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Simple Summary: In breast cancer, the leading cancer type and the main cause of cancer death in
women, achieving pathological complete response after neoadjuvant chemotherapy has been shown
to be associated with prolonged overall survival. Hence, the correct assessment and the potential
prediction of therapy response have recently become the focus of research. In this study, we predicted
pathological complete response prior to neoadjuvant system therapy using 18F-FDG PET/MRI
radiomics analysis of the breast. Hence, simultaneous 18F-FDG PET/MRI may enable a more
individualized and targeted approach to treatment as well as pretherapeutic patient stratification.

Abstract: Background: The aim of this study was to assess whether multiparametric 18F-FDG
PET/MRI-based radiomics analysis is able to predict pathological complete response in breast cancer
patients and hence potentially enhance pretherapeutic patient stratification. Methods: A total of
73 female patients (mean age 49 years; range 27–77 years) with newly diagnosed, therapy-naive
breast cancer underwent simultaneous 18F-FDG PET/MRI and were included in this retrospective
study. All PET/MRI datasets were imported to dedicated software (ITK-SNAP v. 3.6.0) for lesion
annotation using a semi-automated method. Pretreatment biopsy specimens were used to determine
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tumor histology, tumor and nuclear grades, and immunohistochemical status. Histopathological
results from surgical tumor specimens were used as the reference standard to distinguish between
complete pathological response (pCR) and noncomplete pathological response. An elastic net was
employed to select the most important radiomic features prior to model development. Sensitivity,
specificity, positive predictive value, negative predictive value, and accuracy were calculated for each
model. Results: The best results in terms of AUCs and NPV for predicting complete pathological
response in the entire cohort were obtained by the combination of all MR sequences and PET (0.8
and 79.5%, respectively), and no significant differences from the other models were observed. In
further subgroup analyses, combining all MR and PET data, the best AUC (0.94) for predicting
complete pathologic response was obtained in the HR+/HER2− group. No difference between
results with/without the inclusion of PET characteristics was observed in the TN/HER2+ group,
each leading to an AUC of 0.92 for all MR and all MR + PET datasets. Conclusion: 18F-FDG PET/MRI
enables comprehensive high-quality radiomics analysis for the prediction of pCR in breast cancer
patients, especially in those with HR+/HER2− receptor status.

Keywords: multiparametric 18F-FDG PET/MRI; radiomics; breast cancer; radiomics-based prediction
of pathologic complete response

1. Introduction

Since neoadjuvant chemotherapy (NAC) was introduced as the first-line defense in
the treatment of locally advanced breast cancer, its indications for administration have
been gradually extended in pursuing pathological complete response (pCR), particularly in
cancers with unfavorable tumor profiles [1,2]. While pCR has been shown to be associated
with prolonged survival when compared to non-pCR (partial response or no response), less
than 10–50% of breast cancer patients achieve pCR (depending on the intrinsic subtype).
Hence, correct assessment of therapy response, and ultimately, the pretreatment prediction
of therapy response, is highly desirable to facilitate personalized treatment and prevent
delays in effective treatment for non-responders [3].

The introduction of radiomics as a method to convert imaging features into quantifi-
able data and their respective extraction has amplified the understanding of proteogenomics
and its relation to cancer [4–7]. As the leading cancer type and the main cause of cancer
death in women, breast cancer has been the focus of intensive research over the past years,
leading to distinctive improvements in understanding breast cancer phenotyping and
corresponding treatment [8–10]. In comparison, the prediction of treatment response to
neoadjuvant chemotherapy based on imaging and radiomics instead of invasive tissue
sampling is a fairly new research focus. This new method for predicting treatment response
comes with two positive effects: first, its non-invasive nature decreases potential risks asso-
ciated with invasive procedures, and second, it attends to the intratumoral heterogeneity of
breast cancer by enabling whole-tumor analysis (in contrast to focal biopsy), an important
factor that has gained reasonable attention in past years [11,12].

While the majority of studies on radiomics analysis are based on routine imaging
methods such as CT or MRI, an increasing number of studies have implemented more
elaborate imaging methods, such as multiparametric 18F-FDG PET/MRI, to facilitate an
even more comprehensive imaging platform for feature extraction, with promising initial
results [13,14].

Hence, the aim of this study was to assess whether the utilization of multiparamet-
ric 18F-FDG PET/MRI-based radiomics analysis is able to predict pCR in breast cancer
patients prior to treatment and enhance pretherapeutic patient stratification by means of
precision medicine.
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2. Materials and Methods
2.1. Patients

In total, 73 patients were included in this study retrospectively. The local ethics com-
mittee approved this study, and due to the anonymization of data, written patient consent
was waived. Inclusion criteria comprised newly diagnosed, biopsy-proven treatment-naïve
breast cancer with (a) T2 or higher T-stage tumor, (b) triple-negative (TN) tumor of any
size, or (c) tumor with a high-risk molecular profile (e.g., Ki67 > 14%, G3, or HER2neu
overexpression). Datasets were excluded from radiomics analysis if they were incomplete.
All included patients were part of a larger study investigating the utility of PET/MRI in the
initial staging of women with newly diagnosed breast cancer. The same inclusion criteria
as previously mentioned were applied here.

2.2. PET/MRI

All 18F-FDG PET/MRI examinations were performed on an integrated 3-Tesla PET/MRI
system (Biograph mMR, Siemens Healthcare GmbH, Erlangen, Germany). All patients
underwent a dedicated breast 18F-FDG PET/MR and a whole-body imaging scan [15], but
only the PET/MR breast examinations were evaluated for this study. All patients fasted
for six hours before a bodyweight-adapted dosage of 18F-FDG was injected (4 Mbq/kg
bodyweight) and examinations were performed one hour after injection. A dedicated
16-channel breast radiofrequency (RF) coil (Rapid Biomedical, Rimpar, Germany) that was
specifically designed and developed for use in integrated PET/MR imaging was used
for breast examinations [16]. All patients were imaged in head-first prone position. The
dedicated breast protocol comprised the following sequences:

(1) A transversal T2-weighted fat-saturated turbo-spin echo (TSE) with a slice thickness
of 7 mm (TE 97 ms; TR 2840 ms; FOV 400 mm; phase FOV 75%; acquisition matrix 256 × 192,
in-plane resolution 1.6 × 1.6 mm; TA 5:28 min);

(2) A transversal diffusion-weighted echo-planar imaging (EPI) sequence with a slice
thickness of 5.0 mm (TR 8000 ms; TE 81 ms; b-values: 0, 400, and 800 s/mm2, matrix
size 192 × 156; FOV 420 mm, phase FOV, 81.3%; GRAPPA, acceleration factor 2; in-plane
resolution 2.2 × 2.2 mm; TA 2:34 min);

(3) Six repetitions of a transversal 3-dimensional fast low-angle shot T1w (FLASH)
sequence with a slice thickness of 7 mm (TE 3.62 ms; TR 185 ms; FOV 400 mm; phase
FOV 75%; acquisition matrix 320 × 240, in-plane resolution 1.3 × 1.3 mm) for dynamic
contrast-enhanced imaging.

After the first FLASH sequence, a dose of 2 mL/kg bodyweight gadoterate meglumine
(Guerbet, Dotarem) was injected. Automated image subtraction was subsequently performed.

PET acquisition was performed in one bed position with an acquisition time of 20 min
simultaneously with MRI data. PET image reconstruction was subsequently performed
utilizing an iterative ordered-subset expectation–maximization algorithm, 3 iterations and
21 subsets, a Gaussian filter with 4 mm full width at half maximum, and a 256 × 256 image
matrix for the breast and a 344 × 344 image matrix for the whole-body protocol. PET data
were attenuation-corrected automatically using the implemented 4-compartment model
attenuation map (µ-map) calculated from fat-only and water-only datasets, as obtained by
Dixon-based sequences.

2.3. Image Analysis
18F-FDG PET/MRI data were evaluated by two board-certified radiologists with

14 and 5 years of experience in breast imaging and hybrid imaging, supported by a nuclear
medicine physician with 15 years of experience. All images were imported into an open-
source medical image viewer (Horos v.3.3.5) for image visualization and quantitative
parameter extraction. Breast lesions were identified on post-contrast subtracted images,
and lesion location was recorded.
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2.4. Radiomics Analysis

All PET/MRI datasets were imported to dedicated software (ITK-SNAP v. 3.6.0) for
lesion annotation, which was performed by a radiologist with 14 years of experience in
breast imaging, on the subtracted second post-contrast time point using a semi-automated
method. Cystic/necrotic areas and/or biopsy markers were excluded during annotation.

Prior to radiomic feature calculations, all images were reduced to 32 gray levels, and all
dynamic images were normalized to the pre-contrast phase, resulting in maps of percentage
enhancement. For potential data class imbalances, adaptive synthetic sampling was applied
to equalize class sizes [17]. A total of 101 radiomic features were calculated and grouped
into six classes (22 first order, 26 based on gray-level co-occurrence matrices, 16 based on
run-length matrices, 16 based on size zone matrices, 16 based on neighborhood gray-level
dependence matrices, and 5 based on neighborhood gray-tone difference matrices) using
CERR software [18].

2.5. Reference Standard

Pretreatment biopsy specimens were used to determine tumor histology, tumor and
nuclear grades, and immunohistochemical status, including estrogen receptor, progesterone
receptor, and HER2. The proliferation index Ki-67 was recorded as <15% (low proliferation)
or ≥15% (high proliferation) [19]. In the case of an equivocal HER2 status, lesions were
additionally evaluated using fluorescence in situ hybridization and classified as positive if
gene amplification was detected. Determination of HER2 status followed the ASCO/CAP
2018 guidelines [20].

According to current guideline recommendations, tumors were classified into luminal
A, luminal B, HER2+-enriched, and triple-negative based on the immunohistochemical
evaluation. Histopathological results from surgical tumor specimens were used as the
reference standard to distinguish between complete pathological response (pCR) and
noncomplete pathological response (non-pCR) [21]. Regression criteria by Sinn et al. were
applied to assess therapy response, with a score of 4 considered to be pCR [22].

2.6. Statistical Analysis and Predictive Model Building

After the determination of the most important radiomic features by using an elastic
net combining Lasso and ridge regression, a maximum of 6 features were selected for each
model to avoid overfitting. With a limited dataset, it is inappropriate to select a large num-
ber of features. Utilizing support vector machines and 5-fold cross-validation, predictive
models were developed in Matlab. The use of 6 features ensures that there are at least
5 cases per feature in the minority class (31 pathological complete responders) for the main
analysis and at least 2 cases per feature in the sub-analyses. The data were analyzed in three
groups, (1) entire cohort, (2) HR+/HER2− subgroup, and (3) TN/HER2+ subgroup [3], as
standalone sequences/positron emission tomography (PET), apparent diffusion coefficient
(ADC), T2, PET, dynamic phase 1, dynamic phase 2, dynamic phase 3, dynamic phase 4,
and dynamic phase 5 and then in various combinations (all dynamic phases aggregated,
all MR data aggregated, and all imaging data aggregated). Sensitivity, specificity, positive
predictive value, negative predictive value, and accuracy were calculated for each model.

3. Results
3.1. Patient Population and Breast Lesion Characteristics

The mean age of the 73 patients was 49 years (range 27–77 years). Of the 73 breast
cancers, 47 were ER+ (64%), 48 were PR+ (66%), 21 were HER2+ (22%), and 69 showed high
proliferation with Ki-67 greater than 15% (95%). Ten cancers were classified as luminal A
(14%), forty-two were luminal B (58%), two were HER2-enriched (3%), and nineteen were
triple-negative (TN) (26%). One cancer was classified as G1 (1%), 37 were G2 (51%), and
35 were G3 (48%). The cohort can be divided into 31 pathological complete responders
(Figure 1) and 42 non-pathologic complete responders. Only four patients showed no
reaction to neoadjuvant therapy (Sinn grade 0) and were included in the non-pCR group,
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as this population was too small for further subgroup analysis. In accordance with a
publication by Braman et al., the cohort was further split for subgroup analyses into
HR+/HER2− and TN/HER2+ cases. The HR+/HER2− group comprised 27 patients with
non-pathological complete response and 14 with complete pathological response. In the
TN/HER2+ subgroup, there were 15 patients with non-pathological complete response
and 17 with complete pathological response. Please refer to Table 1 for detailed information
on patient characteristics.
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Figure 1. Example of a 47-year-old, triple-negative patient with pathological complete response
after NACT: Primary tumor is clearly delineated in pretreatment breast MRI on T2w images (A) and
post-contrast subtracted T1w images (B) and shows signal loss in the ADC map (C) and intense
FDG uptake (D). In post-treatment breast MRI, no residual tumor can be detected on T2w images (E)
or post-contrast subtracted T1w images (F,G). Post-therapeutic histopathology displaying focally
accentuated sclerosing fibrosis and siderophages (lower right) but no residual invasive breast cancer
(H&E, 50×).

Table 1. Patient characteristics.

Total Patients Number of Patients

Menopause status
Pre 38
Peri 4
Post 31

Ki67
Negative < 15% 4
Positive > 15% 69

PR status
Positive 48

Negative 25
ER status

Positive 47
Negative 26

HER2neu expression
0 29

1+ 22
2+ 6
3+ 16
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Table 1. Cont.

Total Patients Number of Patients

Tumor grade
G1 1
G2 37
G3 35

Subtype
Basal-like/

triple-negative 19

Luminal A 10
Luminal B 42

Her2-enriched 2
Histology

NST 69
Lobular invasive 3

Other 1
Response

(Regression criteria of Sinn)
0 4
1 31
2 4
3 3
4 31

3.2. Prediction of Pathological Response in Entire Cohort

The best results in terms of AUC and NPV for the prediction of pCR were achieved by
the combination of all MR and PET (0.8 and 79.5, respectively, see Figure 2A). Comparable
AUC, sensitivity, and NPV were shown for PET only, resulting in an AUC of 0.77, sensitivity
of 81%, and NPV of 78.9%. No significant differences among the results were observed.
The lowest AUCs were reported for the second dynamic set (dynamic 2; 0.66), followed
by the first dynamic set (0.69), all dynamics (0.69), and T2-weighted imaging (0.7). Please
refer to Table 2 for detailed information on the best classification accuracies for the predic-
tion of pCR and Table S1 in the Supplementary Material for detailed information on the
selected features.

Table 2. Best mean classification accuracies achieved for the prediction of pCR based on each MRI
imaging sequence as well as in combination with PET for prediction of pCR in the entire cohort.

h AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Accuracy
(95% CI)

ADC 0.72
(0.61–0.83)

71.4
(55.4–84.3)

69.0
(52.9–82.4)

69.8
(58.6–79.0)

70.7
(59.0–80.3)

70.2
(59.3–79.7)

T2 0.70
(0.58–0.82)

76.2
(60.6–88.0)

69.0
(52.9–82.4)

71.1
(60.3–80.0)

74.4
(61.9–83.8)

72.6
(61.8–81.8)

Dynamic 1 0.69
(0.58–0.81)

66.7
(50.5–80.4)

69.0
(52.9–82.4)

68.3
(56.6–78.0)

67.4
(56.3–76.9)

67.9
(56.8–77.6)

Dynamic 2 0.66
(0.54–0.78)

71.4
(55.4–84.3)

59.5
(43.3–74.4)

63.8
(53.9–72.7)

67.6
(54.9–78.1)

65.5
(54.3–75.5)

Dynamic 3 0.71
(0.60–0.82)

47.6
(32.0–64.6)

78.6
(63.2–89.7)

69.0
(53.5–81.1)

60.0
(51.9–67.6)

63.1
(51.9–73.4)

Dynamic 4 0.71
(0.60–0.82)

38.1
(23.6–54.4)

92.9
(80.5–98.5)

84.2
(62.7–94.4)

60.0
(53.8–65.9)

65.5
(54.3–75.5)

Dynamic 5 0.72
(0.61–0.84)

69.0
(52.9–82.4)

71.4
55.4–84.3)

70.7
(59.0–80.3)

69.8
(58.6–79.0)

70.2
(59.3–79.7)

All Dynamics 0.69
(0.57–0.81)

66.7
(50.5–80.4)

76.2
(60.6–88.0)

73.7
(61.0–83.4)

69.6
(59.1–78.4)

71.4
(60.5–80.8)
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Table 2. Cont.

h AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Accuracy
(95% CI)

All MR 0.76
(0.66–0.86)

71.4
(55.4–84.3)

69.0
(52.9–82.4)

69.8
(58.6–79.0)

70.7
(59.0–80.3)

70.2
(59.3–79.7)

PET 0.77
(0.66–0.87)

81.0
(65.9–91.4)

71.4
(55.4–84.3)

73.9
(63.2–82.4)

78.9
(66.1–87.8)

76.2
(65.7–84.8)

All MR and
PET

0.80
(0.70–0.89)

81.0
(65.9–91.4)

73.8
(58.0–86.1)

75.6
(64.6–84.0)

79.5
(66.9–88.1)

77.4
(67.0–85.8)
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Figure 2. ROC for prediction of pathological response: ROC for prediction of pathological response
based on the combination of all MR and PET data in (A) entire cohort, (B) in the subgroup of
HR+/HER2− patients, and (C) in the subgroup of TN/HER2+ patients.

3.3. Subgroup Analysis 1: Prediction of pCR in HR+/HER2−
The best results in terms of the highest AUC for the prediction of pCR in HR+/HER2−

patients were achieved by the combination of all MR and PET (0.94, see Figure 2B), followed
by PET only (0.9) and all dynamics and all MR (both 0.89). While the highest sensitivity
was shown for all dynamics (92.6%), the highest specificity was seen in T2-weighted (T2w)
imaging (92.6%). T2w imaging also achieved the highest PPV (90.0%), while the best NPV
was shown to be equal for PET and all MR and PET (85.2%). Please refer to Table 3 for
detailed information on the best classification accuracies for the prediction of pCR and
Table S2 in the Supplementary Material for detailed information on the selected features.

Table 3. Best mean classification accuracies achieved for prediction of pCR based on each MRI
imaging sequence as well as in combination with PET for prediction of pCR in HR+/HER2−.

Images AUC Sensitivity Specificity PPV NPV Accuracy

ADC 0.64
(0.48–0.79)

70.4
(49.8–86.3)

63.0
(42.4–80.6)

65.5
(52.3–76.7)

68.0
(52.6–80.3)

66.7
(52.5–78.9)

T2 0.85
(0.74–0.95)

66.7
(46.0–83.5)

92.6
(75.7–99.1)

90.0
(69.8–97.2)

73.5
(61.7–82.7)

79.6
(66.5–89.4)

Dynamic 1 0.79
(0.67–0.91)

70.4
(49.8–86.3)

74.1
(53.7–88.9)

73.1
(57.8–84.3)

71.4
(57.3–82.3)

72.2
(58.4–83.5)

Dynamic 2 0.66
(0.51–0.81)

59.3
(38.8–77.6)

70.4
(49.8–86.3)

66.7
(50.8–79.5)

63.3
(50.8–74.3)

64.8
(50.6–77.3)

Dynamic 3 0.69
(0.54–0.84)

85.2
(66.3–95.8)

59.3
(38.8–77.6)

67.6
(56.4–77.2)

80.0
(60.6–91.2)

72.2
(58.4–83.5)

Dynamic 4 0.72
(0.58–0.86)

66.7
(46.0–83.5)

77.8
(57.7–91.4)

75.0
(58.5–86.5)

70.0
(56.9–80.5)

72.2
(58.4–83.5)

Dynamic 5 0.65
(0.50–0.81)

81.5
(61.9–93.7)

63.0
(42.4–80.6)

68.8
(56.6–78.8)

77.3
(59.4–88.8)

72.2
(58.4–83.5)

All Dynamics 0.89
(0.80–0.98)

92.6
(75.7–99.1)

74.1
(53.7–88.9)

78.1
(65.2–87.2)

90.9
(72.1–97.5)

83.3
(70.7–92.1)
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Table 3. Cont.

Images AUC Sensitivity Specificity PPV NPV Accuracy

All MR 0.89
(0.79–0.98)

81.5
(61.9–93.7)

85.2
(66.3–95.8)

84.6
(68.6–93.3)

82.1
(67.3–91.2)

83.3
(70.7–92.1)

PET 0.90
(0.81–0.98)

85.2
(66.3–95.8)

85.2
(66.3–95.8)

85.2
(69.7–93.5)

85.2
(69.7–93.5)

85.2
(72.9–93.4)

All MR and PET 0.94
(0.88–1.00)

85.2
(66.3–95.8)

85.2
(66.3–95.8)

85.2
(69.7–93.5)

85.2
(69.7–93.5)

85.2
(72.9–93.4)

3.4. Subgroup Analysis 2: Prediction of pCR in TN/HER2+

The best results in terms of the highest AUC, sensitivity, specificity, PPV, NPV, and ac-
curacy for the prediction of therapy response in TN/HER2+ patients were equally achieved
by the combination of all MR and PET (see Figure 2C), all MR, and all dynamics (0.92,
88.2%, 86.7%, 88.2%, 86.7%, and 87.5%, respectively). The overall results for PET were only
distinctly lower in this subgroup when compared to patients with HR+/HER2− as well
as the entire cohort, with an AUC of 0.67, sensitivity of 70.6%, specificity of 60.0%, PPV of
66.7%, NPV of 64.3%, and accuracy of 65.6%. Comparably low results were obtained for the
fifth dynamic set and ADC. Please refer to Table 4 for detailed information on the best clas-
sification accuracies for the prediction of pCR and Table S3 in the Supplementary Material
for detailed information on the selected features.

Table 4. Best mean classification accuracies achieved for prediction of pCR based on each MRI
imaging sequence as well as in combination with PET for prediction of pCR in TN/HER2+.

Images AUC Sensitivity Specificity PPV NPV Accuracy

ADC 0.64
(0.43–0.85)

82.4
(56.6–96.2)

60.0
(32.3–83.7)

70.0
(54.7–81.8)

75.0
(49.8–90.1)

71.9
(53.5–86.3)

T2 0.75
(0.57–0.93)

76.5
(50.1–93.2)

66.7
(38.4–88.2)

72.2
(54.8–84.8)

71.4
(49.7–86.4)

71.9
(53.3–86.3)

Dynamic 1 0.75
(0.57–0.93

82.4
(56.6–96.2)

46.7
(21.3–73.4)

63.6
(50.9–74.7)

70.0
(42.2–88.2)

65.6
(46.8–81.4)

Dynamic 2 0.74
(0.55–0.93)

82.4
(56.6–96.2)

73.3
(44.9–92.2)

77.8
(59.5–89.3)

78.6
(55.7–91.5)

78.1
(60.0–90.7)

Dynamic 3 0.82
(0.65–0.98)

88.2
(63.6–98.5)

80.0
(51.9–95.7)

83.3
(64.2–93.3)

85.7
(61.4–95.8)

84.4
(67.2–94.7)

Dynamic 4 0.83
(0.68–0.98)

82.4
(56.6–92.4)

73.3
(44.9–92.2)

77.8
(59.5–89.3)

78.6
(55.7–91.5)

78.1
(60.0–90.7)

Dynamic 5 0.59
(0.38–0.80)

64.7
(33.3–85.8)

66.7
(38.4–88.2)

68.8
(49.8–83.0)

62.5
(44.4–77.7)

65.6
(46.8–81.4)

All Dynamics 0.92
(0.82–1.00)

88.2
(63.6–98.5)

86.7
(59.5–98.3)

88.2
(67.1–96.5)

86.7
(63.5–96.0)

87.5
(71.0–96.5)

All MR 0.92
(0.82–1.00)

88.2
(63.6–98.5)

86.7
(59.5–98.3)

88.2
(67.1–96.5)

86.7
(63.5–96.0)

87.5
(71.0–96.5)

PET 0.67
(0.48–0.86)

70.6
(44.0–89.7)

60.0
(32.3–83.7)

66.7
(50.0–80.0)

64.3
(43.6–80.7)

65.6
(46.8–81.4)

All MR and
PET

0.92
(0.82–1.00)

88.2
(63.6–98.5)

86.7
(59.5–98.3)

88.2
(67.1–96.5)

86.7
(63.5–96.0)

87.5
(71.0–96.5)

4. Discussion

Radiomics-based analysis of breast cancer has emerged to become a well-investigated
research focus in assessing its potential for predicting various endpoints, such as relapse,
progression-free survival, subtype, or tumor phenotyping [7–10,13,14,23–25]. PCR after
NAC has been shown to imply prolonged disease-free and overall survival [26] and has
therefore been proposed as a surrogate early clinical endpoint for long-term survival [27].
Hence, the prediction of pCR to NAC has recently become the focus of radiomics-based re-
search, supporting the idea of enhanced personalized medicine by means of pretherapeutic
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patient stratification. Whilst most studies showed promising results, the majority of them
were based either on mammographic or MR-based imaging, so they did not involve the as-
sessment of metabolic tumor features [6,10,28–31]. In this study, we aimed to assess a more
comprehensive imaging platform that comprises morphologic, functional, and metabolic
tumor features by means of simultaneous 18F-FDG PET/MR imaging for radiomics-based
algorithmic prediction of pCR to NAC in patients with breast cancer. Our results are in line
with previous studies demonstrating the general feasibility of MRI-based radiomics predic-
tion of pCR to NAC and furthermore underline the added value of metabolic features, as
the combined analysis of morphologic, functional, and metabolic tumor features achieved
the best results in the entire cohort as well as in the subgroup with HR+/HER2. One of
the early investigations on MRI-based radiomics prediction of pCR to NAC was published
by Braman et al. [3]. Their results ranged from an AUC of 0.78 and accuracy of 0.76 in
the training set to an AUC of 0.74 and accuracy of 0.67 in the testing dataset. Despite the
distinct difference in the radiomic analysis performed by Bramann et al. in terms of their
addition of peritumoral radiomics compared to our more limited intratumoral analysis,
our results are comparable to theirs, yielding an AUC of 0.76 and accuracy of 0.70 based
on all MR sequences. These results were further improved in our study once the PET
component was added to the analysis (AUC 0.8; accuracy 77.4%), which underlines the
reflection of metabolic features in tumor lesions and the added value for the prediction of
pCR. Comparable to the results of Braman et al., our receptor-specific subgroup analyses
also revealed better results than in the entire patient cohort. The prediction of pCR in
patients with HR+, HER2− tumors achieved an AUC of 0.89 and accuracy of 83.3% based
on all MR sequences and showed better results after the addition of PET (0.94 and 85.3%,
respectively). Again, our results showed an improved tendency when compared to Braman
et al. for the TN/HER2+ subgroup (AUC 0.92 and accuracy 87.5% in our study versus 0.89
and 83.3%) based on all MR sequences. The distinct difference between the TN/HER2+
subgroup and the results of the entire cohort and HR+/HER2− tumors was that PET did
not add any valuable information in the TN/HER2+ group; hence, the results for all MR
sequences and all MR and PET are identical. It is worth noting the differences in accuracy
when considering PET-based radiomic features between the main analysis (76.2%) and the
subgroup analyses (65.6% for TN/HER2+ cases and 87.5% for TN/HER2− cases). With a
limited dataset (and thus large confidence intervals for diagnostic metrics), it is difficult to
draw definitive conclusions, but these results seem to indicate that it may be appropriate to
develop distinct models for predicting response based on subtype.

Examining the selected features in detail (Table S1), it is apparent that there is value in
incorporating radiomic features from both modalities and a range of MR sequences (DWI,
DCE, and T2) when developing a predictive model for the entire cohort. Interestingly,
when the cohort is split into two subgroups, only the radiomic features from the DCE data
are utilized in the final model for the TN/HER2+ cases. Conversely, radiomic features
from PET imaging appear to predominate when analyzing HR+/HER2− cases. These
observations warrant further investigation in a larger patient cohort.

The value of metabolic tumor features for the prediction of pCR has been previously
demonstrated in a number of studies. Cheng et al. evaluated the utility of textural features
of 18F-FDG PET/CT for predicting pCR after two cycles of chemotherapy. According to
their results, the analysis of imaging parameters such as maximum standardized uptake
value, metabolic tumor volume, total lesion glycolysis, and textural features, including
entropy, coarseness, and skewness, enables the prediction of pCR in both HER2-negative
and HER2-positive patients [32]. The predictive efficacy of PET/CT was further underlined
in a more recent study by Li et al., as they could demonstrate that radiomic predictors from
pretreatment PET/CT scans were able to predict pCR after NAC with accuracies of up to 0.8
(when combined with patient age) [33]. While the general feasibility and efficacy of PET/CT
for the prediction of pCR in breast cancer has been well demonstrated, the utilization of
PET/MRI as the imaging platform has been rather scarce. The recent publication by
Choi et al. is among the few that used retrospectively fused PET/CT and MRI datasets
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to investigate their predictive efficacy for the prediction of pCR and compare an image
deep learning model (CNN) with conventional methods. Their results revealed that the
application of the CNN method further improved the accuracy of prediction compared
to the conventional analysis in a subgroup of patients [34]. While their results can be
considered promising, the highly selective and small patient cohort of 56 patients with a
focus on TN- or HER2-negative cancers and rather low response rates to NAC (89% non-
responders) limit the generalization of their results to the whole breast cancer population.

To the best of our knowledge, our study is one of the first to utilize simultaneous
18F-FDG PET/MRI as the imaging platform for radiomic prediction of pCR to NAC. Our
setup to analyze each MRI sequence and PET individually as well as in combination helped
to gain more insight into the predictive efficacy of multiparametric imaging. While MRI
sequences by themselves (ADC, T2, and DCE) showed rather poor predictive potential, the
combined analysis of all MR sequences provided valuable AUC and accuracy values and
was further improved after the addition of PET (except in the TN/HER2+ subgroup). This
supports our hypothesis that the utilization of multiparametric 18F-FDG-PET/MRI may
provide more comprehensive insight into breast cancer characteristics and hence serve as a
valuable platform for the non-invasive prediction of pCR to NAC in breast cancer patients.

Although our results are promising regarding the potential of 18F-FDG PET/MRI as
a platform for the radiomics-based prediction of pCR to NAC, the following important
limitations of the current study should be noted: Ideally, feature selection should be
performed within each fold to ensure full independence for the cross-validation analysis.
However, with a limited dataset, the described approach was taken. This has the advantage
of producing individual models for each sequence-type approach, rather than potentially
multiple models reflecting variations in feature selection within each fold. The models
and features described in this work can easily be applied to future datasets, enabling
independent assessment of model accuracies. Previous publications demonstrated the
benefits of including clinical features in imaging radiomic features for analysis [7] as well
as in multi-center studies to assess the real value and clinical applicability of radiomics
analyses. While the utilization of simultaneous PET/MR scanners is highly convenient,
the rather low availability of integrated PET/MR scanners may hinder their widespread
application. Hence, as shown in previous publications, the utilization of co-registered
PET/CT and breast MRI data may accelerate the universal application of this valuable
imaging platform for radiomics analysis. Overall, the past few years have demonstrated
the promising value of the utilization of radiomics analyses in medicine. Nevertheless, it is
important to acknowledge its current status as a research innovation, where the transition
to clinical application is yet to be evaluated and implemented. These aspects should be
addressed in future multi-center studies.

5. Conclusions

Overall, our results demonstrate that the combined analysis of metabolic, functional,
and morphologic features facilitates a comprehensive platform for the accurate, non-
invasive prediction of pCR to NAC in breast cancer patients. Hence, simultaneous 18F-FDG
PET/MRI may help to develop a more individualized and targeted approach to treatment
as well as pretherapeutic patient stratification.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14071727/s1, Table S1: Selected features (in order of importance)
by elastic net regularization for each dataset for assessment of the entire cohort, Table S2: Selected
features (in order of importance) by elastic net regularization for each dataset for assessment of sub-
group HR+/HER2−, Table S3: Selected features (in order of importance) by elastic net regularization
for each dataset for assessment of subgroup HR+/HER2−.

Author Contributions: Conceptualization, L.U., J.K., K.P., P.G., G.A., E.R., A.-K.B., O.H., H.H.Q. and
K.H.; methodology, L.U., J.K., O.A.C., W.P.F., J.G., J.M. and N.-M.B.; validation, L.U., J.K., K.P., P.G.,
S.T., L.H. and C.R.; formal analysis, L.U., J.K., K.P. and P.G.; investigation, J.G., N.-M.B., K.H. and

https://www.mdpi.com/article/10.3390/cancers14071727/s1
https://www.mdpi.com/article/10.3390/cancers14071727/s1


Cancers 2022, 14, 1727 11 of 13

C.R.; data curation, N.-M.B., J.M., C.R., M.C. and P.G.; writing—original draft preparation, L.U. and
J.K.; writing—review and editing, L.U., J.K., N.-M.B., J.M., G.A., S.T., A.-K.B., O.H., L.H., E.R., O.A.C.,
J.G., H.H.Q., M.C., C.R., W.P.F., K.H., K.P. and P.G.; visualization, L.H., J.K. and P.G.; supervision, K.P.
and P.G.; funding acquisition, J.K. and K.P. All authors have read and agreed to the published version
of the manuscript.

Funding: The study is funded by Deutsche Forschungsgemeinschaft (DFG), the German Research
Foundation (BU3075/2-1 and KI2434/1-2). Katja Pinker is funded in part through the NIH/NCI
Cancer Center Support Grant P30 CA008748 and the Breast Cancer Research Foundation. The funding
foundation was not involved in trial design, patient recruitment, data collection, analysis, interpre-
tation or presentation, writing or editing of the reports, or the decision to submit for publication.
The corresponding author had full access to all data in the study and had all responsibility for the
decision to submit for publication.

Institutional Review Board Statement: All procedures performed were in accordance with the ethi-
cal standards of the institutional research committee and with the principles of the 1964 Declaration
of Helsinki and its later amendments. The study was approved by the local ethics committees in
06/2017 (study number 17-7396-BO and 6040R).

Informed Consent Statement: Patient written consent was waived due to the utilization of anonym-
ized data.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kong, X.; Moran, M.S.; Zhang, N.; Haffty, B.; Yang, Q. Meta-analysis confirms achieving pathological complete response after

neoadjuvant chemotherapy predicts favourable prognosis for breast cancer patients. Eur. J. Cancer 2011, 47, 2084–2090. [CrossRef]
[PubMed]

2. Luangdilok, S.; Samarnthai, N.; Korphaisarn, K. Association between Pathological Complete Response and Outcome Following
Neoadjuvant Chemotherapy in Locally Advanced Breast Cancer Patients. J. Breast Cancer 2014, 17, 376–385. [CrossRef] [PubMed]

3. Braman, N.M.; Etesami, M.; Prasanna, P.; Dubchuk, C.; Gilmore, H.; Tiwari, P.; Plecha, D.; Madabhushi, A. Intratumoral and
peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on
breast DCE-MRI. Breast Cancer Res. 2017, 19, 57. [CrossRef] [PubMed]

4. Valdora, F.; Houssami, N.; Rossi, F.; Calabrese, M.; Tagliafico, A.S. Rapid review: Radiomics and breast cancer. Breast Cancer Res.
Treat. 2018, 169, 217–229. [CrossRef] [PubMed]

5. Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.;
Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer
2012, 48, 441–446. [CrossRef]

6. Li, H.; Zhu, Y.; Burnside, E.S.; Huang, E.; Drukker, K.; Hoadley, K.A.; Fan, C.; Conzen, S.D.; Zuley, M.; Net, J.M.; et al. Quantitative
MRI radiomics in the prediction of molecular classifications of breast cancer subtypes in the TCGA/TCIA data set. NPJ Breast
Cancer 2016, 2, 16012. [CrossRef]

7. Bitencourt, A.G.V.; Gibbs, P.; Rossi Saccarelli, C.; Daimiel, I.; Lo Gullo, R.; Fox, M.J.; Thakur, S.; Pinker, K.; Morris, E.A.;
Morrow, M.; et al. MRI-based machine learning radiomics can predict HER2 expression level and pathologic response after
neoadjuvant therapy in HER2 overexpressing breast cancer. eBioMedicine 2020, 61, 103042. [CrossRef]

8. Leithner, D.; Bernard-Davila, B.; Martinez, D.F.; Horvat, J.V.; Jochelson, M.S.; Marino, M.A.; Avendano, D.; Ochoa-Albiztegui, R.E.;
Sutton, E.J.; Morris, E.A.; et al. Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast
Cancer Receptor Status and Molecular Subtypes. Mol. Imaging Biol. 2020, 22, 453–461. [CrossRef]

9. Leithner, D.; Mayerhoefer, M.E.; Martinez, D.F.; Jochelson, M.S.; Morris, E.A.; Thakur, S.B.; Pinker, K. Non-Invasive Assessment
of Breast Cancer Molecular Subtypes with Multiparametric Magnetic Resonance Imaging Radiomics. J. Clin. Med. 2020, 9, 1853.
[CrossRef]

10. Demircioglu, A.; Grueneisen, J.; Ingenwerth, M.; Hoffmann, O.; Pinker-Domenig, K.; Morris, E.; Haubold, J.; Forsting, M.;
Nensa, F.; Umutlu, L. A rapid volume of interest-based approach of radiomics analysis of breast MRI for tumor decoding and
phenotyping of breast cancer. PLoS ONE 2020, 15, e0234871. [CrossRef]

11. Pasha, N.; Turner, N.C. Understanding and overcoming tumor heterogeneity in metastatic breast cancer treatment. Nat. Cancer
2021, 2, 680–692. [CrossRef] [PubMed]

12. Alexander, J.; Mariani, O.; Meaudre, C.; Fuhrmann, L.; Xiao, H.; Naidoo, K.; Gillespie, A.; Roxanis, I.; Vincent-Salomon, A.;
Haider, S.; et al. Assessment of the Molecular Heterogeneity of E-Cadherin Expression in Invasive Lobular Breast Cancer. Cancers
2022, 14, 295. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ejca.2011.06.014
http://www.ncbi.nlm.nih.gov/pubmed/21737257
http://doi.org/10.4048/jbc.2014.17.4.376
http://www.ncbi.nlm.nih.gov/pubmed/25548587
http://doi.org/10.1186/s13058-017-0846-1
http://www.ncbi.nlm.nih.gov/pubmed/28521821
http://doi.org/10.1007/s10549-018-4675-4
http://www.ncbi.nlm.nih.gov/pubmed/29396665
http://doi.org/10.1016/j.ejca.2011.11.036
http://doi.org/10.1038/npjbcancer.2016.12
http://doi.org/10.1016/j.ebiom.2020.103042
http://doi.org/10.1007/s11307-019-01383-w
http://doi.org/10.3390/jcm9061853
http://doi.org/10.1371/journal.pone.0234871
http://doi.org/10.1038/s43018-021-00229-1
http://www.ncbi.nlm.nih.gov/pubmed/35121946
http://doi.org/10.3390/cancers14020295
http://www.ncbi.nlm.nih.gov/pubmed/35053458


Cancers 2022, 14, 1727 12 of 13

13. Umutlu, L.; Kirchner, J.; Bruckmann, N.M.; Morawitz, J.; Antoch, G.; Ingenwerth, M.; Bittner, A.K.; Hoffmann, O.; Haubold, J.;
Grueneisen, J.; et al. Multiparametric Integrated 18F-FDG PET/MRI-Based Radiomics for Breast Cancer Phenotyping and Tumor
Decoding. Cancers 2021, 13, 2928. [CrossRef] [PubMed]

14. Romeo, V.; Clauser, P.; Rasul, S.; Kapetas, P.; Gibbs, P.; Baltzer, P.A.T.; Hacker, M.; Woitek, R.; Helbich, T.H.; Pinker, K. AI-enhanced
simultaneous multiparametric 18F-FDG PET/MRI for accurate breast cancer diagnosis. Eur. J. Nucl. Med. Mol. Imaging 2022,
49, 596–608. [CrossRef]

15. Kirchner, J.; Grueneisen, J.; Martin, O.; Oehmigen, M.; Quick, H.H.; Bittner, A.K.; Hoffmann, O.; Ingenwerth, M.; Catalano, O.A.;
Heusch, P.; et al. Local and whole-body staging in patients with primary breast cancer: A comparison of one-step to two-step
staging utilizing 18F-FDG-PET/MRI. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2328–2337. [CrossRef]

16. Oehmigen, M.; Lindemann, M.E.; Lanz, T.; Kinner, S.; Quick, H.H. Integrated PET/MR breast cancer imaging: Attenuation
correction and implementation of a 16-channel RF coil. Med. Phys. 2016, 43, 4808. [CrossRef]

17. He, H.; Bai, Y.; Garcia, E.; Li, S. ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. In Proceeding of the
IEEE International Joint Conference on Neural Networks, Hong Kong, China, 1–8 June 2008; pp. 1322–1328. [CrossRef]

18. Apte, A.P.; Iyer, A.; Crispin-Ortuzar, M.; Pandya, R.; van Dijk, L.V.; Spezi, E.; Thor, M.; Um, H.; Veeraraghavan, H.; Oh, J.H.;
et al. Technical Note: Extension of CERR for computational radiomics: A comprehensive MATLAB platform for reproducible
radiomics research. Med. Phys. 2018, 45, 3713–3720. [CrossRef]

19. Dowsett, M.; Nielsen, T.O.; A’Hern, R.; Bartlett, J.; Coombes, R.C.; Cuzick, J.; Ellis, M.; Henry, N.L.; Hugh, J.C.; Lively, T.; et al.
Assessment of Ki67 in breast cancer: Recommendations from the International Ki67 in Breast Cancer working group. J. Natl.
Cancer Inst. 2011, 103, 1656–1664. [CrossRef]

20. Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.;
Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncol-
ogy/College of American Pathologists Clinical Practice Guideline Focused Update. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol.
2018, 36, 2105–2122. [CrossRef]

21. Kaufmann, M.; Hortobagyi, G.N.; Goldhirsch, A.; Scholl, S.; Makris, A.; Valagussa, P.; Blohmer, J.-U.; Eiermann, W.; Jackesz, R.;
Jonat, W.; et al. Recommendations From an International Expert Panel on the Use of Neoadjuvant (Primary) Systemic Treatment
of Operable Breast Cancer: An Update. J. Clin. Oncol. 2006, 24, 1940–1949. [CrossRef]

22. Sinn, H.P.; Schmid, H.; Junkermann, H.; Huober, J.; Leppien, G.; Kaufmann, M.; Bastert, G.; Otto, H.F. Histologic regression of
breast cancer after primary (neoadjuvant) chemotherapy. Geburtshilfe Frauenheilkd 1994, 54, 552–558. [CrossRef] [PubMed]

23. Leithner, D.; Horvat, J.V.; Marino, M.A.; Bernard-Davila, B.; Jochelson, M.S.; Ochoa-Albiztegui, R.E.; Martinez, D.F.; Morris, E.A.;
Thakur, S.; Pinker, K. Radiomic signatures with contrast-enhanced magnetic resonance imaging for the assessment of breast
cancer receptor status and molecular subtypes: Initial results. Breast Cancer Res. 2019, 21, 106. [CrossRef] [PubMed]

24. Lo Gullo, R.; Vincenti, K.; Rossi Saccarelli, C.; Gibbs, P.; Fox, M.J.; Daimiel, I.; Martinez, D.F.; Jochelson, M.S.; Morris, E.A.;
Reiner, J.S.; et al. Diagnostic value of radiomics and machine learning with dynamic contrast-enhanced magnetic resonance
imaging for patients with atypical ductal hyperplasia in predicting malignant upgrade. Breast Cancer Res. Treat. 2021, 187, 535–545.
[CrossRef]

25. Pinker, K.; Shitano, F.; Sala, E.; Do, R.K.; Young, R.J.; Wibmer, A.G.; Hricak, H.; Sutton, E.J.; Morris, E.A. Background, current role,
and potential applications of radiogenomics. J. Magn. Reson. Imaging JMRI 2018, 47, 604–620. [CrossRef] [PubMed]

26. Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.;
Valagussa, P.; et al. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis.
Lancet 2014, 384, 164–172. [CrossRef]

27. Asselain, B.; Barlow, W.; Bartlett, J.; Bergh, J.; Bergsten-Nordström, E.; Bliss, J.; Boccardo, F.; Boddington, C.; Bogaerts, J.;
Bonadonna, G.; et al. Long-term outcomes for neoadjuvant versus adjuvant chemotherapy in early breast cancer: Meta-analysis
of individual patient data from ten randomised trials. Lancet Oncol. 2018, 19, 27–39. [CrossRef]

28. Newman, L.A.; Pernick, N.L.; Adsay, V.; Carolin, K.A.; Philip, P.A.; Sipierski, S.; Bouwman, D.L.; Kosir, M.A.; White, M.;
Visscher, D.W. Histopathologic evidence of tumor regression in the axillary lymph nodes of patients treated with preoperative
chemotherapy correlates with breast cancer outcome. Ann. Surg. Oncol. 2003, 10, 734–739. [CrossRef]

29. McNeish, D.M. Using Lasso for Predictor Selection and to Assuage Overfitting: A Method Long Overlooked in Behavioral
Sciences. Multivar. Behav. Res. 2015, 50, 471–484. [CrossRef]

30. Pal, M.; Mather, P.M. Support vector machines for classification in remote sensing. Int. J. Remore Sens. 2005, 26, 1007–1011.
[CrossRef]

31. Cain, E.H.; Saha, A.; Harowicz, M.R.; Marks, J.R.; Marcom, P.K.; Mazurowski, M.A. Multivariate machine learning models for
prediction of pathologic response to neoadjuvant therapy in breast cancer using MRI features: A study using an independent
validation set. Breast Cancer Res. Treat. 2019, 173, 455–463. [CrossRef]

32. Cheng, L.; Zhang, J.; Wang, Y.; Xu, X.; Zhang, Y.; Zhang, Y.; Liu, G.; Cheng, J. Textural features of 18F-FDG PET after two cycles of
neoadjuvant chemotherapy can predict pCR in patients with locally advanced breast cancer. Ann. Nucl. Med. 2017, 31, 544–552.
[CrossRef] [PubMed]

http://doi.org/10.3390/cancers13122928
http://www.ncbi.nlm.nih.gov/pubmed/34208197
http://doi.org/10.1007/s00259-021-05492-z
http://doi.org/10.1007/s00259-018-4102-4
http://doi.org/10.1118/1.4959546
http://doi.org/10.1109/IJCNN.2008.4633969
http://doi.org/10.1002/mp.13046
http://doi.org/10.1093/jnci/djr393
http://doi.org/10.1200/JCO.2018.77.8738
http://doi.org/10.1200/JCO.2005.02.6187
http://doi.org/10.1055/s-2007-1022338
http://www.ncbi.nlm.nih.gov/pubmed/8001751
http://doi.org/10.1186/s13058-019-1187-z
http://www.ncbi.nlm.nih.gov/pubmed/31514736
http://doi.org/10.1007/s10549-020-06074-7
http://doi.org/10.1002/jmri.25870
http://www.ncbi.nlm.nih.gov/pubmed/29095543
http://doi.org/10.1016/S0140-6736(13)62422-8
http://doi.org/10.1016/S1470-2045(17)30777-5
http://doi.org/10.1245/ASO.2003.03.081
http://doi.org/10.1080/00273171.2015.1036965
http://doi.org/10.1080/01431160512331314083
http://doi.org/10.1007/s10549-018-4990-9
http://doi.org/10.1007/s12149-017-1184-1
http://www.ncbi.nlm.nih.gov/pubmed/28646331


Cancers 2022, 14, 1727 13 of 13

33. Li, P.; Wang, X.; Xu, C.; Liu, C.; Zheng, C.; Fulham, M.J.; Feng, D.; Wang, L.; Song, S.; Huang, G. 18F-FDG PET/CT radiomic
predictors of pathologic complete response (pCR) to neoadjuvant chemotherapy in breast cancer patients. Eur. J. Nucl. Med. Mol.
Imaging 2020, 47, 1116–1126. [CrossRef] [PubMed]

34. Choi, J.H.; Kim, H.-A.; Kim, W.; Lim, I.; Lee, I.; Byun, B.H.; Noh, W.C.; Seong, M.-K.; Lee, S.-S.; Kim, B.I.; et al. Early prediction of
neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning. Sci. Rep. 2020, 10, 21149.
[CrossRef] [PubMed]

http://doi.org/10.1007/s00259-020-04684-3
http://www.ncbi.nlm.nih.gov/pubmed/31982990
http://doi.org/10.1038/s41598-020-77875-5
http://www.ncbi.nlm.nih.gov/pubmed/33273490

	Introduction 
	Materials and Methods 
	Patients 
	PET/MRI 
	Image Analysis 
	Radiomics Analysis 
	Reference Standard 
	Statistical Analysis and Predictive Model Building 

	Results 
	Patient Population and Breast Lesion Characteristics 
	Prediction of Pathological Response in Entire Cohort 
	Subgroup Analysis 1: Prediction of pCR in HR+/HER2- 
	Subgroup Analysis 2: Prediction of pCR in TN/HER2+ 

	Discussion 
	Conclusions 
	References

