings with no collision, and

IData retrieved by querying the SPARQL endpoint of Wikidata https://query.wikidata.org/ on May 22, 2019.

@ Springer

https://query.wikidata.org/

Journal of Intelligent Information Systems (2022) 58:535-559 537

a. Normal Plot b. Log-log Plot c. Concentric Spiral
30000000 100000000
hd 10000000 pdl A
25000000
: 1000000
20000000 & 115600
15000000 10000
1000
10000000
100
5000000 © _
0 1 #Values=1,000 _
0 200 400 600 800 1000 1200 1 10 100 1000 Max=26,495,000, Min=433,970

e. Sunburst

’lf/é

=
N

d. Tree-map

Fig.1 The populations of the 1000 biggest cities using (a) normal plot, (b) log-log plot, (c) Concentric Spiral,
(d) tree-map, (e) sunburst diagram

in case of power laws with exponent greater than one the occupied space is finite (even if
the number of elements is infinite). Moreover the paper provides examples of applications
from various domains. Overall, this layout can be exploited in a plethora of visualization
cases and frameworks either static or interactive. The rest of this paper is organized as fol-
lows. Section 2 discusses requirements and background, Section 3 discusses related work,
Section 4 presents the main algorithm, while Section 5 presents extensions, and Section 6
presents variations of the algorithm. Section 7 analyzes the space occupied by the produced
diagrams, Section 8 demonstrates applications, and finally Section 9 concludes the paper.

2 Requirements and background
2.1 Requirements

From our experience the last years in designing and building interactive information sys-
tems, that visualize values of various kinds as shapes in the 2D space, in environments that
allow the user to interact with these shapes, we identified the following desired features,
that we shall hereafter call basic requirements: (a) visualize values as distinct shapes, each
with an area analogous to the corresponding value, enabling in this way the visual com-
parison of the values, (b) place bigger values at the centre for making them evident as well
as their relative size, (c) collisions should never occur, (d) there should be no big empty
spaces, (e) visualize thousands (or even millions) of values very fast, (f) visualize values
with aspect ratio 1 for aiding readability and interaction (e.g. for building virtual 2D/3D
VR or AR worlds where each value corresponds to an area/volume with which the user can
further interact for getting more information or for performing a particular task).

These requirements (or desired features) are quite generic and relevant to various con-
texts including visualization frameworks (e.g. Demiralp et al. 2017), faceted search systems

@ Springer

538 Journal of Intelligent Information Systems (2022) 58:535-559

(Tzitzikas et al., 2017) (e.g. for visualizing the counters of the available filters), big data
exploration (Bikakis et al., 2019; Fekete et al., 2019), visualization of large answers (Baeza-
Yates, 1996; Anderson & Wischgoll, 2020) OLAP interfaces in general (Stolte et al., 2002;
Mansmann & Scholl, 2006), visualization of query workloads (Hu et al., 2008), data mining
(Madaan & Bhatia, 2020), data cleaning (Ding et al., 2019), dataset search (Chapman et al.,
2020), new initiatives related to digital libraries (Wiens et al., 2020), and others.

2.2 Background: power-laws

Since we are interested in not only small or medium-sized collections, it is worth consid-
ering the distribution that a large number of datasets follow.> The distributions of a wide
variety of physical, biological, and man-made phenomena approximately follow a power
law over a wide range of magnitudes (Clauset et al., 2009), e.g. word frequencies (Zipf’s
law), city populations, wealth, the web (Adamic & Huberman, 2000), as well as Linked
Data. As regards the latter, such distributions appear at schema level (as studied in Theoharis
et al. (2008)), but also on data level (i.e. the sizes of datasets in RDF triples Mountantonakis
and Tzitzikas 2016; Fernandez et al. 2017).

The most commonly used approach for visualizing a function that follows power-law, is
to use a plot in the log-log scale. Indeed, this is the approach that is followed by papers that
reveal and measure power-law distributions (e.g. see Gerlach and Altmann 2019) and such
log-log plots are offered by software packages that assist revealing such distributions (like
Bullmore and Plenz 2014). The reason is that in case of power-laws the points tend to form
a line and can be approximated with various functions, as it is well elaborated in Faloutsos
et al. (1999). Note that the identification of power laws, is also useful for graph drawing,
e.g. Hussain et al. (2014) at first divides the nodes of a graph into power and non-power
nodes and then it applies a force-directed placement algorithm that emphasizes the power
nodes which results in establishing local neighborhood clusters among power nodes.

Formally, a power-law (Clauset et al., 2009) is a function f : X € R>¢9 — Rx¢ of the
form: f(x) = ax~ P, where «, B are constants, with o, 8 € Rx¢. This means that f(x)
can be drawn as a line in the log-log scale with a slope equal to —f. Note that the above
definition excludes the value 8 = 0, since in this case f(x) would be equal to « for all values
of x, i.e. f would be constant. Loosely speaking, uniform distributions can be regarded
as a trivial case of power-law distributions. Intuitively, the value of f is a measure of the
skewness of the distribution, i.e. B = 0 implies no skewness. A well known example of
power-law is the Zipf’s law that states that given some corpus of natural language utterances,
the frequency of any word is inversely proportional to its rank in the frequency table; here
B=11ie f(x)=axl, although values greater than 1 (for 8) have been measured too.

3 Related work

In the context of Linked Data (see Mountantonakis and Tzitzikas 2019 for a survey) several
methods have been proposed for the visualization of RDF graphs (i.e. the graph that is com-
posed by a set of RDF triples) e.g. see Bikakis et al. (2015), as well as the surveys Bikakis
and Sellis (2016) and Dadzie and Pietriga (2017). Visualization is also very important for

2Roughly, we could consider that small-sized corresponds to a few dozens objects, medium-sized to a few
hundreds, and large-sized to thousands and more.

@ Springer

Journal of Intelligent Information Systems (2022) 58:535-559 539

data analysis (Andrienko et al., 2020) and there are various tools that offer visualizations
for big data analytics (Spyratos et al., 2009; Jugel et al., 2014; Vartak et al., 2015; Wang
etal., 2015; Godfrey et al., 2016). The more related visualizations to our work are described
below.

There are several methods for producing circular-like diagrams, see Draper et al. (2009)
for a survey of radial methods for information visualization. To start with, there are algo-
rithms for circular drawings of graphs, like Six and Tollis (2006), where the graph nodes are
placed in a circle and emphasis is given on reducing edge crossings, e.g. see Fig. 2(a). How-
ever in such algorithms the nodes are points, not shapes, therefore the notion of size is not
supported. There are also algorithms for radial layouts, mainly for trees (Yee et al., 2001),
e.g. see Fig. 2(b), which again do not support different sizes. From the survey (Ward, 2002),
the most related visualization seems to be (Ward & Lipchak, 2000), a method for explor-
ing multivariate data that may exhibit periodic behavior. However such drawings can host
values with small variation and the number of objects in a circle is fixed, e.g. see Fig. 2(c),
therefore they cannot host too many values, nor values that vary a lot. There are also spiral
displays enhanced with coding and interaction like that in Tominski and Schumann (2008),
however in that work every “concentric zone” has the same width, therefore one cannot
visualize too many values especially if they vary a lot, since in that case the produced dia-
gram would waste a lot of space unless colors are used to signify size (but in that case
the correspondence between area and value is lost). These methods seem to be appropriate
to identify periodic trends, not for visualizing values with big variations. For clustered bi-
partite graphs, Ito et al. (2010) proposes a multi-circular style, e.g. see Fig. 2(d), while for
maps of data-intensive software ecosystems (by considering also clustering purposes) Kon-
togiannopoulou et al. (2014) proposes layout algorithms based on concentric circles, e.g. see
Fig. 2(e). Such layouts usually contain only a few circles and there are rather big empty areas
(in comparison to the algorithms presented in this paper). There are pixel-oriented visualiza-
tion techniques for exploring large data bases, e.g. the snake-spiral technique (Keim, 1996),
however that technique does not respect the relative sizes (all values are visualized with the

(f) (9 (h) 0] (k)

Fig.2 Related radial, spiral and tree-map visualizations: (a) circular drawings of graphs (Six & Tollis, 2006),
(b) dynamic graphs with radial layout (Yee et al., 2001), (c) exploratory analysis of cyclic multivariate data
(Ward & Lipchak, 2000), (d) clustered bipartite graphs in multi-circular style (Ito et al., 2010), (e) visual maps
for data-intensive ecosystems (Kontogiannopoulou et al., 2014), (f) snake-spiral visualization (Keim, 1996),
(g) visualization of serial periodic data (Carlis & Konstan, 1998), (h) tree-maps (Johnson & Shneiderman,
1991), (i) spiral tree maps (Tu & Shen, 2007), (k) spiral visualization for time series (Weber et al., 2001)

@ Springer

540 Journal of Intelligent Information Systems (2022) 58:535-559

same size), e.g. see Fig. 2(f). The same is true for the visualization method for serial peri-
odic data (Carlis & Konstan, 1998): it does not respect the sizes, it adopts the Archimedean
spiral, e.g. see Fig. 2(g). With respect to tree-maps (Johnson & Shneiderman, 1991), e.g.
see Fig. 2(h), and squarified tree maps (Bruls et al., 2000), which are usually applied for
the visualization of hierarchical information structures, they do respect the sizes, they fill
entirely the available rectangular region, however it is difficult to achieve a small aspect
ratio (the ideal is one since regions with a small aspect ratio, i.e. fat objects, are easier to per-
ceive); and it is also difficult to preserve some sense of the ordering of the input data. Even
though, several improvements of tree-map representations have been proposed, like circle
packing (Wang et al., 2006), Squarified Treemaps (Bruls et al., 2000), Quantum Treemaps
(Bederson et al., 2002), treemaps with bounded aspect ratio (de Berg et al., 2014), Stable
Treemaps (Sondag et al., 2017) Bubble Treemaps (Gortler et al., 2017), Voronoi Treemaps
(Balzer et al., 2005) or GosperMap (Auber et al., 2013), see Fig. 3, a few limitations among
them are that (i) relative ordering may be lost (Wang et al., 2006; Bruls et al., 2000), (ii)
changes in the data set can cause dramatic discontinuous changes in the layouts (Bruls et al.,
2000) (iii) efficiency may be decreased (Sondag et al., 2017; Gortler et al., 2017) and (iv)
in some cases no guarantees on the aspect ratio is given (Balzer et al., 2005). For instance,
Bubble Treemaps (Gortler et al., 2017) (Fig. 3.0) achieve aspect ratio 1 (as it uses circles),
however it does not respect the absolute ordering and its time complexity is quadratic. There
are algorithms that produce spiral treemap layouts for visualizing changes of hierarchical
data, e.g. Tu and Shen (2007), however these algorithms seem applicable only on small
number of objects, e.g. see Fig. 2(i), and we have not seen them being applied on real data.
A spiral visualization for time series is proposed in Weber et al. (2001), however it is not
appropriate for values that variate a lot, e.g. see Fig. 2(k).

As regards, circle packing, the method described in Wang et al. (2006) groups values in
circles, while we use the sectors of a circle. That method seems to be suitable for cases of
hierarchical data sets where users are more interested in the relationships between them. In
contrary, our algorithms are also appropriate for sets of values that vary a lot (i.e. power-law)
emphasizing the biggest/most important values of a data set. We also preserve the ordering,
while that work does not. In general circle packing aims at minimizing the area, but the
resulting diagrams do not respect the rank of the objects, i.e. the exact rank of an object is
not at all obvious, nor which is its predecessor and successor in the rank. The corresponding
decision problems (i.e. whether a given set of circles can be packed in a particular bin) are
NP-hard, however various approximate algorithms exist. From that point of view, we could
say that our algorithm could be considered as an approximate algorithm for packing squares

Fig. 3 Tree-map visualizations: (1) Squarified Treemap (Bruls et al., 2000), (m) Stable Treemap (Sondag
et al., 2017), (n) Voronoi Treemap (Balzer et al., 2005), (o) Bubble-Treemap (Gortler et al., 2017), (p)
Gospermap (Auber et al., 2013)

@ Springer

Journal of Intelligent Information Systems (2022) 58:535-559 541

in a circle that fully preserves the ranking of the objects and has linear complexity (if the
values are sorted).

Overall, no radial, spiral or tree-map layout can tackle all requirements that we listed
earlier (in Section 2.1). In brief, the radial layouts do not show/respect sizes and their ability
to show many values is limited. The tree-map algorithms although they leverage all the
available space, it is difficult to achieve a good aspect ratio and at the same time respect
the ranking of the objects. The algorithm that we will present gives always aspect ratio 1
(square shapes), it fully respects the ranking of objects, and it tries not to waste space, while
providing an aesthetically pleasing (rounded) layout. From a circle-packing point of view,
we could say that our algorithm can be considered as an approximate algorithm for packing
squares in a circle that fully preserves the ranking of the objects and has linear complexity
(if the values are sorted).

4 The algorithm concentric spiral

Let f be the function that we want to visualize, i.e. a set of (x, f(x)) pairs where x ranges
a finite domain X, and let Y denote the range of the function, i.e. Y = { f(x;) | x; € X}
(we shall use Yy,sc to denote Y sorted in descending order). Each y € Y will be visualized
by a square shape, specifically with a square having side length ,/y, implying that its area
equals y. We consider square shapes, since for a given perimeter, square is the rectangular
shape with the maximum area.’

Based on the requirements listed in Section 2.1, we present a new 2D placement algo-
rithm that we call Concentric Spiral. The exact steps of the algorithm are shown in
Algorithm 1. The algorithm takes as input a series of numbers in descending order (i.e.
Y4esc) and a number (ringGap) that specifies the desired minimum gap between the rings.
The idea of the placement is the following. Each number of the input is represented as a
square shape. The shapes are placed in concentric rings. The radius of the first, smallest,
ring is the size of the biggest number. The placement of the subsequent shapes is done as
follows. We compute a chord that ensures no collisions based on the sizes of the current (to
be placed) and the previous shape. We set this to be equal to the side of the current shape
plus the size of the previous shape. Based on that chord we compute the corresponding
angle, and we place the new shape at the corresponding spot of the ring. This is illustrated
in Fig. 4. Suppose that A is the centre of the first shape, and B is the centre of the next shape
that we want to place. The figure illustrates why the sought angle is: 6 = 2 arcsin(ﬁ%‘i{is
for a given chord denoted by yx in the figure, and radius p. This is what, in Algorithm 1,
degrees Of Chor(x, p) computes.

The algorithm continues to place the rest of the shapes in that manner and just before
we reach 27, we start the next bigger ring whose radius is the radius of the previous ring
increased by the size of the biggest shape in the previous ring, plus a number accounting for
the extra empty space that we want to leave between the rings (this is the input ringGap of
the algorithm). This is illustrated in Fig. 5. This method ensures no collisions between the
shapes (as we shall prove). It is not hard to see that as the shapes get smaller, the concentric
rings become denser avoiding in this way unnecessary empty spaces. In addition, as the
rings become denser the empty spaces between the shapes decrease as well. Notice that
Algorithm 1 refers to the /en (length) of shapes. This corresponds to the side length of

3 Arbitrary shapes could be supported by considering their minimum bounding squares.

@ Springer

542 Journal of Intelligent Information Systems (2022) 58:535-559

the squares. Even if it corresponded to their area, this distinction would not be important
for power-laws: if area follows power-law with B = Bgreq, then the side also follows
power-law with B = Burea /2.

Algorithm 1 Concentric spiral layout algorithm.

Require: A list of K shapes (each characterized by a number len) ordered in descending
order wrt their size

Require: A constant ringGap for setting the desired gap the between the rings

Ensure: A cyclic layout of the input shapes, with no collisions and no unnecessary empty
spaces in the peripheral areas

l:i < 0;0 <0 >counter and angle set to zero

2: p=slency, =slenyqx =shapes[i].len >initial radius equal to the side of the biggest
shape

3:whilei < K do >>for each shape

4: x <—shapesli].len >chordis set equal to the size of shape to be drawn (for placing
the 1st shape above the x-axis)

5: if i > 0O then >if not the first
shape
6: X < X +slency, >>adding to the chord the size of the prev. shape

7 Oiper < degreesOfChord(y , p) >degrees corresponding to chord with size x in a
cycle with radius p

8 0 «— O0+0incr >>increasing the current angle

9: if 0 > 2 x 7 then >if true then a new ring should be started
10: p < ptsleny +ringGap >to avoid collisions with shapes of the previous ring
11: slenyqax < shapeslil.len >this is the max shape size in this new ring
12: 0 «—60—-2xm >for ranging 0..27
13: X < shapesli].len >the size of this shape
14: Oiner < degreesOfChord(y, p)
15: 0 < 0+ Oiner/2) >>Since this is a new ring

16: x <= CanvasCenterX+p * cos(f) >the x coord. of the point where the centre of the
new shape should be placed

17: y <« CanvasCenterY + p *sin() >the y coord. of the point where the centre of the
new shape should be placed

18: shapecy, < shapes|i + +] > gets the next shape

19: drawShapeAtCenter(x,y, shapec,,) >>draws the shape with center at x, y

20: slencyr < shapecy,.len

Time Complexity. It is straightforward that Algorithm 1 has O(n) time complexity (n
is the number of shapes). Experimental measurements are given in subsequent sections
(Section 8.1).

Proposition 1 Algorithm 1 (a) always terminates, and (b) it yields a drawing with no
collision.

Proof (a) holds since the algorithm just consumes the input by scanning it once. (b) holds
because of the way we compute chords (sum of the sides of the neighboring shapes) and
due to the distance of the successive rings. Specifically, the maximum distance between the
centres of two squares that intersect, is the half of the sum of their diameters (if bigger then

@ Springer

Journal of Intelligent Information Systems (2022) 58:535-559 543

B
side B o
B x = side A + side B P X
N o\
~ \
\
\
A

psin(6/2)= x/2 &
sin(0/2) = x / (2p) <
Side A 0/2 = arcsin (X / (2p)) &
0 = 2 arcsin (X / (2p))

Fig.4 The angle that determines the position of the next shape

it is impossible to intersect). Specifically, if the first square has side a and the second has
side b, then this distance is %(aﬁ +b2) = %. Since the centres of two successively
placed (intra-ring) squares by the algorithm is a 4 b (since it is the sum of the length of the
previous and to be placed shape), no collision is possible between squares of the same ring.
Since the distance between two successive rings is the maximum size of the shapes in the
previous ring, say a, plus the size of the first shape of the new ring, say b, it is guaranteed
that no collisions are possible between shapes of neighboring rings (since a+b > athy

2

4.1 Concentric spiral in small sets of values

To understand the behavior of the algorithm for small numbers of 7, Fig. 6 shows the visu-
alization of only 100 synthetically generated values where the first (maximum) value is the

p = side A
p'=p+ sideA+rG
=p+p+rG

Fig.5 From the first ring to the second ring

@ Springer

544 Journal of Intelligent Information Systems (2022) 58:535-559

(a) () (©) (d)

Fig. 6 (a): side reduction by 7%, (b): side reduction by 21%, (c): the side follows a power-law with g = 1,
(d): side reduction by a random percentage in range [2,30)%

number 100. In (a) the side of the squares is reduced by 7%, in (b) the side is reduced by
21%, in (c) the side follows a power-law with 8 = 1, in (d) the size is reduced by a random
percentage in the range [2,30). The key points are: (a) if the values decrease smoothly, we
get a circular drawing, and (b) the more skewed the distribution is, the more compact the
drawing becomes for being able to host more values.

4.2 Configuration parameters and their impact

There are some parameters that affect the way the layout looks like, and can be exploited
for getting a layout that facilitates others tasks that we may like to carry out.

The first is the scaling, i.e. the min and max size of the shapes in the visualization. This
choice depends on the resolution of the canvas, but also on other aspects. For instance, if we
want every shape to be clearly visible we may define as min size not only 1 pixel but more
pixels. Although any scaling of the range [Y,, Y1] to [ShapeSizemin, ShapeSizenqx] can
be considered as a valid scaling, if ShapeSize,;, is more than 1 pixel, then the illustration
of the relative sizes will not be very accurate. For instance, Fig. 7 shows three different
visualizations of the same dataset (the population of the 1000 biggest cities): the first uses
for [ShapeSizenmin, ShapeSizenqy] the interval [1, 40], the second the interval [5, 40], and
the last the interval [10, 40]. We will revisit the notion of scaling, for the case of very big
datasets, later in Section 7.1.

The second parameter is the parameter ring gap (ringGap). If we decide to reduce it
as the shapes become smaller, then that would harm the readability of the diagram and the
visibility of the outer rings. For this reason in the algorithms we keep it stable from the first
up to the last ring.

Axes Normal and log-log plots have an X-axis and a Y-axis: the values at the right side of
X allow us to see at a glance how many points are visualized, while the values in the upper
(resp. lower) parts of Y allow to see the biggest (resp. smallest value(s) of f(x)). The min-
imum enrichment of a Concentric Spiral-based drawing for conveying this information, is
to enrich it with three values: the numbers of values, the maximum value and the minimum
number. For example, the diagram in Fig. 1 contains:

#Values=1,000

Max=26,495,000, Min=433,970

meaning that we see 1,000 values (city populations), where the biggest is 26,495,000, and
the minimum is 433,970. For making evident at a glance how many values are visualized

@ Springer

Journal of Intelligent Information Systems (2022) 58:535-559 545

[1,40] [5,40] [10,40]

Fig.7 The effect of using different min shape sizes in the visualization of the 1000 biggest cities

(and how many would fall in each order of magnitude of the X-axis of a traditional log-
log plot), we enrich the diagram with concentric axes drawn in the following manner: after
placing 10" shapes in the drawing, we plot a cycle with thickness analogous to i. For exam-
ple, Fig. 8(a-b) shows the axis-enriched drawing of the 1000 biggest cities, as well as the
drawing of 23,113 values (frequency of words from Shakespeare). In one glance we can
understand that the first has 3 orders of magnitude, and the second 4. Analogously, we can
use concentric axes for showing the information related to the Y axis, specifically by using
concentric axes (with color different than the those for the X axis) at the radii where the
values y; change magnitude.

Labels As regards labels, various options are supported for what to show inside the square:
(i) the value y;, (ii) the value/label x;, (iii) the rank of y; in Yy, i.€. i, (iv) any combination
of them. The labels are enclosed in the squares, enabling in this way to inspect more clearly
the top-K (say 5-10) elements without overloading the diagram. Note that the labels do
not affect the size of the squares, since the font size of the labels adapts to the size of the
squares. For example Fig. 8(c-d) shows the frequency of the 26 letters in English, without
labels and with labels (x; and y;).

5 Extensions of concentric spiral
5.1 Pie chart-like extension

Apart from visualizing one set of values Y;.5, we may want to visualize m sets (for a small
m value), i.e. a family of sets Y7, ..., Y,,, each being a set of values ordered in descending
order. This can be achieved by extending Algorithm 1 so that instead of using all angles in
the range [0, 2], to take as input the desired angle range. Then the range [0, 27r] can be
partitioned into m angle ranges, one for each of the m sets. We can use then Concentric
Spiral for placing the shapes of each set at the corresponding slice defined by the angle
interval [6,,in, Omax]: We just have to use 6,,;, to determine where to place the first shape and
Omax to determine when to change ring (the exact steps of the extended algorithm are given
in Section 6.5). For example, Fig. 9(a) shows the visualization of 3 sets each having 2,000

@ Springer

546 Journal of Intelligent Information Systems (2022) 58:535-559

"
s

1% LA

R
oo%

& E
_
= [
O m L= :
c 5]
] » B [a]
o] T

Egmmmmw) g L E
(a) (b) (c) (d)

Fig. 8 (a): visible axes for the 1000 biggest cities, (b): a dataset comprising 23,113 values, (c and d): the
frequencies of Latin characters

values, (b) shows 9 sets each having 200 values, and (c) shows 9 sets each having unequal
number of values (from 10 to 2,000). It is not hard to see that we can use this angle-restricted
extension not with the entire range [0, 277] but with an angle range based on our preference.
For example we can use the angle range [0, 7] for getting a visualization that resembles the
seats of a parliament as illustrated in Fig. 9(bottom) that shows 8 slices in [0, 7].

Overall, the pie chart-like extension of Concentric Spiral can be useful for (a) visually
inspecting/comparing more than one datasets, and (b) for clustering the values of a dataset
according to one criterion.

5.2 On visualizing more than one function

So far we have focused on how to visualize one function f, specifically its value set Y,
ordered in descending order, i.e. Y4.5c. Now suppose that we have another function g over

(a) 3 sets each having 2,000 values (b) 9 sets each having 200 values (c) 9 sets the smallest has 10 values and the
biggest has 2,000 values

Fig.9 Pie-chart like extension of Concentric Spiral

@ Springer

Journal of Intelligent Information Systems (2022) 58:535-559 547

X,ie. g : X — Z. Here we describe how we can visualize both f(x) and g(x). If the
range of g is small (i.e. |Z| is small), say 2 < |Z| < 5, then apart from the pie char-
like extension described in Section 5.1, we can extend the previous visualization and make
clear the g(x) by drawing the shape corresponding to f(x) with a different shape type, e.g.
square, triangle, oval, etc., or a different color. Both of them (i.e. shapes and colors) can be
combined for visualizing three functions in total: f by the size of the shape, g by the shape
type, and & by the color. As we shall see in Section 8, we can also employ 3D and use the
third dimension for visualizing an additional function, i.e. 4 functions in total. In that case,
since the volume (and not the area) of the shape should correspond to f(x), if we employ
cubes then the edge length should be set to </ f (x) so that the volume of the cube is equal to
f (x). Overall, by considering also the slice-based extensions (of Section 5.1), we can reach
5 functions in total: one “dominant” i.e. the one that follows the power-law distribution, and
4 whose range is small.

6 Variations of concentric spiral

Below we introduce three variations of the core algorithm, all having linear time complexity,
that can reduce the internal free space at the center of the drawing, if that is required. Specif-
ically Section 6.1 presents a ring variation, Section 6.2 presents a theater-like variation, and
Section 6.3 presents a variation that mixes the above two. Then Section 6.4 compares these
variations, and finally Section 6.5 presents the general algorithm that can produce any of
these variations.

6.1 Concentric spiralging

The basic idea is the following: Instead of increasing the radius after the completion of
the first circle, based on the largest shape placed in that circle (at line 10 of Algorithm 1),
we can increase the radius just by the ringGap for getting a denser layout. However we
have to check whether that position is free for avoiding collisions with the shapes that have
already been placed. Note that this is not required in Concentric Spiral because the radius is
increased based on the largest shape placed in that circle. We can check whether a position
is free before placing a shape (at line 28 of Algorithm 1) by checking the colors of the
canvas pixels. Since shapes are placed in descending order of size, it is enough to check the
color only of the four corners of the candidate position for the placement. This algorithm
produces layouts with less empty space between the core of big shapes and the periphery
of small shapes. For the case of 5,000 shapes, Fig. 10(a) shows the layout produced by the
Concentric Spiral, while Fig. 10(b) shows the layout produced by the Concentric Spiralg;g.

6.2 Concentric spiraltheater

If we would like to leverage the internal space between the big shapes then we could use
a variant of Concentric Spiral that we call Concentric Spiral7jeqrer: after the completion
of the ring (that contains the biggest shapes), instead of increasing the radius (at line 10 of
Algorithm 1), as it is done in Concentric Spiral and Concentric Spiralg;,g, we decrease it by
the width of the ringGap. In this way the biggest datasets form the big circle and the small
ones then fill the internal space. This algorithm derives a more dense drawing resembling an
ancient Greek theater, as shown in Fig. 10(c). However it is not guaranteed that the internal

@ Springer

548 Journal of Intelligent Information Systems (2022) 58:535-559

(a) (o) ©

Fig. 10 (a): Concentric Spiral, (b): Concentric Spiralg;ng (c): Concentric Spiralrjcarer

space will be enough for hosting all small shapes, an issue that is tackled by the algorithm
presented next, in Section 6.3.

6.3 Mixing concentric spiralging and concentric spiraltheater

Concentric Spiralg;,g and Concentric Spiralrpeqrer can be combined: we can start as in
Concentric Spiralrpeqrer and if the internal space is completely filled before placing all
shapes, we can continue by placing the remaining shapes in the peripheral area, as in the
Concentric Spiralg;,g. This is shown in the diagrams of the third column of Fig. 11 that
visualizes 10,000 values. Alternatively one could use the Concentric Spiralzjeqrer With a
bigger initial radius but that would require estimating which radius is adequate. Instead, by
mixing the two algorithms, there is no need for any estimation; a single pass is enough for
drawing all shapes.

6.4 Concentric spiral vs concentric spiralging Vs concentric spiralrheater

To better understand how the skewness of the distribution of data affects the produced lay-
outs, Fig. 11 shows Concentric Spiral, Concentric Spiralg;,, and Concentric Spiralrjearer
over three versions of a dataset with 10,000 values. Each version has the same maximum
value, however each version has different reduction rate, specifically in the Istrow 8 = 1/2,
in the 2nd 8 = 1, and in the third row 8 = 2. The same scale has been used for all 12 dia-
grams. We observe that the diagrams of Concentric Spiralg;,g and Concentric Spiralrjearer
occupy less space than those of Concentric Spiral, however Concentric Spiral better reveals
the relative sizes of the middle-sized elements.

6.5 The generalized algorithm
The generalized algorithm that supports all previously described extensions and variations
is given in Algorithm 2. Apart from the list of values in decreasing order, it takes as input

a parameter mode (ranging ExpandSpiral, ExpandRing, and Shrink) that determines
which layout (either Concentric Spiral, Concentric Spiralg;,g, or Concentric Spiralzjearer

@ Springer

Journal of Intelligent Information Systems (2022) 58:535-559 549

Fig. 11 (a): Concentric Spiral, (b): Concentric Spiralg;ng (c): Concentric Spiralrjeqrer over 10,000 values

respectively) should be produced. In addition it takes as input an angle range [6,,in, Omax]
for producing the pie chart-based extension. Note however that the check at line 27 of the
algorithm is redundant for the Concentric Spiral (since the condition will always be true).
The small size of the algorithm facilitates its implementation in the existing visualization
frameworks.

7 Analyzing the occupied space

Let’s further analyze the space occupied by the diagrams produced by Concentric Spiral.
The area of the ring defined by the radii R, and Ry (where Ry, > Ry)is Ag, r, = TL’(R% —
Rlz). Since the values are decreasing, also R» — Ry and consequently Ag, ,, are decreasing
too. The more values we have to visualize, the bigger the radius becomes, and the more
the occupation of space tends to be collinear, as shown in Fig. 12, occupying the minimum
space. Therefore the percentage of empty/filled area is reducing.

@ Springer

550 Journal of Intelligent Information Systems (2022) 58:535-559

Algorithm 2 Concentric spiral layout algorithm with variations.

Require: A list of K shapes (each characterized by a number /en) ordered in descending
order wrt their size

Require: An angle range defined by an interval [6,,i,,, Opmax -

Require: A mode from the following list: ExpandSpiral, ExpandRing, Shrink.

Ensure: A cyclic layout, within a circular sector [0,,i,, Onax], With no collisions and no
unnecessary empty spaces in the peripheral areas

1:i < 0;0 < Opin >>Counter and angle set to zero
2: p=slencyr =slenyay = shapeslil.len >initial radius equal to the side of the biggest
shape
3: whilei < K do >for each shape
4: x<shapesli].len >>chord set equal to the size of shape to be drawn (for being above
the x-axis)
5: ifi > O then >if not the first shape
6: X < X +Sslencyr >>adding to the chord the size of the prev. shape
7. Oipner < degreesOfChord(x, p) >degrees of chord with size x
8 0 <« 0+ 0
9: if6 > 6,,,, then >if true then a new ring should be started
10: if Mode = ExpandSpiral then
11: p < pH(slen,qx +shapes|il.len)//(2)+ringGap > to avoid collisions with
shapes of the previous ring
12: else if Mode = ExpandRing then
13: p<p+ringGap >does not guarantee avoidance of collisions with shapes of
the previous ring
14: else if Mode = Shrink then
15: p < p—ringGap > for filling the free space left by the first big shapes
16: if p<slen.,, then >We are in shrink mode and we have reached the center of
all circles
17: Mode = ExpandSpiral > We change mode from Shrink to Expand
18: p<—shapes[0].len >the one at the beginning of the drawing, i.e. the size of the
biggest shape
19: slenyax < shapesli].len >this is the max shape size in this new ring
20: 0 < Opin >for ranging the angle interval
21: X < shapeslil.len >the size of this shape
22: Oiner < degreesOfChord(x, p)
23: 0«0+ (9i11cr/2)

24: x < CanvasCenterX + p * cos(0)

25: y < CanvasCenterY + p * sin(0)

26: shapecy, < shapes[i + +] >>gets the next shape

27 ifisEmpty(x,y, slene,,) then >The space is free (required only from RING and
SHRINK)

28: drawShapeAtCenter(x,y, shapec,,) >>draws the shape with center at x, y
29: slenc,, < shapecyy.len

30: else >The space is not free
31: i—— >For trying finding free space in the next iteration

Let’s now focus on data that follows power-law. Let Filled Area, for short FA be the
area occupied by the shapes only. Let (Y7, ..., Y,) be the n values to be visualized. If this

@ Springer

Journal of Intelligent Information Systems (2022) 58:535-559 551

o LI KB

Fig. 12 Occupied space as the number of values increases

series follows power-law then we can write ¥; = Y1 /i? (using the notations of Section 2.2:
fa = o:/il3 f(1) =« = Yy). The total areaofshaped (FA)isgivenby FA = Z;’:l f—g =
Yiyr, ﬁ Note that the p-series) ;2 - A, converges for all p > 1 and diverges for all
p <1 (note that if p > 1 then the sum of the p-series is {(p), i.e., the Riemann zeta
function evaluated at p). The key point is that for 8 > 1 the area of the visualized shapes is
bounded, independently of how big n is (even if n was infinite).

Let’s now estimate the empty area, denoted by E A, i.e. the area that falls within the outer
circle of the diagram but is not occupied by any shape of the diagram.

Proposition 2 The area that falls within the outer circle of the diagram but is not occupied
by any shape of the diagram, is less than 3 times the filled area by the shapes (F A).

Proof Let Z be the number of the concentric rings of the diagram (obviously Z < n). Let
E A; be the empty space within ring i. Since certainly at least one shape is placed in each
ring, e.g. in the first ring it will occupy one of the four quadrants, it holds that EA; < 3FA;,
i.e. EA; cannot be 3 times more than the filled part of ring i. Therefore, EA < 3FA. O

Obviously this bound is very pessimistic. However the point is that if FA is bounded,
then the same holds for E A. To summarize we have seen that if Y follows power-law and
B > 1 then the entire diagram is finitely bounded in normal scale (not log-log scale) even
if the number of #n is infinite. In the proof of Proposition 1 (in Section 4) we have seen
that % is the minimum chord that guarantees no collisions. Concentric Spiral uses a +
b, i.e. a larger distance. The reason is that with a + b the diagram looks better (to the
authors), however the theoretically minimum chord can be used as well. As regards the
three variations of the algorithm, Concentric Spiralrjeqrer With the minimum chord is the
variation of the algorithm that has the minimal empty space between the shapes.

7.1 Very large datasets

In the previous drawings, we have used minimum size 1 (i.e. 1 pixel) for making each point
visible. However if the dataset is too big, then the canvas could become extremely big.
Moreover, this causes problems with the bounding of the drawing: the min size 1 does not
allow us to achieve a drawing of bounded size, since even if the values are extremely small
they always occupy at least one pixel in the drawing space.

If we want to tackle this problem we can use 0 as min size, i.e. O pixels. However,
whenever the algorithm reaches a point whose shape should have 0 as rounded integer value,
it stops drawing points, and enters into a different mode. Specifically let (Y7, ..., ;) be the
values to be visualized and let Y} (1 < k < n) be the first value whose re-scaled rounding is
0. In that case the values (Y, ..., Y,) are visualized differently: a filled ring is added with
areaequalto S =), ¥; (after normalizing S in consistency with the normalization of the
max value Y7). This approach allows producing a more compact drawing, compliant with
the theoretical bounds, that also preserves the relative sizes of all the visualized values.

@ Springer

552 Journal of Intelligent Information Systems (2022) 58:535-559

increase search o1
canvas size and ZoOm | Bandung

5860000 | Pingdingsha
IJ.\. 8000

0 | [1700000
apore; Sydney
8926 4840600

visualize a subset
specified by a rank interval

Fig. 13 107 values with filled rings for the very small values, and interactive options

The size of the ring is computed as follows: Let Ry be the radius when Yj; was about
to be drawn. The algorithm in that case stops drawing shapes and instead fills a ring start-
ing from the radius Ry = Ry + slenyqx + ringGap up to the radius needed for having
area equal to (the normalized) S. The outer radius R, of that ring is computed as follows

n(R)% - R,%) =S R, =/ S%”R’% = 1/R,% + % To achieve the above, Algorithm 2 just
needs one line at the beginning (line 4) that checks if x = 0, i.e. if the integer rounded size
is O pixels (that is less than 0.5 pixels), and if yes, it calls a method with the current index i
and the radius from which the ring should start, i.e. the exact line is

“if (x = 0) then fillRing(i, p + slenyqx + ringGap); break”. An excerpt from the visu-
alization of 10 millions values in this way is shown in Fig. 13 (it is a synthetic dataset with
max value 4000, min value 10, 20% percentage reduction between two consecutive values,
and scaling interval [0, 50]). The axes allow to understand that we have 7 orders of magni-
tude (the axes in the filled ring are distributed uniformly in [Ry, R,] for aiding readability).
Although our algorithm can show more small objects in comparison to tree-map and sun-
burst (as we have seen in Fig. 1), if rings are adopted, then zoom-in on the rings cannot
offer more information. To “analyze” a ring to individual shapes we can either (a) increase
the size of the canvas, (b) click on the ring the visualize the subset of objects that belong
to that ring (and that could be done recursively as many times as the user wishes to), or (c)
enable the visualization of any subset of the values of the ring specified by their rank (e.g.
all values with rank i up to rank j). As regards option (a), i.e. the usage of a very large
canvas that does not require using any ring, the user can still locate the desired object(s)
through search; this functionality (i.e. search and locate) is supported by our implemen-
tations that are described in Section 8.3, i.e. by the produced drawing in SVG, as well as
by the interactive 3D system. All these are aligned with Cota et al. (2017) that stresses
that for visualizing massive data it is important to support selection, zooming, and filtering,
and exploiting the rotation capabilities of 3D (examples of 3D are given in in Section 8.3).
Finally, we have to note that if a very large canvas is selected to be used, even though
our algorithm that produces the coordinates of the objects will run fast, the visualization
of the produced raster image could require a lot of memory to load or transfer; such cases
can be handled by loading the data/image to a GIS and we have already tested that sce-
nario using GeoServer,* moreover one can exploit methods for visualizing images of very
big resolution like those derived by modern scanning approaches like the one described
in Zabulis et al. (2021).

“http://geoserver.org/

@ Springer

http://geoserver.org/

Journal of Intelligent Information Systems (2022) 58:535-559 553

Normal Plot Log-log Plot Concentric Spiral
25000 100000

%o =0
20000 3 10000 % O L
15000 1000 : -'.
4 \ :
10000 100
5000 10 \
0 ; \

1 T T T - #Va[ues:Zé 13 .
0 5000 10000 15000 20000 25000 1 10 100 1000 10000 100000 Max=19,106, Min=1

>-®

Fig. 14 The frequency of 23,113 words in Shakespeare: (a) normal, (b) log-log plot, (c) Concentric Spiral
8 Application

Concentric Spiral and its variations can be applied in a plethora of cases. We have focused
mainly on the layout, not on other aspects, i.e. on colors, interactivity, etc, since the latter
depend on the application context. Section 8.1 discusses efficiency, Section 8.2 provides
various indicative cases, and Section 8.3 describes current implementations. Finally, Section
8.4 presents some preliminary feedback from users.

8.1 Efficiency

We have implemented the algorithms using Java 1.8.0_51. In our experiments we measure
the time required by the layout algorithm to fill a N x N java array of pixels each having
a color (we did not count the time of the windowing system, e.g. for creating the JFrame).
With a laptop with rather low computational power (Core i5-3320M CPU, 4 GB RAM, run-
ning Windows 10), Concentric Spiral needs only 30-40 milliseconds to compute all pixels
of a 1000x1000 canvas for 100,000 (filled with blue) shapes. The other two variations are
more expensive since they have to check for free spaces, therefore the elapsed time is more.
For all the diagrams shown in this paper, these two variations were never more than 3 times
slower than Concentric Spiral. In general, all visualizations shown in this paper (except
from the one with the millions of shapes) require less than 120 milliseconds to be computed.
For datasets with millions of objects, roughly it takes 15 secs per million of objects (where
each object is visualized). If however the scaling interval includes 0, then with the method
presented in Section 7.1 the visualization of 10 million objects takes 17 secs.

8.2 Examples
Here we provide various examples.

Word Frequencies. Figure 14 shows the frequency of 23,113 words in Shakespeare? in the
three plots (normal, log-log and Concentric Spiral).

Cities Population. Figure 15 shows the populations of the 1000 biggest cities in 3D, where
each color represents a different continent, and the volume of each cube corresponds to the
population of the corresponding city. The figure includes visualization with the Concentric

SFrom https://data.world/tronovan/shakespeare- word-frequencies on May 27, 2019.

@ Springer

https://data.world/tronovan/shakespeare-word-frequencies

554 Journal of Intelligent Information Systems (2022) 58:535-559

® Asia
Africa

® Europe

® North America
South America
Oceania

Jia

i’
Fig. 15 The 1000 biggest cities clustered by continent

Spiral layout, and with the pie chart-like extension for clustering (using the same angle
range for each slice, although any range can be used). Shots from different angles in 3D
visualization system are also shown, as well as one case (at the bottom right of Fig. 15)
where instead of cubes we use cuboids, where all cubes have the same width (in this case
the width of the smallest cube) for comparing the values more easily based on only their
heights.

Coronavirus (COVID-19). Figure 16 shows in 3D all covid-19 cases, recovered cases and
deaths on May 8, 2020: the bottom cubes represent the total cases detected with covid-19,
the intermediate correspond to the recovered cases while the upmost to the total deaths. The
above (and some more examples) are available at the webpage https://rb.gy/d2impg.

8.3 Implementations

We have already two implementations of the algorithms in two different settings. The first
is a stand-alone application (that we call “CoSpi”) that allows the user to load a csv file and
interactively select the desired version of the algorithms and parameter values enabling to
derive the desired drawing(s) and save them as images or SVG files, as shown in Fig. 17.
The first version of this application has just been released publicly (available at https://rb.
gy/oogsld). The second implementation, is within a Web-based visualization system that
exploits the algorithm for producing interactive 3D visualizations (that system was used for
producing Figs. 15 and 16).

8.4 Feedback from users

In order to understand whether users would like, or prefer, this kind of visualization, we
conducted a small-scale evaluation mainly with students. Since not all users are familiar

@ Springer

https://rb.gy/d2impg
https://rb.gy/oogsld
https://rb.gy/oogsld

Journal of Intelligent Information Systems (2022) 58:535-559 555

SET OPTIONS

Shanghai e :u)))
23390000

s = e Bojy
Cairo : s . 21710000
19500000 ;5575 ™™ : - B 3

Logos
213524000

21 324000| oo

— g
JOTB0 Tare
s —
oo

Fig. 17 Examples of visualizations using CoSpi (over a dataset with city populations)

@ Springer

556 Journal of Intelligent Information Systems (2022) 58:535-559

with systems that produce plots and visualizations, and for excluding the interactive func-
tionalities (that depend on the particular system), we selected two easy to grasp datasets,
specifically the populations of the 1000 largest cities, and the populations of all countries.
For each dataset we produced one pdf that contained visualizations of: (1) normal plot, (2)
log-plot, (3) tree-map, (4) sunburst, and (5) CoSpi. Among the various options that are pos-
sible with these types of diagrams (relating to sizes, labels, axes, etc), we selected only two
indicative ones for each kind. Then we asked the participants to inspect these visualizations
and then to express their preference. No particular task was given to the users, because we
did not want to include interactivity, since there is no single system that supports all these
visualizations. We also have to mention, that the resolution of the pdf was low because it was
produced by screenshots, so the users could not fully read all labels and zoom-in, however,
they could get clearly the general idea. We invited by email various persons to participate in
the evaluation voluntarily. No training material was given to them, and the participation to
this evaluation was optional (invitation by email). Eventually, 28 persons participated (from
Dec 10, 2020 to Dec 24, 2020).

In numbers, the participants were 32.1% female and 67.9% male, with ages ranging from
19 to 55 years; Fig. 18 shows the histograms of the ages of the participants. As regards
occupation and skills, 71.4% were computer science students (undergraduate and graduate)
and 28.6% of them professionals (mainly engineers). The task description is shown next:

“At first download the zip file X that contains two excel sheets: one with the populations
of the 235 countries and another one with the populations of the 1000 largest cities. Now sup-
pose that you would like to prepare a presentation of these two datasets. Open the two pdf files
(that you can find in the zip file) that contain 5 different types of visualization of these two
datasets. Please have a look and then fill the small questionnaire that you can find below.
Please ignore the low resolution, i.e. do not judge the diagrams based on their resolution”.

The questionnaire comprised questions of the form: “How would you rate the X Plots:
Very Useful, Useful, Little Useful, Not Useful”. The results are visualized in Fig. 18. By
inspecting the results it is clear that users did not like much the classical normal or log plots
for the task at hand, instead they preferred tree-map, sunburst and CoSpi. Between the last
three, no clear conclusion can be drawn, given the low resolution and the non-interactive
nature of the task. They keypoint is that users considered CoSpi as an acceptable method,
since it achieved preferences quite close with the other well-established methods.

User Preferences
Histogram ofth Ages f the prticipants 15

8 |
6

4 II
0 i

- 1. Normal Plots 2. Log Plots 3. Tree-map 4. Sunburst 5. Cospi

1183 o 0y W VeryUseful m Useful m LittleUseful Not Usefull

Fig. 18 Feedback by the users: ages and preferences of the participants

@ Springer

Journal of Intelligent Information Systems (2022) 58:535-559 557

9 Concluding remarks

The visualization of medium and large number of values that exhibit big variations is a
challenging task. We presented a novel family of algorithms that places objects in the 2D
space (in a spiral-like layout), and satisfies a set of requirements that are not supported by
the existing methods. One merit of the core algorithm (Concentric Spiral) is that it derives
layouts that are suitable for collections of values whose sizes follow power-law because
it makes evident the bigger values and it does not leave empty spaces in the peripheral
area which is occupied by the majority of the values which are small, thus the produced
drawings are both informative and compact, and the aspect ratio of all visualized shapes
is 1. The algorithm has linear time complexity (if the values are sorted) and very limited
main memory requirements, making it appropriate for very big collections of values (a few
seconds are enough for producing the layout of millions of objects). For power laws with
an exponent greater than one, it is proved that the occupied space is finite, even if the
number of elements is infinite, and we have seen that the enrichment of Concentric Spiral
with filled areas is compliant with the theoretical bounds and preserves the relative sizes of
all the visualized values. Apart from the core algorithm, we investigated variations of the
algorithm that can further reduce the empty space between the big values (if that is required),
as well as extensions for showing and comparing more than one sets of values. We proved
the feasibility and demonstrated the efficiency of the algorithm by providing two different
implementations in different contexts. Finally we showcased applications of the algorithms
in various datasets.® The proposed method can enrich existing visualization frameworks and
interactive visualizations in general. In future it is worth investigating automatic methods
for tuning the parameters of the algorithms, based on the characteristics of the dataset and
the available size of the canvas, for suggesting configurations to the user and plugging the
visualization to an engine for analytic queries for investigating various kinds of interactivity.

Data Availability Statement The datasets visualized during the current study are available in the webpage
of the system http://www.ics.forth.gr/~tzitzik/demos/cospi, specifically the file with the windows executable
client contains a folder with the dataset with the city populations, country populations, city populations and
continents, and Shakespeare word frequencies.

The covid-19 related datasets that are visualized by the 3D system that is given in the webpage of the
system http://www.ics.forth.gr/~tzitzik/demos/cospi are dynamically fetched from https://pomber.github.io/
covid19/timeseries.json.

The various synthetically produced datasets generated and visualized during the current study are not pub-
licly available since they do not have any distinctive characteristic; they were used for measuring efficiency
(the latter can be measured by any dataset of that size), but are available from the corresponding author on
reasonable request.

The source code of the client is available at https://github.com/YannisTzitzikas/cospiral.

References

Adamic, L. A., & Huberman, B. A. (2000). Power-law distribution of the world wide web. Science,
287(5461), 2115-2115.

Anderson, J. D., & Wischgoll, T. (2020). Visualization of search results of large document sets. Electronic
Imaging, 2020(1), 388-1.

SMore examples at: https://rb.gy/oogsld

@ Springer

http://www.ics.forth.gr/~tzitzik/demos/cospi
http://www.ics.forth.gr/~tzitzik/demos/cospi
https://pomber.github.io/covid19/timeseries.json
https://pomber.github.io/covid19/timeseries.json
https://github.com/YannisTzitzikas/cospiral
https://rb.gy/oogsld

558 Journal of Intelligent Information Systems (2022) 58:535-559

Andrienko, G., Andrienko, N., Drucker, S., Fekete, J.-D., Fisher, D., Idreos, S., Kraska, T., Li, G., Ma, K.-
L., Mackinlay, J. D., Oulasvirta, A., Schreck, T., Schmann, H., Stonebraker, M., Auber, D., Bikakis, N.,
Chrysanthis, P. K., Papastefanatos, G., & Sharaf, M. (2020). Big data visualization and analytics: Future
research challenges and emerging applications. In Proceedings of BigVis 2020.

Auber, D., Huet, C., Lambert, A., Renoust, B., Sallaberry, A., & Saulnier, A. (2013). Gospermap: Using a
gosper curve for laying out hierarchical data. IEEE transactions on visualization and computer graphics,
19(11), 1820-1832.

Baeza-Yates, R. (1996). Visualization of large answers in text databases. In Proceedings of the workshop on
advanced visual interfaces (pp. 101-107).

Balzer, M., Deussen, O., & Lewerentz, C. (2005). Voronoi treemaps for the visualization of software metrics.
In Proceedings of the 2005 ACM symposium on software visualization (pp. 165-172).

Bederson, B. B., Shneiderman, B., & Wattenberg, M. (2002). Ordered and quantum treemaps: Making
effective use of 2d space to display hierarchies. AcM Transactions on Graphics (TOG), 21(4), 833-854.

Bikakis, N., Liagouris, J., Kromida, M., Papastefanatos, G., & Sellis, T. (2015). Towards scalable visual
exploration of very large rdf graphs. In International semantic web conference (pp. 9—13). Springer.

Bikakis, N., Papastefanatos, G., & Papaemmanouil, O. (2019). Big data exploration, visualization and
analytics. 1043 NX AMSTERDAM, NETHERLANDS: Elsevier RADARWEG 29.

Bikakis, N., & Sellis, T. (2016). Exploration and visualization in the web of big linked data: a survey of the
state of the art. arXiv:1601.08059.

Bruls, M., Huizing, K., & Van Wijk, J.J. (2000). Squarified treemaps. In Data visualization 2000 (pp. 33-42).
Springer.

Bullmore, E., & Plenz, D. (2014). Powerlaw: a python package for analysis of heavy-tailed distributions.
PloS one, 9(1), e85777.

Carlis, J. V., & Konstan, J. A. (1998). Interactive visualization of serial periodic data. In Procs of the 11th
annual ACM symposium on user interface software and technology (pp. 29-38).

Chapman, A., Simperl, E., Koesten, L., Konstantinidis, G., Ibafiez, L.-D., Kacprzak, E., & Groth, P. (2020).
Dataset search: a survey. The VLDB Journal, 29(1), 251-272.

Clauset, A., Shalizi, C. R., & Newman, M.E.J. (2009). Power-law distributions in empirical data. SIAM
Review, 51(4), 661-703.

Cota, M. P,, Rodriguez, M. D., Gonzélez-Castro, M. R., & Gongalves, R M.M. (2017). Massive data visual-
ization analysis analysis of current visualization techniques and main challenges for the future. In 2077
12Th iberian conference on information systems and technologies (CISTI) (pp. 1-6). IEEE.

Dadzie, A.-S., & Pietriga, E. (2017). Visualisation of linked data—reprise. Semantic Web, 8(1), 1-21.

de Berg, M., Speckmann, B., & van der Weele, V. (2014). Treemaps with bounded aspect ratio. Computa-
tional Geometry, 47(6), 683-693.

Demiralp, C., Haas, P. J., Parthasarathy, S., & Pedapati, T. (2017). Foresight: Recommending visual insights.
Proceedings of the VLDB Endowment, 10(12), 1937-1940.

Ding, X., Wang, H., Su, J., Li, Z., Li, J., & Gao, H. (2019). Cleanits: a data cleaning system for industrial
time series. Proceedings of the VLDB Endowment, 12(12), 1786-1789.

Draper, G. M., Livnat, Y., & Riesenfeld, R.F. (2009). A survey of radial methods for information
visualization. [EEE transactions on visualization and computer graphics, 15(5), 759-776.

Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999). On power-law relationships of the internet topology. In
ACM SIGCOMM computer communication review, (Vol. 29 pp. 251-262). ACM.

Fekete, J.-D., Fisher, D., Nandi, A., & Sedlmair, M. (2019). Progressive data analysis and visualization
(dagstuhl seminar 18411) Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Fernandez, J. D., Martinez-Prieto, M. A., Redondo, P. D., & Gutierrez, C. (2017). Characterising rdf data
sets. Journal of Information Science.

Gerlach, M., & Altmann, E. G. (2019). Testing statistical laws in complex systems. Physical Review Letters,
122(16), 168301.

Godfrey, P., Gryz, J., & Lasek, P. (2016). Interactive visualization of large data sets. IEEE transactions on
knowledge and data engineering, 28(8), 2142-2157.

Gortler, J., Schulz, C., Weiskopf, D., & Deussen, O. (2017). Bubble treemaps for uncertainty visualization.
IEEE transactions on visualization and computer graphics, 24(1), 719-728.

Hu, L., Ross, K. A, Chang, Y.-C., Lang, C. A., & Zhang, D. (2008). Queryscope: visualizing queries for
repeatable database tuning. Proceedings of the VLDB Endowment, 1(2), 1488—1491.

Hussain, A., Latif, K., Rextin, A. T., Hayat, A., & Alam, M. (2014). Scalable visualization of semantic nets
using power-law graphs. Applied Mathematics & Information Sciences, 8(1), 355.

Ito, T., Misue, K., & Tanaka, J. (2010). Drawing clustered bipartite graphs in multi-circular style. In
Information visualisation (IV), 2010 14th international conference (pp. 23-28). IEEE.

@ Springer

http://arxiv.org/abs/1601.08059

Journal of Intelligent Information Systems (2022) 58:535-559 559

Johnson, B., & Shneiderman, B. (1991). Tree-maps: a space-filling approach to the visualization of hierar-
chical information structures. In Procs of the 2nd conference on visualization’91 (pp. 284-291). IEEE
Computer Society Press.

Jugel, U., Jerzak, Z., Hackenbroich, G., & Markl, V. (2014). M4: a visualization-oriented time series data
aggregation. Proceedings of the VLDB Endowment, 7(10), 797-808.

Keim, D. A. (1996). Pixel-oriented visualization techniques for exploring very large data bases. Journal of
Computational and Graphical Statistics, 5(1), 58-77.

Kontogiannopoulou, E., Manousis, P., & Vassiliadis, P. (2014). Visual maps for data-intensive ecosystems.
In International conference on conceptual modeling (pp. 385-392). Springer.

Madaan, R., & Bhatia, K. K. (2020). Prevalence of visualization techniques in data mining. In Data
visualization and knowledge engineering (pp. 273-298). Springer.

Mansmann, S., & Scholl, M. H. (2006). Extending visual olap for handling irregular dimensional hierarchies.
In International conference on data warehousing and knowledge discovery (pp. 95-105). Springer.
Mountantonakis, M., & Tzitzikas, Y. (2016). On measuring the lattice of commonalities among several linked

datasets. Proceedings of the VLDB Endowment, 9(12).

Mountantonakis, M., & Tzitzikas, Y. (2019). Large-scale semantic integration of linked data: a survey. ACM
Computing Surveys (CSUR), 52(5), 103.

Papadaki, M.-E., Papadakos, P., Mountantonakis, M., & Tzitzikas, Y. (2018). An interactive 3d visualization
for the lod cloud. In International workshop on big data visual exploration and analytics (bigvis’2018
at EDBT/ICDT 2018), Vienna, Austria.

Six, J. M., & Tollis, I. G. (2006). A framework and algorithms for circular drawings of graphs. Journal of
Discrete Algorithms, 4(1), 25-50.

Sondag, M., Speckmann, B., & Verbeek, K. (2017). Stable treemaps via local moves. IEEE Transactions on
Visualization and Computer Graphics, 24(1), 729-738.

Spyratos, N., Simonenko, E., & Sugibuchi, T. (2009). A functional model for data analysis and result
visualization. ICEB 2009, (pp. 57-6).

Stolte, C., Tang, D., & Hanrahan, P. (2002). Polaris: a system for query, analysis, and visualization of multidimen-
sional relational databases. IEEE Transactions on Visualization and Computer Graphics, 8(1), 52-65.

Theoharis, Y., Tzitzikas, Y., Kotzinos, D., & Christophides, V. (2008). On graph features of semantic web
schemas. IEEE Transactions on Knowledge and Data Engineering, 20(5), 692—702.

Tominski, C., & Schumann, H. (2008). Enhanced interactive spiral display. In SIGRAD 2008. The annual
SIGRAD conference special theme: interaction; November 27-28; 2008 Stockholm; Sweden, number 034
(pp. 53-56). Linkoping University Electronic Press.

Tu, Y., & Shen, H.-W. (2007). Visualizing changes of hierarchical data using treemaps. IEEE Transactions
on Visualization and Computer Graphics, 13(6), 1286-1293.

Tzitzikas, Y., Manolis, N., & Papadakos, P. (2017). Faceted exploration of rdf/s datasets: a survey. Journal
of Intelligent Information Systems, 48(2), 329-364.

Vartak, M., Rahman, S., Madden, S., Parameswaran, A., & Polyzotis, N. (2015). Seedb: efficient data-driven
visualization recommendations to support visual analytics. Proceedings of the VLDB Endowment, 8(13),
2182-2193.

Wang, L., Wang, G., & Alexander, C.A. (2015). Big data and visualization: methods, challenges and
technology progress. Digital Technologies, 1(1), 33-38.

Wang, W., Wang, H., Dai, G., & Wang, H. (2006). Visualization of large hierarchical data by circle packing.
In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 517-520).

Ward, M. O. (2002). A taxonomy of glyph placement strategies for multidimensional data visualization.
Information Visualization, 1(3-4), 194-210.

Ward, M. O., & Lipchak, B. N. (2000). A visualization tool for exploratory analysis of cyclic multivariate
data. Metrika, 51(1), 27-37.

Weber, M., Alexa, M., & Miiller, W. (2001). Visualizing time-series on spirals. In Infovis, (Vol. 1 pp. 7-14).

Wiens, V., Stocker, M., & Auer, S. (2020). Towards customizable chart visualizations of tabular data using
knowledge graphs. In International conference on asian digital libraries (pp. 71-80). Springer.

Yee, K.-P., Fisher, D., Dhamija, R., & Hearst, M. (2001). Animated exploration of dynamic graphs with radial
layout. In IEEE symposium on information visualization, 2001. INFOVIS 2001 (pp. 43-50). IEEE.
Zabulis, X., Koutlemanis, P., Stivaktakis, N., & Partarakis, N. (2021). A low-cost contactless overhead

micrometer surface scanner. Applied Sciences, 11(14).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

	A spiral-like method to place in the space(and interact with) too many values
	Abstract
	Introduction
	Requirements and background
	Requirements
	Background: power-laws

	Related work
	The algorithm concentric spiral
	Time Complexity.
	Concentric spiral in small sets of values
	Configuration parameters and their impact
	Axes
	Labels

	Extensions of concentric spiral
	Pie chart-like extension
	On visualizing more than one function

	Variations of concentric spiral
	Concentric spiralRing
	Concentric spiralTheater
	Mixing concentric spiralRing and concentric spiralTheater
	Concentric spiral vs concentric spiralRing vs concentric spiralTheater
	The generalized algorithm

	Analyzing the occupied space
	Very large datasets

	Application
	Efficiency
	Examples
	Word Frequencies.
	Cities Population.
	Coronavirus (COVID-19).

	Implementations
	Feedback from users

	Concluding remarks
	References

