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Abstract: We are living in the age of big data, a majority of which is stream data. The real-time
processing of this data requires careful consideration from different perspectives. Concept drift is
a change in the data’s underlying distribution, a significant issue, especially when learning from
data streams. It requires learners to be adaptive to dynamic changes. Random forest is an ensemble
approach that is widely used in classical non-streaming settings of machine learning applications.
At the same time, the Adaptive Random Forest (ARF) is a stream learning algorithm that showed
promising results in terms of its accuracy and ability to deal with various types of drift. The incoming
instances’ continuity allows for their binomial distribution to be approximated to a Poisson(1)
distribution. In this study, we propose a mechanism to increase such streaming algorithms’ efficiency
by focusing on resampling. Our measure, resampling effectiveness (ρ), fuses the two most essential
aspects in online learning; accuracy and execution time. We use six different synthetic data sets,
each having a different type of drift, to empirically select the parameter λ of the Poisson distribution
that yields the best value for ρ. By comparing the standard ARF with its tuned variations, we show
that ARF performance can be enhanced by tackling this important aspect. Finally, we present three
case studies from different contexts to test our proposed enhancement method and demonstrate its
effectiveness in processing large data sets: (a) Amazon customer reviews (written in English), (b) hotel
reviews (in Arabic), and (c) real-time aspect-based sentiment analysis of COVID-19-related tweets
in the United States during April 2020. Results indicate that our proposed method of enhancement
exhibited considerable improvement in most of the situations.

Keywords: adaptive random forest; data stream; concept drift; online learning; resampling; Poisson
distribution

1. Introduction

Big data has become central to our digital landscape, and an enormous volume of data
is generated every second by innumerable sources. A number of algorithms and solutions
have been proposed to deal with the tremendous amount of data.

Most data mining and machine learning approaches incorrectly assume that examples
are i.i.d (independent and identically distributed) and generated from a stationary distri-
bution. Currently, we are bombarded with a massive amount of distributed data that are
generated from an ever-growing number of smart devices. In many cases, this data may
not even be saved. Our ability to collect data is also changing dramatically. Computers and
small devices send data to other devices; thus, we are faced with the presence of distributed
sources of data and a continuous flow of data generated from non-stationary processes.
Some examples of data mining applications in this context are sensor networks, social
networks, web mining, radio frequency identification, and financial data [1].

Predictive analytics is a branch of advanced analytics that is used to predict uncertain
future events. It uses many techniques ranging from data mining, statistics, modeling,
machine learning, and artificial intelligence (AI) to analyze the current data to make
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predictions about the future [2–4]. Predictive analytics is a main area in big data research
owing to the critical need for predictions in several fields. Many studies were conducted
on making forecasts based on historical data; however, with the advent of advanced
technologies, such as cloud computing and the Internet of Things (IoT), stream learning
has garnered more attention. Moreover, the ever-increasing amount of data generated
every day makes data streams or online learning all the more important.

Accuracy is fundamental in building reliable prediction applications, and a lack of
high accuracy in such systems renders them useless. Therefore, continuous monitoring of
prediction applications is crucial for detecting any deviations in their performance. These
deviations are called “concept drift,” a term that specifically refers to the behavior of the
prediction model when it is affected negatively by sudden changes in the input variables.
As a result, there is a corresponding decrease in the accuracy of the generated predictions.
Thus, it is important to enhance the ability to handle these variations effectively.

Several reasons may lead to concept drift in daily-life applications, including, but not
limited to, intrusion detection, equipment failure, seasonal changes in water temperature
or weather, e-mail spam filtering, the detection of sensor data of unusual movement, and
many others [5].

Another area that may benefit from concept drift is sentiment analysis, where we
classify emotions within text data using textual analysis techniques. In the last decade,
many research studies were conducted in the field of sentiment analysis and opinion
mining, especially with regard to social networks and customer comments and reviews.
However, with the massive and rapid increase in digital data, there is an urgent need
for more in-depth research, taking into account the importance of real-time analysis, an
analysis that addresses the topic from a more detailed angle such as effective handling of
concept drift. This will allow the field to keep pace with the overwhelming increase of user
dependency on digital solutions worldwide.

In machine learning, ensemble methods use multiple classifiers whose results are
combined. The objective is to obtain a better predictive performance than that obtained
from any of the individual classifiers [6]. Two of the most widely known ensemble methods
are boosting [7] and bagging [8]; a more recent addition is random forest [9]. Random
forest (or random decision forest) is an ensemble learning method for classification and
regression that builds multiple decision trees and merges them to obtain a more accurate
and stable prediction. It is widely used in the classical non-streaming settings of machine
learning applications [9]. Gomes et al. [10] stated that there is no actual algorithm that can
be considered to be state-of-the-art for employing the random forest method for stream
learning. Thus, they introduced the Adaptive Random Forest (ARF) algorithm to deal with
evolving data streams on the fly. We assume that there is room for further enhancement.

In this study, we adopted the ARF algorithm and showed that it is possible to increase
its efficiency by concentrating on the resampling method. We summarize our contribution
as follows:

• We propose a new measure that determines the effectiveness of the resampling
method.

• We apply the measure on synthetic data sets to select the best parameter.
• We use three case studies to validate our choice of the parameter. Two of the studies

involve customer reviews, and the third is aspect-based sentiment analysis.

We call the proposed measure “resampling effectiveness” (denoted ρ). The measure
considers the speed and the efficiency by which the system adapts to the concept drift. It
comprises the accuracy as well as time factor to determine the usefulness of resampling.
We used six synthetic data sets to empirically determine the best parameter to yield higher
effectiveness in resampling. The synthetic data sets incorporate all the known types of
concept drift. Three case studies were used to validate our choice of the parameter. These
were as follows: (a) Amazon customer reviews (English data set), (b) hotel reviews from
Booking.com covering the period Jun/Jul 2016 (Arabic data set), and (c) real-time aspect-
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based sentiment analysis of tweets related to COVID-19 in the United States during the
month of April 2020.

This paper is organized as follows: Section 2 presents the background of the problem
and related work. The proposed measure is outlined in Section 3. In Section 4, we describe
the experiments with different settings and discuss the results. The three case studies are
detailed in Sections 5–7. In Section 8, we present the conclusions and our outlook for future
work.

2. Background

Concept drift represents unforeseen modifications in the underlying distribution of
streaming information over time [11]. Studies on this subject include the advancement of
philosophies and procedures for detection of the drift, its understanding, and adaptation.
In this section, we consider concept drift and its handling in some detail; in addition, we
examine the features of aspect-based sentiment analysis.

2.1. Concept Drift

Analyzing data streams is a challenging issue as it requires a continuous examination
of the received data. This is because hidden insights and patterns, as well as the data, are
expected to evolve; therefore, stream or online learning applications are prone to lose their
accuracy if they are not monitored appropriately.

Concept drift describes a phenomenon that occurs when the accuracy of the prediction
model starts to decrease over time, which results in the model becoming obsolete after
a short while. Therefore, there is a critical need for advanced capabilities that can be
leveraged to adapt perfectly to the changes that occur. Just to explain, concept drift is
caused by alterations in the underlying distribution of incoming data [12]. These altered
data negatively affect the entire model if they are treated as normal. The prediction model
must be smart enough to detect any variation in the input data and treat it immediately
and effectively. In particular, the model should anticipate the occurrence of concept drift so
that the readiness and preparation take place before the moment of its occurrence. This
would ensure that there is no interruption or delay when replacing the prediction model.

Generally, there are four types of concept drifts, as shown in Figure 1. The first
step in tackling any problem is to understand it well. Lu et al. [11] pointed out that an
understanding of concept drift can be accomplished by defining the following factors:
occurrence time, period of concept drift (when), degree or severity of drifting cases (how),
and the affected area or region of the feature space (where).

Figure 1. Different types of concept drift. Reproduced from [13].
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Many reasons may lead to concept drift in daily life. We give examples of real-life
problems involving concept drift. Zenisek et al. [14] presented a concept drift-based
approach for improving industrial processes of predictive maintenance, which helped
estimate when the maintenance operations must be performed. They carried out real-time
monitoring and analysis of equipped sensor data to detect and handle any drift caused
by a malfunction in the process. After conducting a real-world case study on radial fans,
the authors discussed the potential benefits gained from such an approach for saving time
and material and improving the overall process. Similarly, Xu et al. [15] drew attention
to the risks of accumulating digital data in smart cities as a result of the tremendous
advances in AI and IoT technologies, which raise the level of information security threats.
Therefore, they suggested activating anomaly detection techniques that take into account
the concept drift issue that is expected to occur with time on data flow. After conducting
their experiment on a real data set, the authors described the effectiveness of their method,
which reflects what machine learning can do for cyber security.

Saadallah et al. [16] discussed the handling of concept drift in real-time decision
systems of transportation networks. The authors conducted taxi demand prediction experi-
ments in three large cities: Porto (Portugal), Shanghai (China), and Stockholm (Sweden).
They demonstrated that the proposed drift-aware framework reflected good results in
terms of prediction accuracy and concept drift handling.

Historically, concept drift was handled using different philosophies. We highlight
some well-known approaches below.

2.1.1. Mining Data Streams

During the last decade, numerous approaches and algorithms were proposed to deal
with evolving data streams [17]. The ensemble model is one of the models that stream
learning researchers are increasingly interested in, owing to its efficacy and feasibility.

Ensemble learning algorithms combine the predictions of multiple base models, each
of which is learned using a traditional algorithm such as decision tree; thus, a single
classifier’s predictive accuracy will be collectively enhanced [18,19]. Many studies have
applied the ensemble model to the stream learning approach to deal with issues of concept
drift handling [20].

Bagging and boosting are widely-used ensemble learning algorithms that were shown
to be very effective compared with individual base models in improving performance.
Bagging operates by resampling (random sampling with replacement) the original training
set of size N to produce several training sets of the same size, each of which is used
to train a base model [21,22]. Originally, these learning algorithms were intended for
batch/offline training. In [23,24], an online version of the bagging and boosting algorithms
was introduced. Online learning algorithms process each training instance on arrival
without the need for storing or reprocessing. The system exhibits all the training instances
seen so far.

Let N be the size of the training data set, then the probability of success is p = 1/N,
as each of the items is equally likely to be selected. The process of bagging creates a set
of M base models, and each of them is trained on a bootstrap sample of size N through
random sampling with replacement. The training set of each base model contains K times
the original training examples given by the binomial distribution (Equation (1)),

Pr(K = k) =
(

N
k

)
pk(1− p)N−k. (1)

Binomial and Poisson are well-known distributions in probability theory and statistics
and were the backbone of several algorithms in machine learning. Coupled together, the
binomial distribution can converge to the Poisson as an approximation when the number
of trials is large, and the probability of success in any particular trial approaches zero, i.e.,
p→ 0. Let λ = Np, then it can be shown that as N → ∞ we obtain
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Pr(K = k) =
λk

k!
e−λ. (2)

The λ is the expected number of events in the interval and is also known as the rate
parameter. Equation (2) is the probability density function for the Poisson distribution,
denoted by Poisson(λ). Oza and Russell [23] argued that in online bagging, the incoming
streaming data could be considered as an unlimited training data set in which N → ∞, and
the distribution of K tends to a Poisson distribution with λ = 1, as given in Equation (3),

Pr(K = k) =
e−1

k!
. (3)

Here, instead of sampling with replacement, each example is given a weight according
to Poisson(1). A wide range of studies [23,24] was carried out in this context to find an
optimal solution for handling concept drift. For instance, Bifet and Gavalda [25] used
variable size windows for handling more than one type of concept drift simultaneously.
They proposed “Adaptive Windowing” (ADWIN), an algorithm that automatically adjusts
the window size based on changes detected in the model’s behavior, i.e., a dynamic monitor
for detecting drifting cases was incorporated. The results showed that the proposed
technique outperformed the fixed sliding window-based approach in terms of adaption
behavior. The algorithm proposed in [25] was inspired by the work in [26], a well-known
study in this field.

Du et al. [27] developed a sliding window-based method using entropy for adaptive
handling of concept drift. It could determine the appropriate timestamp for retraining
the model when the drift occurred. The authors stated that the windows were monitored
dynamically to assess their entropy. When the drift occurred, the time window was divided
into two parts to calculate the average distance between them. The algorithm then detected
the most suitable point for rebuilding the model. Regarding the assessment, five artificial
and two real data sets were tested in the experiment. The outcomes revealed outstanding
results in terms of recall, precision, and mean delay.

Furthermore, Khamassi et al. [28] conducted a study in which they tracked concept
drift occurrence using two sliding windows. The first window is a self-adaptive variable
window that expands and contracts based on the detected drifts. The second window
contained a batch of collected instances between two determined errors. The objective
was to apply a statistical hypothesis test for comparing the distribution of error distance
between the windows. The results of the study showed an early detection of drifts and a
minimized false alarm.

Liu et al. [29] proposed a fuzzy-based windowing adaptation method that allowed
sliding windows to maintain overlapping periods. The data instances were weighted by
membership grades to differentiate between the old and new concepts. After evaluating
their proposed approach by several data collections, the authors stated that their method
yielded a more precise determination of the instances that belonged to different concepts,
which in turn enhanced the learning model adaption.

Yang and Fong [30] presented an optimized version of the very fast decision tree
(VFDT) [31]. Their system prevented the explosion of the tree size and minimized the
degradation of accuracy resulting from noise. The incrementally optimized very fast
decision tree (iOVFDT) algorithm used a multiple optimization cost function that took
into consideration three important aspects, namely accuracy, tree size, and running time.
Subsequently, in [32], the same team of researchers conducted a study comparing the
performance of their proposed algorithms with VFDT [31] and ADWIN [25] regarding the
handling of concept drift. The authors concluded that iOVFDT achieved the best results in
terms of accuracy and memory usage.

Krawczyk and Woźniak [33] suggested using a modified weighted one-class SVM to
tackle concept drift cases adequately. They clarified specifically that the data stream was
processed as consecutive data chunks with the possibility of having concept drift in one
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of them, and each data chunk would be trained and tested on the following one. They
used artificial and real data sets to evaluate their approach, and the outcomes revealed
promising results compared to the one-class very fast decision tree (OcVFDT) [34]. Similarly,
Pratama et al. [35] proposed an evolving fuzzy system to handle concept drifts in colossal
data streams by employing a recurrent version of the type-2 fuzzy neural network. They
demonstrated that their approach was flexible enough to be modified to comply with the
requirements of the learning problem.

Krawczyk et al. [36] conducted a comprehensive survey regarding ensemble learning
for analyzing data streams. They used the data processing mechanism as the main factor
for categorizing the ensemble approach of handling concept drift, i.e., they differentiated
between data stream instances being processed individually or collectively (by a chunk-
based method). In addition, the study explored several research paths under the umbrella
of the ensemble model, and work was carried out in stream learning. The authors presented
open challenges and potential redirection in this important field, e.g., they discussed the
need for high-performance capabilities for big data applications. The study suggested
methods to improve the scalability of the proposed algorithms or using dedicated big data
analytics environments such as Spark [37] or Hadoop [38]. Of course, the aim was to use
these types of environments by taking into account the phenomenon of concept drift and
the streaming nature of incoming data; some studies have proposed good approaches
using big data technologies as in [39], but in classical (batch) machine learning settings.

2.1.2. Random Forest and Its Adaptive Version

On surveying the literature on concept drift issues, we observed that some well-
known machine learning algorithms, such as the random forest algorithm, have not been
addressed extensively. Random forest is an ensemble learning model that is widely used
in classical non-streaming settings. As stated by Marsland [40], “If there is one method
in machine learning that has grown in popularity over the last few years, it is the idea of
random forests”. However, the situation is completely different for stream-based learning
studies, and few studies have been published concerning the application of the random
forest algorithm for handling concept drift.

Abdulsalam et al. [41] presented a streaming version of the random forest algorithm
that used node and tree windows. Their approach, however, does not take concept drift
into consideration as the data streams were assumed to be stationary. Therefore, Refer-
ence [42] discussed dynamic streaming random forests to deal with evolving data streams
that were prone to changes over time. Their work was an extension of their previous work
that added the use of tree windows of flexible size in addition to an entropy-based concept
drift detection technique. Subsequently, Saffari et al. [43] introduced online random forests
that combined the ideas of online bagging and extremely randomized forests. They also
used a weighting scheme for discarding some trees and starting to grow new ones based
on the out-of-bag (OOB) error measure found at certain time intervals. There were some
further studies in this field, but no remarkable results were reported regarding the handling
of concept drift.

Gomes et al. [10] proposed the Adaptive Random Forest (ARF) algorithm for clas-
sifying evolving data streams. Their approach toward evolving data streams employed
resampling along with an adaptive strategy that provided drift monitoring for each tree in
two steps: the first was direct training of a new tree when a warning was issued, and in
the second step, the tree was instantly replaced if concept drift occurred. The authors com-
pared their proposed approach with different state-of-the-art algorithms, and the results
demonstrated its accuracy. Another key point is that a parallel version of the algorithm
was built that was found to be three times faster than the serial one.

Some streaming algorithms can handle only one type of concept drift; however, ARF
can cope with various types. This competitive advantage motivated us to study ARF in
more depth to find possible enhancements.
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2.2. Sentiment Analysis

As we stated earlier, sentiment analysis is an ever-growing field involving the inter-
pretation and classification of emotions within different data mediums using data analytics
techniques. Opinion mining has become a complicated task owing to companies and agen-
cies looking for a detailed and real-time analysis of user experiences and aspirations. As a
result, recent research studies have attempted to uncover various factors indicating the po-
larity of the assorted aspects included in the text being analyzed. These days, aspect-based
sentiment analysis (AbSA) is a promising research area that is being widely discussed,
e.g., [44,45]. Dragoni et al. [46,47] implemented an opinion mining service that extracted
polarities referring to specific aspects included in the processed texts. According to them,
the detection of these aspects was critical, especially when their sources did not belong to
known domains. Thus, the Open Information Extraction (OIE) strategy [48] was utilized as
an unsupervised aspect-based analysis approach. The algorithm developed the grammar
dependency graph to extract any aspect and opinion referring to them. The outcome of
their study reflected the feasibility of the proposed algorithm notwithstanding a certain
lack of accuracy and recall that may be attributed to the use of an unsupervised model.

One aspect that requires further investigation in the field of sentiment analysis is a
time dimension that would produce a clearer and broader view of the sentiments. Ibrahim
and Wang [49] conducted a study on the perception of customers about certain brands of
online products. They analyzed a large number of tweets associated with five prominent
retailers, during a massive sales period, to explore trends in customer sentiments and
impressions. Using advanced techniques, such as time series analysis and topic modeling,
they attempted to understand the reasons behind the changes resulting from significant
deviations in the sentiments and opinions of people at certain critical time points.

Certainly, the accuracy of sentiment analysis is subject to a decline over time if con-
tinuous updating is not overseen. Rubtsova [50] discussed this issue and offered three
different mechanisms to improve the classification system of sentiment analysis. The first
used a term frequency-inverse corpus frequency formula for updating the model regularly,
while the second approach utilized an external emotional or evaluative vocabulary, or both,
to enhance the quality of the classification system. The last mechanism tackled the usage of
the distributed word representations as a k-dimensional feature space. The author stated
that all the examined approaches showed good results in reducing the deterioration of the
sentiment classification model. Furthermore, another challenge to the accuracy is that the
feeling of certain words in a context differs with different aspects; and it is impossible to
deduce this from the context words alone. Such an issue was explored by Shuang et al. [51],
who proposed a mechanism that consisted of a special layer for distinguishing between the
aspect-relevant features of words in a context.

Sentiment analysis provides an opportunity to maximize the benefits of utilizing user
opinions and comments proliferating over the Internet. To illustrate this, Bi et al. [52]
suggested applying the Asymmetric Impact Performance Analysis (AIPA) technique to
online reviews of customers instead of regular surveys. Consequently, they conducted a
case study on the reviews of a five-star hotel that were submitted by its guests through
Tripadvisor.com (accessed on 4 July 2021),a well-known tourism website. Several features
such as transport, cleanliness, service, food, and facilities were assessed to measure the
customers’ feelings towards the hotel. The results reflected the feasibility of the proposed
approach in terms of low cost and short time associated with customer satisfaction analysis.

3. Our Proposed Measure

At its core, the ARF (Adaptive Random Forest) algorithm depends heavily on the
aggregating process of online bootstrapping. All new learning instances are likely to
be chosen zero or k times following a binomial distribution. In addition, with a huge
sample size as with stream learning, this distribution can be approximated to a Poisson(1)
distribution, as mentioned earlier. For data streams, Bifet et al. [53] proposed a variant
of bagging called leveraging bagging. To enhance the process, they argued for using a

Tripadvisor.com
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larger value of λ to compute the value of the Poisson distribution that would increase the
weight of resampling, which in turn would improve the performance. For that, they chose
λ = 6 without a thorough investigation or proper justification. Nevertheless, we need a
satisfactory basis for choosing this or any other value of λ for use in the ARF algorithm.

Figure 2 shows several Poisson distributions with different values of λ. It is worth
noting that the mean and variance of a Poisson distribution is λ. The area under the curve
reflects the behavior of the training model, i.e., it gives an indication of the extent to which
a new training example will be used for updating the base model. For example, when
λ = 1, we see that 37% of the values are 0, 37% are 1, and 26% are values greater than 1.
That is, we are taking out 37% and repeating 26% of the examples. The online bagging [23]
algorithm used Poisson(1) for simulating the resampling process with replacement, while
Bifet et al. [53] used Poisson(6). Gomes et al. [10] used the same value of λ in ARF as in
leveraging bagging, i.e., Poisson(6). However, this raises several questions that need to be
addressed:

• Is it necessary that the appropriate value of λ for the leveraging bagging be suitable
for ARF, in general?

• Does changing the value of λ definitely impact the performance?
• What is the overhead associated with using a larger value of λ?

The present study tries to address these concerns by proposing a measure and us-
ing it to assess different values of λ in the ARF algorithm to determine the one that is
most suitable.

Figure 2. Mass function of Poisson distribution. The function is defined only at integer values of k;
the connecting lines are visual guides for the eye.

Resampling Effectiveness (ρ)

The ARF algorithm in [53] used a higher value of λ, claiming that it increased the
likelihood of instances getting higher weights during the training stage of the base model.
However, it is necessary to determine the criterion by which this increase is effective.
Moreover, the goal of accuracy must not be attained at the expense of processing time and
vice versa. Therefore, we introduce a measure that takes into consideration the accuracy as
well as processing time to determine the efficacy of the resampling method.

Let αrank be the normalized accuracy rank, and τrank be the normalized execution time
rank. We define these as
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αrank = 10 + 90
(

α− αmin

αmax − αmin

)
, (4)

τrank = 100− 90
(

τ − τmin

τmax − τmin

)
, (5)

where α is the current accuracy obtained at a specific value of λ, and αmin and αmax are
the minimum and maximum accuracies achieved, respectively, for all the values of λ in
the range

αmin = min
λ
{α}, (6)

αmax = max
λ
{α}. (7)

We call it normalized rank since we assign a value of 10 for the worst accuracy and a
value of 100 for the best. This normalization allows for proper handling of accuracy, no
matter how narrow or wide the difference between its maximum and minimum values.
Similarly, let τ, τmin and τmax be the actual, minimum, and maximum execution times,
respectively, at a specific value of λ. The τrank is a normalized reverse rank. As we prefer a
shorter execution time, we assign a value of 10 to the longest execution time and 100 to
the shortest. We combine both normalized ranks into a single measure. The resampling
effectiveness, which we denote ρ, is the harmonic mean of both ranks and is given by,

ρ =
2

1/αrank + 1/τrank
(8)

=
2 αrank τrank
αrank + τrank

. (9)

The value of ρ ranges from 10 to 100, with a higher value signifying a more effective
resampling.

4. Picking the Best Value of λ

In this section, we describe the conducted experiments to empirically determine the
best value of λ to be used with the ARF algorithm. We examined the value of λ ∈ [1, 10]
because an excellent Poisson approximation can be reached if λ ≤ 10 [54]. The best value
of λ corresponds to the one that results in the highest value of ρ.

The nature of concept drift calls for further research experiments within an empirical
research framework that uses evidence-based data. For example, Santos et al. [55] proposed
an empirical method that tackles differential evolution for guiding the tuning process of
concept drift detectors in order to enhance their accuracies. Moreover, there are many
researches in other computing areas that employ empirically derived settings. For instance,
Google’s PageRank uses a damping factor of 0.85 [56], since by practice it was found that a
good choice would be between 0.8 and 0.9, though in theory, it could be any value between
0 and 1.

We used six different data sets, with each having a different type of drift. Each
experiment was repeated multiple times to avoid any inconsistency in the results.

4.1. Data Sets

For this experiment we used six different synthetic data sets, which are publicly
available, to diversify the resources. There are several benefits of using synthetic data:
they are easy to reproduce and cost little to store and transmit. Synthetic data provide an
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advantage of knowing the ground truth (e.g., where exactly the concept drift occurs) [57].
We briefly describe these data sets below:

• LED (LED generator). This data set was introduced by Breiman et al. [58] for predict-
ing the digits appearing on a seven-segmented LED display. This data set contains
7 Boolean attributes (after the seven light-emitting diodes in the LED display) and
10 concepts (the set of decimal digits). The authors introduced noise into the data
set, thus the value of each attribute had a 10% chance of being inverted. The optimal
Bayes classification accuracy was 74%.

• SEA. This data set was used by Street and Kim [59] for testing their proposed stream-
ing ensemble algorithm (SEA). The data contain abrupt concept drifts. It has three
independent real-valued attributes (data from the United States Census Bureau, breast
cancer data set from SEER program, and anonymous web browsing) in the range of
0–10, two of which are relevant for prediction.

• AGR (AGRAWAL). This data set is based on the generator devised by Agrawal et al. [60].
They produced a data stream with six nominal and three continuous attributes. The
processed instances are mapped into two distinct classes. A perturbation factor is
used to add noise to the data.

• RTG (RTG generator). This random tree generator was part of the work by Domingos
and Hulten [31] in their distinctive algorithm VFDT. They fabricated a decision tree
by randomly selecting attributes as split nodes and assigning random classes to each
leaf. It had both numeric and nominal feature types that could be customized.

• RBF (Random RBF generator). This data set was derived from the radial basis function
generator [61] by generating a fixed number of random centroids. The generator was
devised to offer an alternate complex concept type that was not straightforward to
approximate with a decision tree model. A drift is introduced by moving the centroids
with constant speed.

• HYPER (Rotating HYPERplane). The data were generated from a rotating hyperplane
in d-dimen-sional space [62]. Hyperplanes are useful for simulating time-changing
concepts as we can change the orientation and position of the hyperplane in a smooth
manner. The instances are labeled as positive or negative based on their coordinates.

The types of drifts vary from one data set to another. It is a gradual drift in the LED
and SEA data sets; a sudden drift in AGR; incremental in RBF; and a recurring drift in
HYPER. RTG is a stationary (no drifts) data stream.

4.2. Framework

The availability of a scientific benchmarking framework in any research domain
enriches the experiment and encourages researchers to conduct further studies and experi-
ments in that field. Evaluation is a key challenge associated with stream mining [63]. With
regard to concept drift, there is a well-known software environment called massive online
analysis (MOA) [64] that is extensively used for evaluation. It is an open-source software
for implementing and running stream learning algorithms with various parameters and
was the primary tool used in this study.

The experiments were performed on SANAM [65], a supercomputer hosted by the
King Abdulaziz City for Science and Technology. SANAM is a computer cluster comprising
standard servers connected via a high-speed network. The cluster consists of 210 servers
with 3360 processor kernels, 840 graphic chips, and 26,880 GB of main memory. SANAM
consists of 300 nodes, each of which possesses the characteristics listed in Table 1.
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Table 1. Specifications of each of the 300 nodes in the SANAM supercomputer.

Characteristic Description

OS Linux SUSE Enterprise
CPU Two Xeon E5-2650 8Cores 2 GHz
GPU Two AMD FirePro S10000
Memory 128 GB RAM DDR3
Network infrastructure InfiniBand FDR
Scheduler Slurm 2.6
File system Lustre

4.3. Results and Discussion

We used the following settings for all the experiments. The number of instances
was one million and the number of trees was 10. We report the results for accuracy and
execution time. To ensure consistency in the results, the values were averaged over 10 runs.
The experiments were executed on a single node of a SANAM supercomputer.

Table 2 lists the accuracy of each of the data sets for different values of λ. It is seen
that the accuracy is restricted to a very narrow range showing very little variation for the
different values of λ (see Figure 3a). However, it is interesting to note that the accuracy is
not linearly impacted, either positively or negatively, with λ. Figure 3b shows a plot of the
average accuracy of the six synthetic data sets. The execution time increases as λ increases
(see Table 3), although the AGR and HYPER data sets are exceptions, where the execution
time peaks for λ = 7 in AGR and 8 in the case of HYPER, and then drops (see Figure 4a).
RTG also exhibits a similar behavior; however, the decline is not very drastic. Figure 4b
shows the average execution time of all the synthetic data sets. Table 4 lists the values of ρ
(Equation (8)) of each of the data sets at different values of λ. According to the values of ρ
listed in the table, the best value of λ is either 2 or 3 for five of the six data sets, and for the
HYPER data set it is 5. If we average for all the synthetic data sets, the ideal value of λ is 3,
and the worst is 7 (see Figure 5).

From Table 2, the best average accuracy is 89.88%, corresponding to λ = 8 and 10;
however, this accuracy comes at the expense of a large execution time of 346 s, in the case
of λ = 8 (Table 3). The value of ρ shows that this trade-off of having a slight improvement
in the accuracy is not worth the extra execution time.

Based on the ρ results (Figure 5), the ARF’s choice of λ = 6 as used in [10,53] must be
revised. It is clear that λ = 3 is a better choice, and there is no need to use a costly method
when a less expensive one provides similar accuracy, if not better. Figure 6a,b demonstrate
this important outcome.

Table 2. Accuracy of each of the synthetic data sets for different values of λ. All values are averaged
over 10 runs.

λ LED SEA AGR RTG RBF HYPER Avg

1 72.8 90.2 94.5 92.0 95.3 88.2 88.83
2 73.3 90.1 94.7 92.6 95.2 88.4 89.05
3 73.3 90.3 94.4 95.7 95.4 89.1 89.70
4 72.2 90.3 93.7 95.2 95.4 89.5 89.38
5 72.4 90.2 94.7 94.4 95.1 89.9 89.45
6 73.3 90.2 94.1 93.9 95.5 89.3 89.38
7 72.4 90.1 93.9 95.2 95.5 89.6 89.45
8 73.5 90.1 93.7 96.4 96.4 89.2 89.88
9 72.7 90.1 94.6 96.0 95.2 88.8 89.57
10 73.3 90.2 94.6 96.5 96.3 88.4 89.88
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Table 3. Execution time (in seconds) of each of the synthetic data sets for different values of λ. The
execution times are averaged over 10 runs.

λ LED SEA AGR RTG RBF HYPER Avg

1 58.69 43.17 62.83 56.61 54.09 56.11 55.25
2 79.97 64.91 85.07 88.67 75.53 88.11 80.38
3 88.24 83.52 109.14 112.38 92.37 115.74 100.23
4 98.11 100.12 141.81 136.73 107.39 144.44 121.43
5 108.45 117.63 207.82 186.90 122.57 174.11 152.91
6 113.40 134.29 348.92 390.27 136.62 204.64 221.36
7 121.00 151.01 823.39 646.01 150.88 497.11 398.23
8 128.79 168.26 414.41 661.22 163.50 539.76 345.99
9 136.52 182.88 529.53 624.56 176.65 434.01 347.36
10 147.21 227.29 418.47 740.78 188.46 402.27 354.08

Table 4. The ρ of each of the synthetic data sets for different values of λ.

λ LED SEA AGR RTG RBF HYPER Avg

1 68.02 70.97 90.11 18.18 38.51 18.18 50.66
2 82.07 17.99 98.67 35.78 28.26 33.78 49.43
3 77.22 89.06 82.38 88.12 43.53 69.94 75.04
4 17.14 83.83 18.01 81.00 41.62 81.12 53.79
5 32.17 58.99 90.62 68.24 16.88 87.67 59.09
6 58.58 55.23 54.26 51.74 40.91 70.24 55.16
7 28.89 16.51 14.74 34.47 36.39 29.57 26.76
8 44.63 15.91 17.08 33.86 42.17 17.26 28.48
9 28.44 15.20 60.02 39.48 17.40 34.70 32.54
10 17.92 16.92 70.78 18.18 18.06 26.08 27.99

(a)
Figure 3. Cont.
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(b)

Figure 3. Accuracy for different values of λ of (a) each synthetic data set, and (b) the overall average.

(a)

(b)

Figure 4. Execution time (in seconds) for different values of λ of (a) each synthetic data set, and
(b) the overall average.
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Figure 5. Resampling effectiveness (ρ) for different choices of λ of the synthetic data sets. A higher
value of ρ is more desirable.

(a)

(b)

Figure 6. (a) Accuracy and (b) execution time of each synthetic data set for λ = 3 and 6. The dashed
lines are for visual guidance only.

5. Case Study 1

Based on the earlier results, we decided to test the ARF algorithm with our choice of
λ on the Amazon customer reviews data set [66] to assess the behavior of the algorithm
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using a real data set. This data set spans over two decades and contains information from
millions of customers and more than 130+ million customer reviews. These reviews express
the opinions and experiences of customers on searched and purchased products. The
attributes of each review are described in Table 5. Table 6 presents an example of customers’
reviews in the data set.

McAuley et al. [67] extracted several subsets from the Amazon customer reviews data
set based on their categories. For our experiment, we decided to choose the data set in the
“Books” category (the example presented in Table 6 is for the “Toys” data set). This includes
purchased books and customer ID, in addition to customer ratings. More specifications
about the selected books data set are shown in Table 7.

Table 5. Amazon customer reviews attributes.

Attribute Description

market place country code
customer ID customer random identifier
review ID review unique ID
product ID product identification number
product parent root product
product title product’s title description
product category product’s broad category
star rating review’s rating value
helpful votes number of positive votes
total votes number of total votes
vines is it a vine review
verified purchase review by purchasing customer
review headline review’s title
review body review’s text
review date review’s submission date

Table 6. Sample of Amazon customer reviews data set. The records are long; therefore, to conserve space, we removed the
attributes of “Marketplace”, “Customer ID”, “Review ID”, “Product ID”, and “Product parent”.

Product Star Votes Verified Review

Title Cat. Rating Help. Total Vine Purch. Head. Body Date

Monopoly Jr Board Game Toys 5 0 0 N Y Five
Stars Excellent!!! 2015-08-31

Super Jumbo Playing
Cards by S&S Worldwide

Toys 2 1 1 N Y Two
Stars

Cards are not as big as
pictured 2015-08-31

Big Bang Cosmic Pegasus
(Pegasis) Metal 4D High

Performance Generic
Battling Top BB-105

Toys 3 2 2 N Y Three
Stars

To keep together, had to
use crazy glue 2015-08-31

Fun Express Insect Finger
Puppets 12ct

Toys 5 0 0 N Y Five
Stars

I was pleased with the
product 2015-08-31

Melissa and Doug Water
Wow Coloring Book -

Vehicles
Toys 5 0 0 N Y Five

Stars

Great item. Pictures pop
thru and add detail as
painted. Pictures dry

and it can be repainted.

2015-08-31
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Table 7. Amazon books data set statistics

Characteristic Description

Number of instances 14,356,213
Number of customers 5,430,505
Number of items 1,689,201
Start 14 March 2011 12:00:00 AM
End 12 May 2014 11:59:59 PM
First instance timestamp 1300060800
Last instance timestamp 1399939200

After the selection of the data set, the ARF algorithm was executed with values
λ = 3 and 6. We selected these exact values because the former showed the best ρ in
the experiment, whereas the latter is associated with ARF by default (e.g., [10,53]). The
accuracy attained in both cases was 79.7%, but with different execution times: with λ = 3,
the task was completed in 17 min and 45 s whereas it took 28 min and 8 s for λ = 6 (under
the same conditions). Therefore, by using λ = 3, we achieved a speedup of 1.585 times
over that when using λ = 6.

6. Case Study 2

The Hotel Arabic-Reviews Data set (HARD) [68] consists of 93,700 hotel reviews in
Arabic that were collected from the Booking.com website covering the period June/July
2016. (The data set is freely available at https://github.com/elnagara/HARD-Arabic-
Dataset and was accessed 20 December 2019). The reviews were expressed in Modern
Standard Arabic (MSA) as well as dialectal Arabic. For a look at the differences between
MSA and dialectal Arabic, see [69]. For sample works on Arabic sentiment analysis, please
refer to, e.g., [70–72]. Table 8 summarizes some statistics of the data set. Each review has a
number of attributes such as hotel no., user type, length of stay, and user rating.

Table 8. Statistics of the Hotel Arabic-Reviews Data set (HARD).

Characteristic Size

Number of reviews 373,772
Number of hotels 1858
Avg. reviews per hotel 264
Max reviews per hotel 5793
Min reviews per hotel 3
Number of users 30,889
Avg. reviews per user 15.8
Number of tokens 8,520,886

To enhance the process of classification, we added a new derivative feature that
indicates the level of feeling associated with each review, either positively or negatively.
Each review was broken up into unigram and bigram terms to determine the presence of
any of these in a specific sentiment lexicon [73] so that the total number of occurrences
reflected the sentiment rate attached to the analyzed review. The ARF algorithm was then
applied to the data set using the classification features shown in Table 9.

Booking.com
https://github.com/elnagara/HARD-Arabic-Dataset
https://github.com/elnagara/HARD-Arabic-Dataset
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Table 9. Hotel reviews classification features.

Attributes Description

hotel_id hotel identification number
user_type type of the guest(s)
room_type reserved room type
nights_number duration of stay
review_length length of review (in characters)
sentiment_level degree of feeling
user_rating user rating class

We executed the ARF algorithm using different values of λ, for comparison. Table 10
lists the classification accuracy, execution time, and ρ for each value of λ. The stream
learning time with λ = 3 was 10.18 s, and is 22.83 s when λ = 6. In other words, the former
setting of the algorithm is twice as fast as the latter. From Figure 7, we can see that the best
ρ corresponds to λ = 3, whereas the second best corresponds to λ = 2.

Table 10. Accuracy, time, and ρ for different values of λ for the HARD data set.

λ Accuracy Time (s) ρ

1 53.7% 5.25 85.83
2 55.0% 7.47 96.59
3 55.3% 10.18 97.58
4 53.1% 13.08 76.93
5 53.0% 15.44 75.09
6 53.3% 22.83 75.39
7 52.7% 29.34 67.18
8 52.2% 45.73 56.14
9 51.2% 61.00 40.81
10 49.5% 99.00 10.00

The number of processed records was 105,698 and we achieved our best result in
10.18 s, i.e., approximately 0.01 ms for learning and classifying one review. It ought to be
noted that the accuracy was below that reported in [68]; however, this is to be expected
as we did not carry out any linguistic preprocessing such as stemming and filtering. In
addition, the utilized lexicon is relatively limited as it contains a few thousand words and
phrases from the MSA and Saudi dialects. In view of this, the efficacy of stream learning
algorithms calls for more attention from researchers in sentiment analysis and emotion
recognition.
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Figure 7. The ρ for different values of λ in the HARD data set.

7. Case Study 3

In recent memory, the world has never united as much as it did to combat the Coro-
navirus disease or COVID-19. This tiny virus caused unprecedented havoc around the
world. Many of the world’s economies were paralyzed, and the health systems were on the
verge of collapse in other countries. The United States, with one of the most sophisticated
health care systems, suffered dearly. This was reflected in US political debates, whether in
the traditional or social media. It is not uncommon to see verbal disputes on social media
between the president of the United States and the governors of individual states over
funding, co-ordination, lack of equipment, and the means to handle the dire situation.

It can be said that the month of April 2020 witnessed one of the darkest periods for
the United States population regarding the effects of COVID-19. As more and more of the
population started to feel the pinch, the mood shifted, and this was reflected in the tweets.
For this case study, we compiled all COVID-19 related tweets covering the entire month of
April 2020. As the number of tweets was huge, we confined them to those by President
Trump and the governors of the fifty U.S. states. The total number of tweets collected was
approximately 10,000. Our objective was to perform an aspect-based sentiment analysis,
which is a text analysis technique that breaks down the text into aspects (attributes or
components of a service) and then assigns a sentiment level (positive, negative, or neutral)
to each. We planned to conduct a real-time analytical study of the compiled tweets to assess
the sentiments contained therein.

We used TextBlob (https://textblob.readthedocs.io/en/dev/ accessed on 21 May
2020), which is a Python library, for processing textual data to assess the sentiments of the
tweets. This library covers different natural language processing (NLP) tasks such as noun
phrase extraction, part-of-speech tagging, and tokenization. Many works, such as [74–76],
utilized this library for NLP tasks; however, it lacks the ability to analyze the dependency
between tokens and extract their syntactic relationships. This is very important in aiding
the process of associating feelings with related aspects. For this, another library was used
to overcome the shortcomings of TextBlob. SpaCy (https://spacy.io/ accessed on 21 May
2020), also a Python-based library, has dependency-parsing capability and other linguistic
features.

In sentiment analysis, polarity refers to identifying sentiment orientation (positive,
negative, or neutral) in the written/spoken language. A language contains expressions that
are objective or subjective. Objective expressions are facts, while subjective expressions are
opinions that describe someone’s feelings toward a specific subject or topic. For example,
“this apple is red”, is objective; whereas the sentence “this apple is delicious” is subjective.

https://textblob.readthedocs.io/en/dev/
https://spacy.io/
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Polarity and subjectivity of the text are important metrics for assessing the sentiments of
the mined text (tweets in our case). We define a new measure, positivity, which combines
both factors. It is given by Equation (10),

positivity =

( 1/2 · (1 + polarity) + subjectivity
2

)
, (10)

where we assume polarity ∈ {−1, 0, 1} for respective negative, neutral, and positive sen-
timents. The subjectivity is 0 if the text is very objective and 1 otherwise. The positivity
measure ∈ [0, 1], can be applied to a paragraph, sentence, or even a clause. More impor-
tantly, it can be used for real-time monitoring of a particular aspect and predicting the
future sentiment related to it. Therefore, the positivity of the text surrounding some aspects
may be used for tagging them. These tagged aspects are then used for forecasting future
sentiments by using a classification algorithm such as ARF. Figure 8 shows the positivity of
President Trump’s tweets during the month of April 2020.

We processed the collected tweets by automatically extracting the aspects. Figure 9
lists some of the most-discussed aspects in the compiled COVID-19 tweets. We then
continuously examined the evolution of sentiments towards the aspect. For this, we
applied the ARF algorithm using different values of λ to predict the future sentiments
related to the extracted aspects. Table 11 lists the accuracy, execution time, and ρ for each
value of λ when performing the aspect-based sentiment analysis. Figure 10 shows the plot
of ρ for different values of λ. Here, our best choice is λ = 1, closely followed by λ = 3. On
the other hand, λ = 6 is one of the worst choices. As the execution time was negligible (in
ms in Table 11), we note that the best accuracy corresponds to λ = 3.

Figure 8. Positivity of 263 tweets of President Trump during April 2020. The tweets are in chronolog-
ical order.
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Figure 9. Word cloud for the top most discussed aspects in the compiled COVID-19 tweets. The font
size relays the importance of each tag shown.

Table 11. Accuracy, time, and ρ for different values of λ for the aspect-based sentiment analysis of
the compiled tweets.

λ Accuracy Time (ms) ρ

1 58.6% 110 96.51
2 58.3% 160 90.02
3 58.9% 230 92.01
4 57.7% 440 65.45
5 56.8% 510 51.70
6 54.9% 580 16.16
7 56.4% 660 37.09
8 55.7% 720 26.30
9 55.3% 800 16.72
10 56.5% 840 16.43
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Figure 10. The ρ for different values of λ for the compiled tweets.

8. Conclusions

Big data has become an important topic in the computing world. The breakthrough
capabilities of big data analytics have reshaped many aspects and approaches of employing
technology in our everyday lives. Thus, concept drift is a critical issue in predictive
analysis applications.

The nature of stream learning environments requires effective handling of drifting
concepts. Therefore, the purpose of this study was to investigate the issue of concept drift
within the domain of random forest to enhance the mechanisms for building an accurate
and efficient prediction model based on stream learning. In particular, this research
illustrated the importance of resampling effectiveness in such domains.

The adaptive random forest algorithm showed promising results in terms of its
accuracy and ability to deal with various types of drift. When the data size is large,
as in stream learning, the algorithm can be approximated to a Poisson distribution. This
distribution is specified by a single parameter λ, which impacts the resampling process.
An issue we tried to address in this work is how to improve the resampling process with
replacement. Given that, we proposed a new measure: resampling effectiveness, and
denoting it ρ. The objective was to measure the most efficient method by which the system
adapts to concept drift. Empirically, we found that using λ = 3 was more appropriate for
building an efficient adaptive random forest model than λ = 6, as suggested in earlier
studies. This was confirmed by testing our measure on different data sets used in this work.

We used three case studies with different data sets to confirm our choice of λ. These
were: the Amazon customer reviews data set, the Hotel Arabic-Reviews data set, and
the COVID-19 related tweets from the United States president and state governors in the
United States. For the hotel reviews data set, we chose the field of Arabic sentiment analysis,
as we noticed that stream learning was not sufficiently represented in the literature related
to the Arabic language. All three studies confirmed our proposed method of enhancement
of the random forest algorithm, reflecting its effectiveness in processing three different data
sets in two different languages.

In the future, we plan to continue investigating the random forest algorithm and
concept drift phenomenon by working on state-of-the-art big data analytics frameworks.
Of course, there is a clear research gap in the literature in this area, which includes ARF as
well. Furthermore, we plan to investigate other data-related issues, such as dealing with
noisy data.
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