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Recent advances and future directions 
on the use of optical coherence 
tomography in neuro‑ophthalmology
Cody Lo1, Laurel N. Vuong 2, Jonathan A. Micieli3*

Abstract:
Optical coherence tomography (OCT) is a noninvasive imaging technique used to qualitatively and 
quantitatively analyze various layers of the retina. OCT of the retinal nerve fiber layer (RNFL) and 
ganglion cell–inner plexiform layer (GCIPL) is particularly useful in neuro-ophthalmology for the 
evaluation of patients with optic neuropathies and retrochiasmal visual pathway disorders. OCT allows 
for an objective quantification of edema and atrophy of the RNFL and GCIPL, which may be evident 
before obvious clinical signs and visual dysfunction develop. Enhanced depth imaging OCT allows 
for visualization of deep structures of the optic nerve and has emerged as the gold standard for the 
detection of optic disc drusen. In the evaluation of compressive optic neuropathies, OCT RNFL and 
GCIPL thicknesses have been established as the most important visual prognostic factor. There is 
increasing evidence that inclusion of OCT as part of the diagnostic criteria for multiple sclerosis (MS) 
increases its sensitivity. Moreover, OCT of the RNFL and GCIPL may be helpful in the early detection 
and monitoring the treatment of conditions such as MS and Alzheimer’s disease. OCT is an important 
aspect of the neuro-ophthalmologic assessment and its use is likely to increase moving forward.
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Introduction

Optical coherence tomography (OCT) is 
a noninvasive imaging technique that 

provides high resolution images of the retina 
and optic nerve.[1] While OCT was originally 
used in diagnosing diseases of the retina 
and then in glaucoma, this technology is 
increasingly being used to evaluate patients 
with afferent neuro‑ophthalmic conditions 
and has become the standard of care for 
evaluating patients with various optic 
neuropathies.[2] The retina is composed of 
multiple layers of neural tissue which can 
be differentiated by varying levels of signal 
on OCT. Two important retinal layers in 
evaluating patients with optic neuropathies 
are the ganglion cell layer (GCL) and retinal 
nerve fiber layer  (RNFL). The former 

contains the cell bodies of the retinal 
ganglion cells, whereas the latter contains 
the axons which eventually synapse with 
the lateral geniculate nucleus. The inner 
plexiform layer and the GCL are often 
segmented together on OCT devices and 
collectively referred to as the ganglion 
cell–inner plexiform layer (GCIPL).

Recent advancements in OCT include new 
modalities such as swept‑source (SS) OCT, 
enhanced depth imaging (EDI) OCT, en face 
OCT, and OCT angiography  (OCT‑A).[3‑6] 
Initial OCT methods had poor visualization 
of the deeper layers of the retina beyond 
Bruch’s membrane due to scattering of light 
at the retinal pigment epithelium  (RPE). 
EDI‑OCT allows for visualization of the 
deep portions of the choroid, which is 
implicated in many retinal diseases, and the 
deep structures of the optic nerve.[6] SS‑OCT 
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Figure 1: Optic disc drusen can be seen in color fundus photos and autofluorescence. Optical coherence tomography HD‑5 line raster using the enhanced depth imaging protocol 
shows three regions of hyporeflectivity with hyperreflective margins corresponding to drusen seen in the photos
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allows for penetrance to the level of the choroid at the 
expense of slightly reduced axial resolution.[7] En face OCT 
produces transverse images of the retinal layers allowing 
for evaluation of morphological changes in the coronal 
view similar to fundus photography.[5] OCT‑A visualizes 
the retinal vasculature without the use of fluorescein 
dye with much greater resolution than traditional 
angiography.[8] Collectively, these advancements have 
expanded the utility of OCT, making it one of the most 
important ancillary tests in ophthalmology. In this study, 
we review the utility of OCT in the evaluation of various 
optic neuropathies and afferent visual pathway disorders 
seen in neuro‑ophthalmology.

Optical Coherence Tomography in the 
Evaluation of Optic Neuropathies

Optic disc drusen
Optic disc drusen  (ODD) are calcified deposits of 
axonal metabolic products within the prelaminar 
tissue of the optic nerve.[9] Many patients with ODD 
are asymptomatic, but ODD can cause transient 
visual obscurations, be mistaken for papilledema, or 
increase the risk for nonarteritic anterior ischemic 
optic neuropathy  (NAION) due to crowding at the 
optic nerve head (ONH).[10‑12] Historically, ODD were 
diagnosed using imaging modalities such as B‑scan 
ultrasound, fundus autofluorescence  (FAF), and 
computed tomography  (CT).[13] EDI‑OCT, however, 
has been shown to be superior compared to previous 
methods when evaluating ODD due to better resolution 
when imaging the deep ONH structures.[10,14‑16] A 
primary limitation was that the majority of ODD are 
“buried” and difficult to visualize on examination and 
on B‑scan ultrasound. For visible ODD, EDI‑OCT and 
B‑scan ultrasound have similar sensitivity, but there is 
recent evidence to suggest that EDI‑OCT can identify 
buried ODD not seen on B‑scan ultrasound.[14,17,18] 
EDI‑OCT has offered improvements to the detection 
of noncalcified and buried drusen compared to B‑scan 
ultrasound, FAF, and CT.[14,15,19,20] Therefore, EDI‑OCT 
is particularly useful in younger populations where 
a greater proportion of ODD are buried.[11,15,20,21] An 
example of ODD seen with FAF and EDI‑OCT is shown 
in Figure 1.

EDI‑OCT has changed the way ODD are diagnosed, 
has further elucidated other peripapillary structures, 
such as peripapillary hyperreflective ovoid mass‑like 
structures  (PHOMS) and hyperreflective horizontal 
lines, and has provided a way to predict visual 
prognosis in patients with ODD. The Optic Disc Drusen 
Studies (ODDS) Consortium has made recommendations 
for consistent diagnostic criteria using OCT.[10] ODD are 
defined as hyporeflective structures that are located 
above the lamina cribrosa and have a hyperreflective 
margin.[10] Hyperreflective horizontal lines often seen 
on OCT of the optic nerve, with and without ODD, 
were previously thought to be nascent ODD. However, 
because there are still questions if the horizontal lines 
were from the lamina cribrosa, and or if they represent 
some other peripapillary finding, the ODDS Consortium 
does not include these findings in the definition of ODD.

PHOMS, hyperreflective structures seen on OCT, 
received increasing attention with the introduction of 
EDI‑OCT as they were not previously seen on B‑scan 
ultrasound or FAF due to lack of calcifications.[15] They 
were originally thought to be precursors to ODD. 
Histological analysis of PHOMS, however, demonstrated 
that they are more similar to the distended axons seen in 
papilledema.[22] Studies have suggested that PHOMS are 
caused by prelaminar axonal distension due to anomalies 
of the ONH and are not specific to ODD.[22] PHOMS have 
been seen in a number of other pathologies of the ONH 
including the numerous causes of optic disc edema.[23] 
Most recently, OCT‑A showed that PHOMS contain a 
complex vascular structure, which represent a divergence 
from the pathogenesis of ODD.[24] This highlights the 
growing sentiment that PHOMS should be viewed as 
a separate phenomenon and not diagnosed as ODD.[10]

Visual prognosis in patients with ODD has been 
suspected to correlate with the volume of the ODD, 
but was difficult to predict prior to the availability 
of EDI due to challenges identifying buried ODD.[25] 
In several studies using EDI‑OCT to evaluate ODD, 
it has been found that larger ODD are correlated 
with reduced RNFL thickness and worsening visual 
field loss.[26,27] Recent studies have suggested that the 
association with GCIPL thinning could be even greater 
and may result in a greater emphasis on the GCIPL as a 



Figure 2: Left idiopathic optic neuritis. Initial visual fields were diffusely depressed with full recovery after 4 weeks. However, on optical coherence tomography, early ganglion 
cell–inner plexiform layer thinning is seen. Despite visual field improvement, there was significant ganglion cell–inner plexiform layer thinning at 6 months
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predictor of functional decline in ODD.[26] EDI‑OCT has 
also showed that ODD are highly associated with the 
development of NAION in younger patients without 
vascular risk factors.[11,21] This is likely the result of 
ODD predisposing them to an axonal compartment 
syndrome.[11,21]

Optic  neurit is ,  multiple  sclerosis ,  and 
neuromyelitis optica spectrum disorders
Optic neuritis can be idiopathic or related to multiple 
sclerosis  (MS) or neuromyelitis optica spectrum 
disorders (NMOSD), aquaporin‑4‑immunoglobulin (Ig) G, 
and myelin oligodendrocyte glycoprotein (MOG)‑IgG.[28] 
It has long been known that RNFL and GCIPL thinning 
occurs in optic neuritis and MS, and that these changes 
correlate with visual dysfunction.[29] OCT is able to 
quantify the thickness of different retinal layers impacted 
by optic neuritis and may be helpful in the acute and 
chronic period.[30,31]

Spontaneous recovery without treatment is typically 
expected in optic neuritis, but residual thinning of the 
RNFL occurs due to retrograde degeneration [Figure 2].[32] 
Monitoring absolute measures of RNFL or GCIPL layers 
are used, but this method can be problematic as 
some individuals may have variation in thickness at 
baseline.[33,34] Recent studies have shown that intereye 
differences in RNFL and GCIPL can accurately diagnose 
previous cases of unilateral optic neuritis.[31,35,36] In 
addition, MOG‑IgG‑related optic neuritis has been 
shown to result in relative preservation of the GCIPL, 

whereas AQP4‑IgG‑related optic neuritis results in 
significant GCIPL loss.[37,38] These findings suggest that 
OCT may have a role in diagnosing these patients when 
they are seen after the acute period. The various causes 
of optic neuritis, however, have overlapping features 
that preclude OCT from being clinically useful alone at 
this time.

NMOSD is characterized by optic neuritis, longitudinally 
extensive transverse myelitis in the spinal cord, and brain 
stem encephalitis.[39,40] NMOSD shares many similarities 
with MS, such as presenting with optic neuritis, but 
carries distinct immunopathogenesis.[39,40] The majority 
of patients with NMOSD have detectable AQP‑4 or MOG 
antibodies, which assists in making the diagnosis.[39] 
The optic neuritis associated with NMOSD often has 
atypical features such as being recurrent, bilateral, and 
more severe.[39,40] Hence, while many of the OCT changes 
described in idiopathic or MS‑related optic neuritis will 
also be seen in NMOSD, recurrent episodes of optic 
neuritis in NMOSD can result in severe optic nerve 
atrophy with RNFL values <30 μm and flooring effects 
of the RNFL and GCIPL.[41] Bilateral OCT changes are 
often seen due to involvement of the optic nerve near 
the chiasm which can result in carryover effects.[39,42] 
The presence of microcystic macular edema on OCT is 
more prevalent in patients with NMOSD  (20%–26%), 
even more so in those with the AQP‑4 positive 
phenotype (40%) relative to MS patients (5%), although 
this feature can be seen in other optic neuropathies.[41,43] 
These features on OCT can help differentiate from 



6 Taiwan J Ophthalmol - Volume 11, Issue 1, January-March 2021

NMOSD from other demyelinating optic neuropathies, 
which has historically been difficult to do.

Diagnosis of MS is based on the MacDonald criteria, which 
requires dissemination in time (DIT) and dissemination 
in space  (DIS) for diagnosis.[44] The optic nerve is not 
currently a lesion site listed in the 2017 revisions to the 
MacDonald criteria despite a high prevalence of acute 
optic neuritis in MS.[44,45] This criteria did not use OCT 
testing and acknowledged that further studies using 
OCT to prove DIS would be helpful.[44] Since then, studies 
have shown that inclusion of asymptomatic patients 
with optic nerve lesions to satisfy DIS can improve 
sensitivity of the MacDonald criteria while maintaining 
specificity.[46] Studies have shown that RNFL thickness 
can be used as a clinical biomarker of visual function, 
response to disease‑modifying therapies, and overall 
disease progression in MS.[47,48]

Increasingly, there is an emphasis on axonal loss being a 
main contributor to permanent disability in progressive 
forms of MS.[49] Magnetic resonance imaging  (MRI) is 
limited in its specificity to detect axonal loss, and use of 
OCT to quantify retinal layers is likely the most accessible 
way to determine axonal loss in MS patients. Recent work 
has shown thinning of the RNFL and GCIPL on OCT as 
a marker of MS disease activity independent of optic 
neuritis.[32] The thinning is known to be dependent on the 
duration of disease, showing the greatest effect in early 
disease with a plateau effect.[50] Thinning of the RNFL 
in MS has also been associated with worse functional 
outcomes and decreased quality of life.[51] These data 
suggest that OCT changes could reflect global axonal 
loss and that neuroprotective interventions may have the 
most impact early in the disease. This is supported by the 
observation that RNFL and GCIPL atrophy were faster in 
progressive MS compared to relapsing–remitting MS.[52]

There is increasing interest in the volume of the inner 
nuclear layer  (INL) as a marker of central nervous 
system (CNS) inflammatory disease activity. The INL 
is deep to the GCIPL and is a network of bipolar, 
amacrine, and horizontal cells.[32] The INL is not subject to 
retrograde degeneration nor does it thin in optic neuritis. 
The mechanism of INL thickening in MS optic neuritis is 
still being studied, but is postulated to be due to dynamic 
fluid shifts from adjacent vascular plexuses.[30] A study of 
disease‑modifying therapies in MS showed a reduction 
with INL volume that correlated with therapeutic activity 
and overall CNS inflammation.[53] Future directions 
may look at how the INL volume changes during the 
acute phases of optic neuritis and how it correlates with 
radiological signs of inflammatory activity in MS.

OCT‑A has been used to study optic neuritis despite 
ischemia or changes in circulation not being the 

primary etiology.[19] The ONH flow index, a marker of 
radial peripapillary capillary  (RPC) circulation, was 
significantly lower in patients with a history of optic 
neuritis compared to healthy controls.[54] Reduction in 
RPC circulation in optic neuropathies of a nonischemic 
etiology may simply be related to the reduction in the 
retinal nerve fiber and GCLs.[19]

Nonarteritic anterior ischemic optic neuropathy
While there are no diagnostic features of NAION 
on OCT, both spectral‑domain  (SD) OCT and more 
recently OCT‑A have demonstrated utility in monitoring 
disease course through the acute and postacute 
phases.[55,56] Segmentation of the RNFL using SD‑OCT 
in acute NAION is limited by edema, and studies have 
suggested that GCIPL thinning is a better indicator 
of visual impairment.[57] GCIPL thinning was present 
within the 1st month following acute NAION and was 
found to precede reliable RNFL changes which can 
take months.[57] NAION has also been found to have 
characteristic “altitudinal” changes of the GCIPL, where 
the one horizontal hemisphere thins greater than the 
other, which has been used to differentiate it from optic 
neuritis at 2 weeks post‑onset  [Figure 3].[58,59] After an 
initial episode of NAION, patients are known to be at 
an increased risk of developing NAION in the fellow 
unaffected eye.[56] A study by  Duman  et al. compared 
fellow unaffected eyes to controls using SD‑OCT and 
found subclinical retinal changes, specifically mean 
GCIPL thinning and RNFL thinning in the superior and 
nasal quadrants.[51] The exact pathogenesis of NAION 
is not known, but the leading hypothesis relates to 
impairment of perfusion to the ONH via the short 
posterior ciliary arteries. OCT‑A has increasingly become 
a useful tool in NAION by advancing our understanding 
of its pathophysiology and prediction of functional 
outcomes. Multiple recent studies of OCT‑A in NAION 
have established a structure–function relationship, 
demonstrating that bidirectional changes in the vascular 
flow density of superficial capillaries surrounding 
the ONH are positively correlated with a degree of 
visual improvement.[55,60,61] OCT‑A has also been used 
to differentiate NAION from unaffected eyes or other 
forms of optic disc edema, such as optic neuritis and 
papilledema, with NAION having a significantly lower 
peripapillary vessel density.[62,63]

Papilledema
Papilledema has been characterized on OCT by the 
elevation of the peripapillary RNFL, which obscures the 
optic disc margins on fundoscopy and is seen in idiopathic 
intracranial hypertension (IIH). OCT has shown utility in 
differentiating papilledema and pseudopapilledema, an 
anomalous elevation of the optic disc, through its ability 
to identify edema within the nerve fiber layers, presence 
of vitreous traction, and visualization of deep ODD using 



Figure 3: Left nonarteritic anterior ischemic optic neuropathy with typical arcuate visual field loss. Optical coherence tomography shows mostly inferior retinal nerve fiber and 
the ganglion cell–inner plexiform layer thinning both corresponding to the visual field loss

Taiwan J Ophthalmol - Volume 11, Issue 1, January-March 2021 7

EDI‑OCT.[64] Quantification of retinal layer volumes 
with OCT has shown that patients with papilledema 
have larger outer macular RNFL ring volumes in the 
inferior and nasal quadrants, while the macular GCIPL 
shows loss in the outer temporal region.[64] These OCT 
changes are similar to patterns seen in glaucoma where 
a pressure gradient also exists across the lamina cribrosa, 
leading to stasis of axoplasmic flow.[64,65] In addition to 
the diagnosis of papilledema and IIH, OCT has also been 
shown to predict visual outcomes through quantification 
of the GCIPL. Thinning of the GCIPL measured in the 
initial months following IIH diagnosis was correlated 
with poor visual outcomes at 1‑year follow‑up and 
preceded detectable visual field changes.[66,67] Other 
studies have suggested that in addition to single values, 
early changes in GCIPL thickness following diagnosis of 
IIH, specifically thinning >10 μm in the first 2–3 weeks 
following diagnosis, are also correlated with poor visual 
outcomes.[68] Papilledema also results in retinal changes 
outside of the optic nerve including submacular fluid, 
choroidal neovascular membranes, and choroidal and 
retinal folds, which may be difficult to appreciate on 
clinical examination and can be better assessed with 
OCT [Figure 4].[69] This can help explain reduced central 
visual acuity or visual field defects that may not be 
directly attributable to papilledema.

OCT is also being used as a noninvasive method of 
monitoring changes in ICP and response to treatment 
for underlying causes of papilledema. The shape of 
the peripapillary retinal pigment epithelium and/or 
Bruch’s membrane (pRPE/BM) seen on OCT can often 
be anteriorly displaced due to the translaminar 
pressure differences in increased ICP.[70,71] Reduction 
in the anterior displacement of the pRPE/BM was 
associated with better treatment outcomes in IIH.[72] 
Future directions include improvement of techniques 
to efficiently and accurately label the BM as the edges 
can often be obscured by disc edema.[72] A recent 
pilot study showed that en face OCT could be used 
to monitor papilledema as objective parameters such 
as diameter of edema and subjective ranking by 
neuro‑ophthalmologists were well correlated with 
RNFL thickness in patients being treated for IIH.[73] 
There have been advancements in the software used 
in OCT‑A to quantify the vessels and demonstrated 
a decrease in ONH capillary density in both NAION 
and papilledema.[55,74] Peripapillary vessel density seen 
on OCT‑A has also been shown to be correlated with 
grading of papilledema and may also have potential 
as a clinical marker of early optic nerve damage due 
to correlations found with choroidal blood flow and 
GCL thickness.[75]



Figure 5: Vitamin B12 deficiency optic neuropathy. (a) Fundus photographs 
demonstrated temporal pallor of the optic nerves. (b) Optical coherence tomography 
showed temporal retinal nerve fiber layer thinning. (c) Optical coherence tomography 
of the ganglion cell–inner plexiform layer showed diffuse thinning

b c

a
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Toxic and nutritional deficiencies optic 
neuropathies
Optic neuropathies can be secondary to toxic effects 
of medications or tobacco and nutritional deficiencies 
such as Vitamin B12. Ethambutol, an antituberculosis 
drug, is a well‑established cause of severe toxic optic 
neuropathy that is often irreversible even with immediate 
discontinuation of the medication.[76] However, early 
stage ethambutol optic neuropathy  (EON) is often 
associated with a normal appearing fundus.[77] OCT has 
been used in retrospective studies to identify subclinical 
early EON through both increases and decreases in RNFL 
thickness.[78,79] A recent study found that GCIPL changes 
preceded fundus abnormalities and thinning was 
negatively correlated with a degree of visual recovery.[80] 
GCIPL changes after discontinuation of ethambutol 
could be used to predict recovery at 12 months after 
stoppage.[80] There is likely value in regular screening 
and clinical investigation of the RNFL and GCIPL after 
initiation of ethambutol treatment.[78] Optic neuropathies 
and RNFL thickening are a relatively rare, but potentially 
the only, manifestation of nutritional deficiencies 
such as thiamine.[81] In general, it has been described 
that OCT of nutritional and toxic optic neuropathies 
presents with thinning of the temporal RNFL and diffuse 
GCIPL thinning with central field loss [Figure 5].[82] The 
former of which has been suggested to be related to 
Wallerian degeneration and preferential effects on the 
papillomacular fibers.[83,84] These studies suggest that a 
multimodal imaging approach, including OCT, is useful 
in the potential early identification and confirmation of 
optic neuropathies related to nutritional deficiencies or 
adverse drug reactions.

Hereditary optic neuropathies
Hereditary optic neuropathies are caused by inherited 
nuclear or mitochondrial DNA point mutations which 
affect cellular metabolism and may present at any point 
in life. Leber’s hereditary optic neuropathy (LHON) is 

a rare condition resulting in bilateral optic neuropathies 
which have typically been characterized on OCT with 
initial thickening of the RNFL and choroid followed by 
thinning.[2] Choroidal remodeling and vascular changes 
seen in chronic LHON have led to recent studies using 
SS‑OCT to better visualize the GCIPL and deep choroidal 
structures with better spatial resolution.[85] Thinning of 
the GCIPL has been found to precede RNFL swelling 
in acute LHON and provides a more sensitive marker 
of disease progression in known disease carriers.[85‑87] 
Dominant optic atrophy (DOA) is similar to LHON, but 
typically presents earlier in life with a slow, progressive 
loss of vision. While the natural history of LHON and 
DOA is quite different, these conditions can sometimes 
have overlapping features. OCT has demonstrated that 
DOA shows RNFL thinning in the superior and inferior 
quadrants, whereas LHON has RNFL thickening in the 
acute stage, consistent with what is clinically observed.[86]

Compressive Optic Neuropathies and the 
Optic Chiasm

Compressive optic neuropathies typically present with 
slowly progressive, painless vision loss, and etiologies 
include pituitary macroadenomas, craniopharyngiomas, 
and aneurysms.[2] Chronic compression of the optic 
chiasm resulting in a bitemporal hemianopia shows 
characteristic RNFL fiber loss on OCT that has been 
coined “bow‑tie atrophy.”[2] This comes from the arcuate 
radiations of the slightly nasally positioned optic disc. 

Figure 4: Optic atrophy from papilledema. (a) Vertical raster optical coherence 
tomography scan (red line) highlights the (b) radial retinal folds (yellow arrow). 
(c) Horizontal raster optical coherence tomography scan through the fovea demonstrates 
mild subretinal fluid (red arrow) and dropout of the ellipsoid zone (green arrow)

c

b

a



Figure 6: Bitemporal hemianopia secondary to prolactinoma. (a) Optical coherence tomography of the ganglion cell–inner plexiform layer showing binasal thinning while the (b) retinal 
nerve fiber layer showing temporal thinning. (c) After medical treatment, the visual field defect resolved, but (d) the binasal ganglion cell–inner plexiform layer thinning persisted

d

c

b

a
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A similar pattern can also be seen in OCT‑A where loss 
of the superficial retinal capillary network can be seen 
in the areas of classic bow‑tie atrophy.[88] On the other 
hand, atrophy of the GCIPL in chiasmal lesions affecting 
nasal optic fibers typically respects the vertical meridian 
of the retina and can be more easily correlated with 
visual field loss [Figure 6]. Suprasellar masses may also 
affect the anterior optic chiasm resulting on a junctional 
scotoma or the optic tract, producing a homonymous 
hemianopia and corresponding OCT GCIPL changes 
[Figures 7 and 8]. Visualization of GCIPL atrophy using 
OCT is important as it is a predictor of worse visual 
prognosis after surgical decompression.[89]

OCT assessment of RNFL and GCIPL thicknesses 
is recommended in the preoperative evaluation of 
patients with sellar/suprasellar masses.[90] Earlier studies 
using OCT in this context focused mainly on RNFL 
thickness.[91,92] More recent evidence has suggested that 
the GCIPL is also important in evaluating compressive 
chiasmal lesions.[93,94] This is particularly true in early 
or mild chiasmal compression where distinct patterns 
of binasal GCIPL thinning were seen even before the 
RNFL.[93,95] Thinning of the GCIPL may be the first sign of 
early chiasmal compression affecting the anterior visual 
pathways and can be present in the absence of visual field 
deficits or compression on MRI.[95] In addition to the GCIPL, 
recent studies in patients with pituitary tumors have also 
shown that nasal and temporal RNFL thinning can occur 
in chiasmal compression without visual field loss.[96]

Preservation of RNFL and GCIPL thickness prior to 
medical or surgical treatment has been shown to be 
predictive of visual recovery.[92] The mechanism of 
recovery includes initial removal of the conduction 
block due to the compression, secondary remyelination, 
followed by restoration of axoplasmic flow.[2] Early 
or chronic cases of mild compression causing only a 
conduction block without atrophy of the ganglion cells 
are thus more likely to make a faster and more complete 
recovery. In patients with suprasellar tumors, normal 
thickness of the RNFL  (≥70 μm) preoperatively was 
found to be the only significant predictor of improved 
postoperative visual acuity and fields among other 
non‑OCT clinical characteristics in a multivariate 
analysis.[97] Recent studies have used preoperative inferior 
and superior RNFL thickness as part of a risk prediction 
model that accurately prognosticates long‑term visual 
recovery and maintenance following pituitary tumor 
surgery.[98] While many patients show persistent GCIPL 
loss even after visual recovery, thickness of the GCIPL 
was positively correlated with post‑operative visual 
field outcomes.[93] Similar findings have been replicated 
in thyroid eye disease looking at RNFL thickness as 
a predictor of surgical outcomes in individuals with 
significant visual field defects due to compressive optic 
neuropathy.[99] There is emerging evidence to suggest in 
some cases that nasal GCIPL thickness may have superior 
prognostic power to the RNFL in postoperative visual 
outcomes in sellar tumours.[100]



Figure 7: Pituitary macroadenoma causing a right junctional scotoma. Corresponding ganglion cell–inner plexiform layer thinning is seen on optical coherence tomography. 
There was some recovery of visual field loss in the right eye and full recovery in the left after surgery

Figure 8: Pituitary macroadenoma extending into the cavernous sinus and left optic tract. Prior to surgery, there was a right homonymous visual field loss and corresponding 
ganglion cell–inner plexiform layer loss on optical coherence tomography. After surgery, he regained vision despite persistent corresponding ganglion cell–inner plexiform layer loss
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It should be noted that changes in the RNFL and GCIPL on 
OCT are not always seen, particularly in the case of chronic 
chiasmal compression.[101] However, preserved RNFL and 
GCIPL in the case of chronic chiasmal compression seem 
to suggest good visual prognosis adding to its value as a 
predictor of visual recovery.[101] Since optic disc pallor is 
a subjective sign that is open to interpretation, RNFL and 
GCIPL thickness provides an objective measure that can 
easily be documented and compared at each visit and can 
be more reliable than visual field testing.[102]

Retrochiasmal Visual Pathways

Recent studies in the use of OCT in retrochiasmal lesions 
have looked at the temporal evolution, morphology, and 

frequency of GCIPL thinning in patients with homonymous 
hemianopia and retrochiasmal lesions.[103] In contrast to 
RNFL thinning which produces “bow‑tie” atrophy in the 
contralateral eye,  Mühlemann  et al. proposed referring 
to the pattern of GCIPL thinning as homonymous 
hemiatrophy to illustrate its respect for vertical meridian.[98] 
Within the retrochiasmal pathway, lesions can further 
be classified relative to where the retinal ganglion cells 
synapse at lateral geniculate nucleus, either pregeniculate 
or postgeniculate.[103] Atrophy of RNFL and GCIPL still 
occurs even in postgeniculate lesions despite no direct 
lesions to the axon and is due to retrograde transsynaptic 
degeneration  (RTSD).[104] GCIPL thinning was found to 
have higher sensitivity for detecting RTSD and occurs 
earlier after lesion onset compared to RNFL thinning.[103] 
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However, analyses using a combination of RNFL and 
GCIPL thinning were superior to either layer on its own.[103]

Previous studies have found that RNFL thinning can be 
detected immediately for pre‑geniculate lesions whereas 
this process takes longer for post‑geniculate lesions, 
being first detectable at approximately 5 months.[103] 
Additionally, there is recent evidence to suggest that 
GPICL thinning in post‑geniculate lesions may occur in 
a biphasic fashion, in contrast to previous studies that 
reported an exponential decline.[103] Other studies have 
also found GCIPL homonymous hemiatrophy in patients 
without detectable visual field deficits suggestive of 
retrochiasmal lesions.[105] In a case series, these GCIPL 
changes were due to demyelinating processes with 
resolved visual field deficits and remote traumatic 
brain injury.[106] These data suggest that homonymous 
hemiatrophy of the GCIPL could be used as a tool for 
documenting previous lesions to the retrochiasmal visual 
pathways and be helpful for establishing DIT or DIS. 
Similar to chiasmal lesions, homonymous hemiatrophy of 
the GCIPL on OCT may be the first sign that a neoplastic 
lesion is affecting the retrochiasmal visual pathways.[107]

Optical Coherence Tomography and 
Neurodegenerative Disease

The ability to quantify the RNFL and GCIPL using 
OCT is being studied as a noninvasive means of 
evaluating neurodegenerative diseases such as 
Alzheimer’s disease (AD) and Parkinson’s disease (PD). 
A  meta‑analysis found that the GCIPL, RNFL, and 
choroid were all thinner in individuals with AD.[108] These 
findings support the hypothesis that AD affects both 
cerebral neurons and the ganglion cells of the retina.[108] 
While a similar trend was found in individuals with mild 
cognitive impairment (MCI), often a precursor to AD, this 
effect did not reach statistical significance.[108] However, 
a study in amyloid‑proven AD cases only found an 
association with macular thinning, not the RNFL.[109] 
Another study in “preclinical AD,” defined as cognitively 
normal individuals with amyloid pathology on positron 
emission tomography, also found no association with 
RNFL thinning.[110] A cross‑sectional study of seniors 
without AD found that changes in GCIPL were associated 
with decreased global cognition and may represent an 
early marker of progression to AD.[111] Future studies 
could confirm the findings that suggest that GCIPL 
thinning is more prevalent compared to RNFL thinning 
in conditions thought to precede AD. Involvement of the 
RNFL and GCIPL could be due to pathological cerebral 
changes similar to retrochiasmal lesions, leading to RTSD 
or direct neurotoxic effects to the retina. Involvement 
of the choroid could be explained by cerebral vascular 
impairment, being one of the earliest features of AD and 
deposition of amyloid‑beta could occur in the choroidal 

vasculature.[112] The theory of vascular impairment is also 
supported by OCT‑A studies that showed significant 
changes in macular vessel and perfusion density in AD 
compared to MCI and controls. Future directions may 
include prospective studies to understand how OCT 
changes may predate cognitive changes and its temporal 
relationship to development of AD. Longitudinal studies 
could also be more sensitive to subtle changes over time 
and reduce the effect of interindividual differences.[109]

There is also interest in the use of OCT in patients with 
parkinsonism, which can be separated into PD and 
atypical parkinsonism such as progressive supranuclear 
palsy (PSP). Retinal ganglion cells are known to in part 
use dopaminergic transmission to modulate visual 
processing.[113] Parkinsonism is the result of decreased 
dopaminergic transmission in the basal ganglia. It 
is thought that the various mechanisms that reduce 
dopaminergic transmission in the basal ganglia can also 
affect the retina.[113] Therefore it is speculated that retinal 
changes measured by OCT could be used as a surrogate 
marker of progression in conditions such as Parkinson’s 
disease.[113]  OCT changes consistent with nonspecific 
neurodegeneration such as RNFL and macular thinning 
have long been described in patients with PD.[114] Recent 
work has focused on looking at OCT changes seen in those 
with rapid eye movement sleep behavior disorders (RBD) 
as a surrogate for prodromal PD and have seen RNFL and 
GCIPL thinning in these individuals.[115,116] Other studies 
have found different patterns of RNFL thinning on OCT 
when comparing different forms of parkinsonism such 
as PSP.[117] However, at this time, many of the changes 
described are also seen in general neurodegeneration, 
thus limiting the clinical use of OCT in the prediction or 
evaluation of parkinsonism. Future work could involve 
longitudinal studies to determine if OCT could be used 
as a screening tool in RBD patients to predict progression 
to parkinsonism.

Conclusions

OCT has become an important tool in the evaluation of 
neuro‑ophthalmologic diseases of the afferent visual 
pathway through its ability to directly visualize and 
quantify retinal tissues such as the RNFL and GCIPL. 
Recent work in the use of OCT has included the 
localization of lesions in the afferent visual system 
based on patterns of RNFL and GCIPL thinning 
such as in compressive chiasmal and retrochiasmal 
lesions. OCT has shown that patients with transient 
autoimmune or inflammatory lesions of the optic nerve 
can have lasting changes on OCT that can be used 
reliably to detect previous episodes of optic neuritis 
or retrochiasmal lesions. Moving forward, OCT 
may be formally included in the diagnostic criteria 
of MS as one tool to demonstrate dissemination of 
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demyelination in space and time. The utility of OCT 
is also expanding beyond ophthalmology to other 
specialties such as neurosurgery and neurology to help 
prognosticate diseases with specific manifestations 
in the visual system such as pituitary tumors or as a 
surrogate marker of more global neurodegeneration as 
seen in AD. The scope of OCT is likely to continue to 
expand and will be an increasingly important aspect 
in assessing neuro‑ophthalmologic disease moving 
forward.
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