
Citation: Fu, Y.; Zhao, D.; Zhou, Y.;

Lu, J.; Kang, L.; Jiang, X.; Xu, R.; Ding,

Z.; Zou, Y. Identification of

Differential Expression Genes

between Volume and Pressure

Overloaded Hearts Based on

Bioinformatics Analysis. Genes 2022,

13, 1276. https://doi.org/10.3390/

genes13071276

Academic Editors: Rongxue Wu and

Donato Gemmati

Received: 8 May 2022

Accepted: 16 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Identification of Differential Expression Genes between
Volume and Pressure Overloaded Hearts Based on
Bioinformatics Analysis
Yuanfeng Fu 1,† , Di Zhao 1,†, Yufei Zhou 1 , Jing Lu 1,2, Le Kang 1, Xueli Jiang 1, Ran Xu 1, Zhiwen Ding 1,*
and Yunzeng Zou 1,2,*

1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032,
China; shanjianhongye@126.com (Y.F.); 21111210059@m.fudan.edu.cn (D.Z.);
21111210061@m.fudan.edu.cn (Y.Z.); 19111510063@fudan.edu.cn (J.L.); kang.le@zs-hospital.sh.cn (L.K.);
19111210047@fudan.edu.cn (X.J.); xu.ran@zs-hospital.sh.cn (R.X.)

2 Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
* Correspondence: zhiwen_d@fudan.edu.cn (Z.D.); zou.yunzeng@zs-hospital.sh.cn (Y.Z.)
† These authors contributed equally to this work.

Abstract: Volume overload (VO) and pressure overload (PO) are two common pathophysiological
conditions associated with cardiac disease. VO, in particular, often occurs in a number of diseases,
and no clinically meaningful molecular marker has yet been established. We intend to find the
main differential gene expression using bioinformatics analysis. GSE97363 and GSE52796 are the
two gene expression array datasets related with VO and PO, respectively. The LIMMA algorithm
was used to identify differentially expressed genes (DEGs) of VO and PO. The DEGs were divided
into three groups and subjected to functional enrichment analysis, which comprised GO analysis,
KEGG analysis, and the protein–protein interaction (PPI) network. To validate the sequencing data,
cardiomyocytes from AR and TAC mouse models were used to extract RNA for qRT-PCR. The three
genes with random absolute values of LogFC and indicators of heart failure (natriuretic peptide B,
NPPB) were detected: carboxylesterase 1D (CES1D), whirlin (WHRN), and WNK lysine deficient
protein kinase 2 (WNK2). The DEGs in VO and PO were determined to be 2761 and 1093, respectively,
in this study. Following the intersection, 305 genes were obtained, 255 of which expressed the oppos-
ing regulation and 50 of which expressed the same regulation. According to the GO and pathway
enrichment studies, DEGs with opposing regulation are mostly common in fatty acid degradation,
propanoate metabolism, and other signaling pathways. Finally, we used Cytoscape’s three techniques
to identify six hub genes by intersecting 255 with the opposite expression and constructing a PPI
network. Peroxisome proliferator-activated receptor (PPARα), acyl-CoA dehydrogenase medium
chain (ACADM), patatin-like phospholipase domain containing 2 (PNPLA2), isocitrate dehydrogenase
3 (IDH3), heat shock protein family D member 1 (HSPD1), and dihydrolipoamide S-acetyltransferase
(DLAT) were identified as six potential genes. Furthermore, we predict that the hub genes PPARα,
ACADM, and PNPLA2 regulate VO myocardial changes via fatty acid metabolism and acyl-Coa
dehydrogenase activity, and that these genes could be employed as basic biomarkers for VO diagnosis
and treatment.

Keywords: volume overload; microarray datasets; deferentially expressed genes; biomarkers; bioin-
formatics analysis

1. Introduction

Changes in social work pressure and nutritional structure aggravate heart failure (HF),
which is a prevalent illness [1]. Volume overload (VO) is one of the most common causes of
HF [2,3]. Anemia, hyperthyroidism, pregnancy-induced hypertension, and chronic renal
failure can all increase cardiac preload and hence cause VO [4–8]. Although treatment
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of the underlying illness can postpone the onset of heart failure, how to appropriately
preserve the heart and improve myocardial remodeling remains a critical concern when
VO develops [7,9].

The production of VO is quite complex, and it is widely assumed that it is directly
tied to the permanent activation of neurohumoral renin–angiotensin–aldosterone system
(RAAS) [2,3,10]. In patients with HF, those heart failure with perserved ejection fraction
(HFpEF: EF > 50%; also includes diastolic heart failure) or heart failure with mid-range
ejection fraction (HFmrEF: EF 40–49%) ejection fraction frequently have VO [10–12]. This
is in contrast to heart failure with a low or decreased ejection fraction (HFrEF: EF 40%;
also known as systolic heart failure) [12]. Because VO and pressure overload(PO) mediate
various types of HF, research have revealed that they differ in inflammatory response,
oxidative stress, endothelial dysfunction, and other processes [13–19]. Several studies have
found that the alterations in cardiomyocytes generated by VO and PO are distinct [20–22],
although it has yet to be discovered which genes regulate these changes.

There is no identified biomarker to discriminate between VO and PO in extant fun-
damental research. Although ultrasound scanning can validate the presence of VO in
clinical diagnosis and animal experiments [23,24], gene and protein biomarkers are still
a more practical way of validation in cell research [25]. As a result, we attempted to use
bioinformatics tools to assess the genetic information of existing VO and PO models in
order to identify relevant indicators to guide VO detection.

2. Materials and Methods
2.1. Microarray Data Collection and Preprocessing

The gene expression profiles were screened and downloaded from the National Cen-
ter for Biotechnology Information Gene Expression Omnibus (GEO; https://www.ncbi.
nlm.nih.gov/geo/ (accessed on 4 November 2021)). In GSE97363, there were 10 mice in
the control group and 4 mice receiving pulmonary insufficiency and stenosis (PSPI). In
GSE52796, there were 3 mice in the control group and 5 mice receiving transverse aortic
constriction (TAC) (showed in Table 1). In order to explore the difference between VO and
PO, the right ventricular (RV) dilation and failure of mouse and the TAC datasets were
included [26,27]. The datasets using transgenic mouse and suckling mouse were excluded,
and only the datasets of wild-type mouse that underwent surgical treatment were kept. The
TAC datasets in which the hypertrophic genes natriuretic peptide A (NPPA) and natriuretic
peptide B (NPPB) remained unchanged were excluded from the analysis. Datasets with
less than 3 samples per group were also excluded.

Table 1. Basic information of GEO datasets used in the study.

GSE Series Type Sample Size Platform

Control
Pulmonary

Insufficiency
and Stenosis

Transverse
Aortic

Constriction

GSE97363 mRNA 10 4 GPL13912
GSE52796 mRNA 3 5 GPL6887

2.2. Study Design and Differentially Expressed Gene Screening

GSE97363 and GSE52796 were downloaded from GEO database through GEOquery
package. The GEO dataset with low quality and low reads was eliminated, while the
remainder of the expression set was changed to a logarithmic scale on a base-2 scale. The
LIMMA package provides an integrated solution for analyzing data from gene expression
experiments, containing rich features for information borrowing to overcome the problem
of small sample sizes [28]. Furthermore, before completing studies, gene expression levels
were standardized by averaging the treatments. By clustering samples using the correlation
measure, a broad assessment of statistical implementation may be produced. Outlying
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samples can be identified using dendrograms based on the correlation measure [29]. Sam-
ples with an irregular distribution of noise intensities may provide a significant problem.
This can be balanced by using non-normalized data to generate a box plot of log intensi-
ties before using absolute signal intensities, which results in a more equitable portrayal
of data [30]. Then, the datasets were removed for the probes corresponding to multi-
ple molecules for one probe; when encountering the probes corresponding to the same
molecule, only the probe with the largest signal value was retained, and the filtered data
used the combatting batch effect (ComBat) function of the SVA package to remove the
inter-batch difference (different datasets are regarded as the inter-batch difference) [31].
To acquire their respective differential expression values, the DEGs in each database were
computed and processed, respectively.

The cut-off used to select DEGs was defined as p-value < 0.05, and |log fold−change
(FC)| > 0.5 between each model category using student t-test for additional review. The
heatmap function in the ggplot2 package and Complex Heatmap package was used in
the study to produce heatmap plots of DEGs. To allow for comparison of different data
findings, the logFC transformation equation was used to normalize the expression values
for each data point in each expression data condition [32]. The dataset was downloaded
through the GEOquery package (2.54.1 version), using the surrogate variable analysis (SVA)
package (3.34.0 version), LIMMA package (3.42.2 version), umap package (0.2.7.0 version)
(UMAP analysis) [33], ggplot2 package (3.3.3 version) and Complex Heatmap package
(2.2.0 version) to organize and analyze datasets. The data analysis process is shown in
Figure 1.

2.3. Functional Enrichment Analysis

The online tool Database for Annotation, Visualization and Integrated Discovery
(DAVID; https://david.ncifcrf.gov/ (accessed on 7 November 2021)) [34] was used to
annotate the Gene Ontology (GO) enrichment analysis (http://amp.pharm.mssm.edu/
Enrichr/ (accessed on 7 November 2021)) [35] of identified DEGs. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) Orthology-Based Annotation System (KOBAS; http://
kobas.cbi.pku.edu.cn/kobas3 (accessed on 7 November 2021)) web-server was used to
annotate and identify KEGG-enriched pathways [36]. Significant enrichment thresholds for
GO and KEGG analyses were adjusted p-value < 0.05 and count ≥ 2.

2.4. Protein–Protein Interaction (PPI) Network Construction

The DEGs with opposite regulation obtained previously were mapped into Search
Tool for the Retrieval of Interacting Genes/Proteins(STRING; www.string-db.org (accessed
on 17 November 2021)) v11.5 [37]. A combined score of ±0.4 of PPI pairs was considered
significant [38,39]. CytoScape (www.cytoscape.org/ (accessed on 17 November 2021);
Institute for Systems Biology, Seattle, WA) was used to construct and visualize the network
of DEGs with opposite regulation. “CytoHubba“ (a plugin of CytoScape) was used to
identify the hub genes of the PPI network using three algorithms—Degree, Closeness
Centrality, and Betweenness Centrality [38,40]. A Venn diagram was constructed and
consisted of genes ranked in the top 20 of each method. There were 6 hub genes in all the
three gene sets. A PPI network was constructed by CytoScape using the genes whose rank
sum ranked in the top 20 of all and the most related genes in the STRING.

https://david.ncifcrf.gov/
http://amp.pharm.mssm.edu/Enrichr/
http://amp.pharm.mssm.edu/Enrichr/
http://kobas.cbi.pku.edu.cn/kobas3
http://kobas.cbi.pku.edu.cn/kobas3
www.string-db.org
www.cytoscape.org/
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Figure 1. Flowchart of data analysis. VO: volume overload; PO: pressure overload. 

2.3. Functional Enrichment Analysis. 
The online tool Database for Annotation, Visualization and Integrated Discovery 

(DAVID; https://david.ncifcrf.gov/ (accessed on 7 November 2021)) [34] was used to an-
notate the Gene Ontology (GO) enrichment analysis (http://amp.pharm.mssm.edu/Enri-
chr/ (accessed on 7 November 2021)) [35] of identified DEGs. The Kyoto Encyclopedia of 
Genes and Genomes (KEGG) Orthology-Based Annotation System (KOBAS; http://ko-
bas.cbi.pku.edu.cn/kobas3 (accessed on 7 November 2021)) web-server was used to anno-
tate and identify KEGG-enriched pathways [36]. Significant enrichment thresholds for GO 
and KEGG analyses were adjusted p-value < 0.05 and count ≥ 2. 

2.4. Protein–Protein Interaction (PPI) Network Construction 
The DEGs with opposite regulation obtained previously were mapped into Search 

Tool for the Retrieval of Interacting Genes/Proteins(STRING; www.string-db.org (ac-
cessed on 17 November 2021)) v11.5 [37]. A combined score of ±0.4 of PPI pairs was con-
sidered significant [38,39]. CytoScape (www.cytoscape.org/ (accessed on 17 November 
2021); Institute for Systems Biology, Seattle, WA) was used to construct and visualize the 

Figure 1. Flowchart of data analysis. VO: volume overload; PO: pressure overload.

2.5. Mice and Surgery

C57BL/6J male mice (12–15 wk old, 24.0–34.0 g) for surgery were purchased from the
Shanghai Branch of the National Rodent Laboratory Animal Resources (Shanghai, China).
Animals were settled at 24 ± 2 ◦C under 12:12-h dark–light cycles. Performing animal
experiments followed the National Institutes of Health Guide for the Care and Use of
Laboratory Animals (no. 85-23, Revised 1996). The experimental protocol was ratified by
the Animal Care and Use Committee of Zhongshan Hospital, Fudan University.

Transverse aortic constriction (TAC). Pressure overload was induced by TAC in 9 mice,
according to methods we have previously described [41]. Mice were anesthetized by
intraperitoneal injection of a mixture of ketamine (150 mg/kg) and xylazine (10 mg/kg), en-
dotracheally intubated, and ventilated (type 7025, Harvard Apparatus, March-Hugstetten,
Germany). After opening the chest cavity and isolating the transverse aorta, it was tied with
a blunted 27-gauge needle between the innominate artery and left common carotid artery.
Aortic constriction was yielded by removing the needle, followed by ligation with 6-0 silk.
Subcutaneous meloxicam (0.13 mg each) was injected for pain relief. The corresponding
sham-operated mice (sham; n = 6) underwent the same surgery without aortic constriction.

Aortic regurgitation (AR). VO was induced by AR, a developed mouse model for
volume overload study. Under the guidance of ultrasound imaging, AR surgery was
performed in 9 mice, according to methods we have previously reported [42,43]. As
described above, after mice were anesthetized, a plastic catheter with wire was intercalated
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in the right common carotid artery. Next, the wire was pushed through the catheter to prick
the aortic valves ended at significant diastolic retrograde flow in the aortic arch showed on
the Doppler ultrasound. The catheter and the wire were withdrawn, followed by ligation
with right common carotid artery. Meloxicam (0.13 mg each) was injected subcutaneously
for analgesia. The corresponding sham-operated mice (sham; n = 6) underwent the same
process without spoilage of the aortic valves.

2.6. RNA Isolation and Quantitative PCR Analysis

Total RNA was extracted from mouse cardiomyocytes using the TRIzol reagent (Am-
bion, #257401). Following the manual, PrimeScript TM RT Reagent Kit with gDNA Eraser
(Takara, #RR047A) was applied to synthesize cDNA. On a Bio-Rad IQ5 multicolor detec-
tion system, quantitative real-time polymerase chain reaction (qRT-PCR) was executed by
ChamQ Universal SYBR qPCR Master Mix (Vazyme, #Q711-02). The detection procedure
was as follows: 5 min at 95 ◦C followed by 40 cycles of 20 s at 95 ◦C and 30 s at 60 ◦C. The
results were analyzed in 2−44Ct method. The primer sequences are listed in Supplemen-
tary Table S8. For all analyses, a p-value < 0.05 was considered significant. All qRT-PCR
data were expressed as the mean ± standard error of mean (SEM). Statistical analyses were
performed using Graph Pad Prism (version 9.0.0).

3. Results
3.1. Identification of DEGs and Verification of qRT-PCR

In the VO group, compared with the control group, 2761 DEGs were identified,
including 53 up- and 2708 down-regulated genes (Supplementary Sheet S1). A total of 40
DEGs were identified between the TAC group and the control group, including 594 up- and
499 down-regulated genes (Supplementary Sheet S2). Volcano plots and heatmaps of the
identified DEGs can be observed in Figures 2 and 3, respectively. To verify the authenticity
of the sequencing data, cardiomyocytes from AR and TAC mouse models were used to
extract RNA for qRT-PCR. Carboxylesterase 1D (CES1D), whirlin (WHRN), and WNK
lysine deficient protein kinase 2 (WNK2) were the three genes with random absolute values
of LogFC and indicators of heart failure (natriuretic peptide B, NPPB) detected. The gene
expression of CES1D, WHRN, and WNK2 decreased in the AR group and increased in the
TAC group, which was consistent with the results in the database.

3.2. DEGs Co-Expression Results and Functional Enrichment Analysis

Through Venn analysis, the DEGs in the VO and TAC groups discovered 305 genes.
The down-regulated DEGs in VO were predominantly involved in cell component (CC)
ontology, such as the mitochondrial matrix, mitochondrial inner membrane, mitochondrial
protein complex, organelle inner membrane, and organellar ribosome, according to func-
tional enrichment analysis. In terms of the biological process (BP), the down-regulated
DEGs were significantly enriched in coenzyme binding. The molecular function (MF)
analysis also showed that the down-regulated DEGs were primarily enriched in the fatty
acid oxidation monocarboxylic acid catabolic process, sulfur compound metabolic process,
cellular respiration, and energy derivation by oxidation of the organic compounds. Addi-
tionally, the KEGG pathway analysis of the up-regulated DEGs was found to be enriched in
carbon metabolism, the citrate cycle (TCA cycle), peroxisome, propanoate metabolism, and
valine, leucine, and isoleucine degradation (Figure 3 and Supplementary Tables S1 and S2).
Compared with the VO group, in the TAC group, the up-regulated DEGs were primarily
enriched in nine GO terms, including three BP terms (fatty acid oxidation, carboxylic acid,
and organic acid catabolic process), three CC terms (organelle inner membrane, mitochon-
drial matrix, and sarcolemma), and three MF term (acyl-CoA dehydrogenase activity, actin
binding, and coenzyme binding; Figure 4 and Supplementary Tables S3 and S4). Further-
more, the DEGs that were elevated were significantly abundant in five KEGG pathways,
including fatty acid degradation, dilated cardiomyopathy, hypertrophic cardiomyopathy,
propanoate metabolism, and valine, leucine, and isoleucine degradation.
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Figure 2. The volcano plot, heatmap, and qPCR of DEGs. The gradient color from blue to red repre-
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Figure 2. The volcano plot, heatmap, and qPCR of DEGs. The gradient color from blue to red
represents the gene expression value ((A): VO group/sham group; (B): TAC group/sham group) from
down-regulation to up-regulation, respectively. DEGs: differentially expressed genes. The volcano
plot of DEGs: red and blue dots represent up-regulated and down-regulated genes, respectively.
(C) is VO group vs. sham group; (D) is TAC group vs. sham group. (E) is the Venn analysis of VO
and TAC. (F) is qPCR results of RNA from mice that received AR or TAC. ****: p-value < 0.0001.
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Figure 3. GO and pathway analysis of DEGs in VO group. (A) is an up-regulated differential
gene, and (B) is a down-regulated differential gene. DEGs were divided into KEGG pathway and 3
functional groups, including BP, CC, and MF. KEGG: Kyoto Encyclopedia of Genes and Genomes;
GO: Gene Ontology; BP: biological process; CC: cellular component; MF: molecular function; DEGs:
differentially expressed genes.

Then, the 305 DEGs obtained in the Venn analysis were divided into two groups for
enrichment analysis. Among them, genes with the same gene expression changes were
grouped into one group (Figure 5A), and genes with opposite gene expression changes
were grouped into another group (Figure 5B). In Figure 5A, the DEGs were enriched in 12
GO terms, including 4 BP terms (p53 signaling pathway and melanoma), 4 CC terms (signal
recognition particle and platelet α granule), and 4 KEGG pathways (negative regulation of
defense response and the establishment of protein localization to the endoplasmic reticulum;
Figure 5A and Supplementary Table S5). In Figure 5B, the DEGs with opposite changes
were significantly enriched in three KEGG pathways, including fatty acid degradation,
propanoate metabolism, and valine, leucine, and isoleucine degradation. Moreover, the
DEGs were enriched in nine GO terms, including three BP terms (acyl-CoA dehydrogenase
activity and oxidoreductase activity, acting on the CH-CH group of donors), three CC terms
(mitochondrial and organelle inner membrane), and three MF term (monocarboxylic acid,
carboxylic acid, and organic acid catabolic process; Figure 5B and Supplementary Table S6).
Finally, DEGs with no intersection between VO and TAC were used for enrichment analysis
in Figure 5C (Supplementary Table S7).
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Figure 5. GO and pathway analysis of DEGs in VO and TAC groups with same regulation, opposite
regulation, and no interaction. DEGs were divided into two functional groups, including BP and CC.
GO: Gene Ontology; BP: biological process; CC: cellular component; KEGG: Kyoto Encyclopedia of
Genes and Genomes; DEGs: differentially expressed genes. (A) is GO analysis of DEGs with same
regulation. (B) is GO analysis of DEGs with opposite regulation. (C) is GO analysis of DEGs with no
interaction.

3.3. Protein–Protein Interaction (PPI) Network

CytoScape software was used to build a PPI network in order to identify key genes.
As the logFC of the gene grew, the hue of the concentric circles darkened from yellow to
purple. Figure 6A depicts the Venn diagram of the three algorithms. Figure 6B depicts the
top six gene nodes, which include peroxisome proliferator-activated receptor α (PPARα),
acyl-CoA dehydrogenase medium chain (ACADM), patatin-like phospholipase domain
containing 2 (PNPLA2), isocitrate dehydrogenase 3α (IDH3α), heat shock protein family D
member 1 (HSPD1), and dihydrolipoamide S-acetyltransferase (DLAT). When combined
with the results of the GO analysis, these genes are mostly involved in controlling the
body’s fatty acid metabolism, potassium ion transport, and cell proliferation.
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4. Discussion

We employed bioinformatics tools to examine and combine two publicly available
microarray data sets in this study. To uncover distinct genes, we compared the VO and
PO model data with their respective control groups. The two groups of differential genes
were then compared again, and it was discovered that the expression of 53 genes in the
VO group was up-regulated compared to the PO model data, while the expression of 2708
genes was down-regulated. Among them, there are significant differences in the expression
of PPARα, ACADM, PNPLA2, IDH3α, HSPD1, and DLAT, and the function research of these
genes in VO has not been paid attention to.

PPARα is expressed in the heart, kidney, and liver [44,45], with differing protein and
mRNA expression patterns in humans and other animals [46]. PPARα is implicated in
vascular damage, cardiac disease, hypertension, and lipid disorders [47]. Among them,
PPARα was identified as a transcriptional regulator of the production and activity of
endogenous vasoconstrictors and their receptors, which may induce them to attenuate
the vasoconstriction response to major endogenous vasoconstrictors such as angiotensin
II (Ang II) [48,49]. Studies have reported that PPARα can protect the heart by resetting
the renin–angiotensin system (RAS) to control blood pressure [49,50]. In addition, PPARα
participates in mitochondrial-mediated energy metabolism [51] and can also regulate the
synthesis of very low-density lipoproteins to improve blood lipids [52]. In many clinical
studies, PPARα has also been linked to the start of cardiovascular disease, atherosclerotic
alterations, and hypertension in numerous clinical trials [53–56]. In the current research,
the exploration and clinical intervention of PPARα also focuses on PO. The expression of
PPARα is observed to be down-regulated in the VO model, and the heart tissue loses its
ability to regulate blood pressure and blood vessel damage under the condition of VO,
which is also consistent with previous research reports.

PNPLA2 is a critical gene in the process of energy metabolism that encodes a protein
that is required for intracellular triglyceride (TG) breakdown. PNPLA2 mutations can
induce severe lipodystrophy, which can lead to severe cardiomyopathy due to an abnormal
energy source [57–59]. In mouse experiments, if there is a homozygous missense mutation
of PNPLA2 (c.245G> A, p.G82D), arrhythmia and obvious cardiac dysfunction will oc-
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cur [60]. Pathological analysis of the mice revealed that the fat in the myocardial cells of the
animals had increased, as had the fibrous alterations in the myocardium. We hypothesize
that the persistent expression of PNPLA2 aids myocardial cells in hydrolyzing TG, hence
lowering fat formation and alleviating cardiac fibrosis.

HSPD1 is a gene encoding mitochondrial protein, which is involved in the folding
and assembly of newly imported proteins in mitochondria [61]. This gene has been associ-
ated to atherosclerosis and has been linked to inflammatory response [62,63]. According
to research, anti-heat-shock protein 60 or the down-regulation of this gene can worsen
atherosclerosis [62,64]. It has also been linked to the aggravation of HF by inducing cell
death via the toll-like receptor (TLR)-4 [42]. The foregoing findings are likewise compatible
with the down-regulation state of HSPD1 as shown by our VO data. When VO occurs,
the down-regulation of HSPD1 causes the immune system to worsen vascular injury and
promotes cardiomyocyte death in the state of HF.

ACADM is linked to the etiology of medium chain acyl-CoA dehydrogenase deficit
(MCADD) [65–67] and is primarily engaged in the mitochondrial fatty acid-oxidation path-
way, which affects the body’s energy metabolism. In the VO model, we hypothesize that
the gene modulates mitochondrial activity, which then affects cell energy supply, resulting
in a sequence of pathological alterations. IDH3 is highly expressed in the heart tissue
in available human data [68,69], although the existing research results are associated to
malignancies and retinopathy [70–72]. Our research discovered that IDH3 has a consider-
able down-regulation state in the VO model, providing us with a viable research target;
nevertheless, additional trials are required to validate the statistical data. DLAT (also
known as E2; PBC; PDCE2; PDC-E2) is also a gene that is highly expressed in heart tissue
but has not been paid attention to in heart disease research. The protein product of DLAT,
dihydrolipoamide acetyltransferase, accepts the acetyl group formed by the oxidative
decarboxylation of pyruvate and transfers it to coenzyme A. Studies have reported that it
is closely related to the pathogenesis of primary biliary cirrhosis (PBC), an autoimmune
liver disease [73]. However, combined with the results of its tumor research [74,75], we
speculate that this gene affects the heart’s adaptive changes to VO by participating in the
regulation of cell proliferation, and basic experimental data are still needed to support our
conjecture.

Recently reported findings from human myocardial samples revealed that angiotensin
converting enzyme 2 (ACE2) was considerably up-regulated in PO but not in VO [76].
However, in our original dataset, there are no significant changes in ACE2 in either the TAC
or PSPI groups. Previous rat hypertension models revealed that ACE2 was significantly
reduced at both the gene and protein levels, therefore whether ACE2 is raised in the PO
state remains debatable [77]. On the one hand, the data which reported ACE2 up-regulated
in PO come from severe aortic stenosis (AS). Whether all the other pressure load conditions
also lead to increased ACE2 expression is unknown. On the other hand, we assume that due
to changes in sample sources, mouse samples did not reveal substantial differences [78].

By degrading Ang II to angiotensin (1-7), ACE2 performs a crucial anti-inflammatory
and anti-fibrotic role in RAAS [79], which can ease the process of cardiac insufficiency and
cardiac hypertrophy [80]. Previous research has also discovered that ACE2 is a functional
host receptor for COVID-19 [81,82]. COVID-19 reduces the expression of p53 after entering
the host cells, causing a homeostasis imbalance [83]. Our KEGG enrichment analysis
revealed that the expression of differential genes in the p53 signaling pathway was similar
among the genes altered in the same direction by PO and VO, providing a good reference
for our treatment. The differential expression genes in our pathway analysis were cyclin
G1, cyclin dependent kinase 4, growth arrest and DNA damage inducible α, and insulin
like growth factor 1, all of which were down-regulated to varying degrees and were linked
to cell cycle and DNA damage [84,85]. Activation of p53 has been shown in vivo and
in vitro to up-regulate the RAS [86,87], yet, down-regulation of the p53 signaling pathway
in cardiovascular illness can disrupt the angiotensin I converting enzyme (ACE)/ACE2
balance. ACE2 exerts a core regulatory role in RAAS. When the p53 signaling pathway
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is suppressed to down-regulate RAS and ACE is blocked, RAAS is down-regulated by
ACE2 [79]. Consider that identical gene expression alterations were observed in both PO
and VO, which may explain why individuals with a history of cardiovascular disease have
a higher risk of death when infected with COVID-19 [88].

However, there are certain limitations to this study. The first is that the sample’s source
is limited, and there are no human-sourced data accessible for comparison in the existing
studies. Second, because VO and PO have distinct detection time points, existing study
data cannot give more detection time points, and we cannot analyze how the differential
genes of the two will evolve over time. Finally, in vivo and in vitro trials are required to
validate our findings when paired with existing experimental study results.

5. Conclusions

In summary, the expression of PPARα, ACADM, PNPLA2, IDH3α, HSPD1, and DLAT
in the VO model differs considerably from that in the PO model and could be employed
as a biomarker for the diagnosis and treatment of VO. Additionally, PPARα, ACADM and
PNPLA2 may also have a role in the regulation of the development and prognosis of VO
via the fatty acid metabolism pathway and acyl-Coa dehydrogenase activity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes13071276/s1, Table S1: GO analysis of DEGs in VO group
of up-regulated differential gene; Table S2: GO analysis of DEGs in VO group of down-regulated
differential gene; Table S3: GO analysis of DEGs in TAC group of up-regulated differential gene;
Table S4: GO analysis of DEGs in TAC group of down-regulated differential gene; Table S5: GO
analysis of DEGs in VO and TAC groups with same regulation; Table S6: GO analysis of DEGs
in VO and TAC groups with opposite regulation; Table S7: GO analysis of DEGs in VO and TAC
groups with no interaction; Table S8: Primer sequences; Sheet S1: The differentially expressed genes
(DEGs) of volume overload (VO); Sheet S2: The differentially expressed genes (DEGs) of pressure
overload (PO).

Author Contributions: Y.Z. (Yunzeng Zou) and Z.D. conceived this research. Y.F. and D.Z. made
the charts, performed statistical analysis and drafted the manuscript. Y.F. completed qRT-PCR
experiments on mouse myocardium samples. R.X., X.J., Y.Z. (Yufei Zhou), L.K. and J.L. participated
in the data and literature search, and provided suggestions for the discussion section. Z.D. and Y.Z.
(Yunzeng Zou) participated in the guidance of the research design and statistics. Z.D. and Y.Z. (Yufei
Zhou) revised the content of the article. All authors have read and agreed to the published version of
the manuscript.

Funding: This study was funded by the National Natural Science Foundation of China (Nos.:
81900245, 81730009 and 81941002) and Youth Science Foundation of Zhongshan Hospital, Fudan
University (2021ZSQN58).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Research data can be obtained by contacting the corresponding author.

Acknowledgments: We are grateful to Jian Wu and Ge Wei both from Shanghai Zhongshan Hospital
who provided some mouse samples for this study.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Mosterd, A.; Hoes, A.W. Clinical epidemiology of heart failure. Heart 2007, 93, 1137–1146. [CrossRef]
2. Metra, M.; Teerlink, J.R. Heart failure. Lancet 2017, 390, 1981–1995. [CrossRef]
3. Schwinger, R. Pathophysiology of heart failure. Cardiovasc. Diagn. Ther. 2021, 11, 263–276. [CrossRef]
4. Klein, I.; Danzi, S. Thyroid Disease and the Heart. Curr. Probl. Cardiol. 2016, 41, 65–92. [CrossRef]
5. Osuna, P.M.; Udovcic, M.; Sharma, M.D. Hyperthyroidism and the Heart. Methodist DeBakey Cardiovasc. J. 2017, 13, 60–63.

[CrossRef]

https://www.mdpi.com/article/10.3390/genes13071276/s1
https://www.mdpi.com/article/10.3390/genes13071276/s1
http://doi.org/10.1136/hrt.2003.025270
http://doi.org/10.1016/S0140-6736(17)31071-1
http://doi.org/10.21037/cdt-20-302
http://doi.org/10.1016/j.cpcardiol.2015.04.002
http://doi.org/10.14797/mdcj-13-2-60


Genes 2022, 13, 1276 13 of 16

6. Limongelli, G.; Rubino, M.; Esposito, A.; Russo, M.; Pacileo, G. The challenge of cardiomyopathies and heart failure in pregnancy.
Curr. Opin. Obstet. Gynecol. 2018, 30, 378–384. [CrossRef]

7. Rangaswami, J.; McCullough, P.A. Heart Failure in End-Stage Kidney Disease: Pathophysiology, Diagnosis, and Therapeutic
Strategies. Semin. Nephrol. 2018, 38, 600–617. [CrossRef]

8. Sîrbu, O.; Floria, M.; Dascalita, P.; Victorita, S.; Laurentiu, S. Anemia in heart failure-from guidelines to controversies and
challenges. Anatol. J. Cardiol. 2018, 20, 52–59. [CrossRef]

9. Vonck, S.; Lanssens, D.; Staelens, A.S.; Kathleen, T.; Jolien, O.; Liesbeth, B.; Wilfried, G. Obesity in pregnancy causes a volume
overload in third trimester. Eur. J. Clin. Investig. 2019, 49, e13173. [CrossRef]

10. Simmonds, S.J.; Cuijpers, I.; Heymans, S.; Jones, E. Cellular and Molecular Differences between HFpEF and HFrEF: A Step Ahead
in an Improved Pathological Understanding. Cells 2020, 9, 242. [CrossRef]

11. Paulus, W.J.; Tschöpe, C. A novel paradigm for heart failure with preserved ejection fraction: Comorbidities drive myocardial
dysfunction and remodeling through coronary microvascular endothelial inflammation. J. Am. Coll. Cardiol. 2013, 62, 263–271.
[CrossRef]

12. Ponikowski, P.; Voors, A.A.; Anker, S.D.; Héctor, B.; John, G.F.; Andrew, J.S.; Volkmar, F.; José, R.; Veli-Pekka, H.; Ewa, A.J.; et al.
2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and
treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution
of the Heart Failure Association (HFA) of the ESC. Eur. Heart J. 2016, 37, 2129–2200.

13. Katz, S.D.; Hryniewicz, K.; Hriljac, I.; Kujtim, B.; Clarito, D.; Alhakam, H.; Aleksandr, Y. Vascular endothelial dysfunction and
mortality risk in patients with chronic heart failure. Circulation 2005, 111, 310–314. [CrossRef]

14. Penn, M.S. The role of leukocyte-generated oxidants in left ventricular remodeling. Am. J. Cardiol. 2008, 101, 30D–33D. [CrossRef]
15. Tsutsui, H.; Kinugawa, S.; Matsushima, S. Oxidative stress and heart failure. Am. J. Physiol. Heart Circ. Physiol. 2011, 301,

H2181–H2190. [CrossRef]
16. Zile, M.R.; Gottdiener, J.S.; Hetzel, S.J.; John, J.M.; Michel, K.; Robert, M.; Catalin, F.B.; Barry, M.M.; Peter, E.C. Prevalence

and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction.
Circulation 2011, 124, 2491–2501. [CrossRef]

17. Pinto, A.R.; Ilinykh, A.; Ivey, M.J.; Jill, T.K.; Michelle, L.D.; Ryan, D.; Anjana, C.; Lina, W.; Komal, A.; Nadia, A.R.; et al. Revisiting
Cardiac Cellular Composition. Circ. Res. 2016, 118, 400–409. [CrossRef]

18. Van Linthout, S.; Tschöpe, C. Inflammation-Cause or Consequence of Heart Failure or Both. Curr. Heart Fail. Rep. 2017, 14,
251–265. [CrossRef]

19. van der Pol, A.; van Gilst, W.H.; Voors, A.A.; van der Meer, P. Treating oxidative stress in heart failure: Past, present and future.
Eur. J. Heart Fail. 2019, 21, 425–435. [CrossRef]

20. Raya, T.E.; Gay, R.G.; Lancaster, L.; Aguirre, M.; Moffett, C.; Goldman, S. Serial changes in left ventricular relaxation and chamber
stiffness after large myocardial infarction in rats. Circulation 1988, 77, 1424–1431. [CrossRef]

21. Stoddard, M.F.; Pearson, A.C.; Kern, M.J.; Ratcliff, J.; Mrosek, D.G.; Labovitz, A.J. Left ventricular diastolic function: Comparison
of pulsed Doppler echocardiographic and hemodynamic indexes in subjects with and without coronary artery disease. J. Am.
Coll. Cardiol. 1989, 13, 327–336. [CrossRef]

22. Aoyagi, T.; Pouleur, H.; Van Eyll, C.; Rousseau, M.F.; Mirsky, I. Wall motion asynchrony is a major determinant of impaired left
ventricular filling in patients with healed myocardial infarction. Am. J. Cardiol. 1993, 72, 268–272. [CrossRef]

23. Nakao, M.; Shimizu, I.; Katsuumi, G.; Yohko, Y.; Masayoshi, S.; Yuka, H.; Ryutaro, I.; Yung, T.H.; Shujiro, O.; Tomoyoshi, S.; et al.
Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload.
Sci. Rep. 2021, 11, 18384. [CrossRef]

24. Sun, S.; Hu, Y.; Xiao, Y.; Wang, S.; Jiang, C.; Liu, J.; Zhang, H.; Hong, H.; Li, F.; Ye, L. Postnatal Right Ventricular Developmental
Track Changed by Volume Overload. J. Am. Heart Assoc. 2021, 10, e020854. [CrossRef]

25. Toischer, K.; Zhu, W.; Hünlich, M.; Belal, A.M.; Sara, K.; Sean, P.R.; Katrin, S.; Deepak, R.; Stefan, E.; Loren, J.F.; et al. Car-
diomyocyte proliferation prevents failure in pressure overload but not volume overload. J. Clin. Investig. 2017, 127, 4285–4296.
[CrossRef]

26. Mayer, S.C.; Gilsbach, R.; Preissl, S.; Elsa, B.M.; Tilman, S.; Nadine, B.; Achim, L.; Carolin, R.; Hannah, I.; Heiko, B.; et al.
Adrenergic Repression of the Epigenetic Reader MeCP2 Facilitates Cardiac Adaptation in Chronic Heart Failure. Circ. Res. 2015,
117, 622–633. [CrossRef]

27. Reddy, S.; Hu, D.Q.; Zhao, M.; Eddie, B.J.; Nefthi, S.; Ong, S.G.; Gwanghyun, J.; Kristina, B.K.; Michael, C.; Giovanni, F.; et al.
miR-21 is associated with fibrosis and right ventricular failure. JCI Insight 2017, 2, e91625. [CrossRef]

28. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Charity, W.L.; Shi, W.; Gordon, K.S. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

29. Kaisers, W.; Schwender, H.; Schaal, H. Hierarchical Clustering of DNA k-mer Counts in RNAseq Fastq Files Identifies Sample
Heterogeneities. Int. J. Mol. Sci. 2018, 19, 3687. [CrossRef]

30. Eisen, M.B.; Spellman, P.T.; Brown, P.O.; Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl.
Acad. Sci. USA 1998, 95, 14863–14868. [CrossRef]

31. Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted
variation in high-throughput experiments. Bioinformatics 2012, 28, 882–883. [CrossRef]

http://doi.org/10.1097/GCO.0000000000000496
http://doi.org/10.1016/j.semnephrol.2018.08.005
http://doi.org/10.14744/AnatolJCardiol.2018.08634
http://doi.org/10.1111/eci.13173
http://doi.org/10.3390/cells9010242
http://doi.org/10.1016/j.jacc.2013.02.092
http://doi.org/10.1161/01.CIR.0000153349.77489.CF
http://doi.org/10.1016/j.amjcard.2008.02.005
http://doi.org/10.1152/ajpheart.00554.2011
http://doi.org/10.1161/CIRCULATIONAHA.110.011031
http://doi.org/10.1161/CIRCRESAHA.115.307778
http://doi.org/10.1007/s11897-017-0337-9
http://doi.org/10.1002/ejhf.1320
http://doi.org/10.1161/01.CIR.77.6.1424
http://doi.org/10.1016/0735-1097(89)90507-X
http://doi.org/10.1016/0002-9149(93)90671-X
http://doi.org/10.1038/s41598-021-97787-2
http://doi.org/10.1161/JAHA.121.020854
http://doi.org/10.1172/JCI81870
http://doi.org/10.1161/CIRCRESAHA.115.306721
http://doi.org/10.1172/jci.insight.91625
http://doi.org/10.1093/nar/gkv007
http://doi.org/10.3390/ijms19113687
http://doi.org/10.1073/pnas.95.25.14863
http://doi.org/10.1093/bioinformatics/bts034


Genes 2022, 13, 1276 14 of 16

32. Frigyesi, A.; Höglund, M. Non-negative matrix factorization for the analysis of complex gene expression data: Identification of
clinically relevant tumor subtypes. Cancer Inform. 2008, 6, 275–292. [CrossRef]

33. Ahsan, M.; Mashuri, M.; Khusna, H.; Wibawati. Kernel principal component analysis (PCA) control chart for monitoring mixed
non-linear variable and attribute quality characteristics. Heliyon 2022, 8, e09590. [CrossRef]

34. Jiao, X.; Sherman, B.T.; Huang, W.D.; Robert, S.; Michael, W.B.; Clifford, H.L.; Richard, A.L. DAVID-WS: A stateful web service to
facilitate gene/protein list analysis. Bioinformatics 2012, 28, 1805–1806. [CrossRef]

35. Ashburner, M.; Ball, C.A.; Blake, J.A.; Butler, H.; Cherr, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; Harris, M.A.; et al.
Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [CrossRef]

36. Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.; Wei, L.; et al. 0: A web server for annotation and
identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [CrossRef]

37. Szklarczyk, D.; Morris, J.H.; Cook, H.; Michael, K.; Stefan, W.; Milan, S.; Alberto, S.; Nadezhda, T.D.; Alexander, R.; Peer, B.; et al.
The STRING database in 2017: Quality-controlled protein-protein association networks, made broadly accessible. Nucleic Acids
Res. 2017, 45, D362–D368. [CrossRef]

38. Rivera, C.G.; Vakil, R.; Bader, J.S. NeMo: Network Module identification in Cytoscape. BMC Bioinform. 2010, 11 (Suppl. 1), S61.
[CrossRef]

39. Doncheva, N.T.; Assenov, Y.; Domingues, F.S.; Albrecht, M. Topological analysis and interactive visualization of biological
networks and protein structures. Nat. Protoc. 2012, 7, 670–685. [CrossRef]

40. Chin, C.H.; Chen, S.H.; Wu, H.H.; Ho, C.W.; Ko, M.T.; Lin, C.Y. cytoHubba: Identifying hub objects and sub-networks from
complex interactome. BMC Syst. Biol. 2014, 8 (Suppl. 4), S11. [CrossRef]

41. Xu, R.; Kang, L.; Wei, S.; Yang, C.; Fu, Y.; Ding, Z.; Zou, Y. Samm50 Promotes Hypertrophy by Regulating Pink1-Dependent
Mitophagy Signaling in Neonatal Cardiomyocytes. Front. Cardiovasc. Med. 2021, 8, 748156. [CrossRef]

42. Kim, S.C.; Stice, J.P.; Chen, L.; Jung, J.S.; Sanjiv, G.; Wang, Y.; Georg, B.; Joann, T.; Anne, A.K. Extracellular heat shock protein 60,
cardiac myocytes, and apoptosis. Circ. Res. 2009, 105, 1186–1195. [CrossRef]

43. Wu, J.; You, J.; Wang, X.; Wang, S.; Huang, J.; Xie, Q.; Gong, B.; Ding, Z.; Ye, Y.; Wang, C.; et al. Left ventricular response
in the transition from hypertrophy to failure recapitulates distinct roles of Akt, β-arrestin-2, and CaMKII in mice with aortic
regurgitation. Ann. Transl. Med. 2020, 8, 219. [CrossRef]

44. Mukherjee, R.; Jow, L.; Noonan, D.; McDonnell, D.P. Human and rat peroxisome proliferator activated receptors (PPARs)
demonstrate similar tissue distribution but different responsiveness to PPAR activators. J. Steroid Biochem. Mol. Biol. 1994, 51,
157–166. [CrossRef]

45. Lee, S.S.; Pineau, T.; Drago, J.; Lee, E.J.; Owens, J.W.; Kroetz, D.L.; Fernandez-Salguero, P.M.; Westphal, H.; Gonzalez, F.J. Targeted
disruption of the α isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic
effects of peroxisome proliferators. Mol. Cell Biol. 1995, 15, 3012–3022. [CrossRef]

46. Abbott, B.D. Review of the expression of peroxisome proliferator-activated receptors α (PPAR α), β (PPAR β), and γ (PPAR γ) in
rodent and human development. Rep. Rod. Toxicol. 2009, 27, 246–257. [CrossRef]

47. Li, S.; Yang, B.; Du, Y.; Lin, Y.; Liu, J.; Huang, S.; Zhang, A.; Jia, Z.; Zhang, Y. Targeting PPARα for the Treatment and Understanding
of Cardiovascular Diseases. Cell Physiol. Biochem. 2018, 51, 2760–2775. [CrossRef]

48. Newaz, M.; Blanton, A.; Fidelis, P.; Oyekan, A. NAD(P)H oxidase/nitric oxide interactions in peroxisome proliferator activated
receptor (PPAR)α-mediated cardiovascular effects. Mutat. Res. 2005, 579, 163–171. [CrossRef]

49. Ibarra-Lara, L.; Cervantes-Pérez, L.G.; Pérez-Severiano, F.; Valle, L.D.; Rubio-Ruíz, E.; Soria-Castro, E.; Pastelín-Hernández, G.S.;
Sánchez-Aguilar, M.; Martínez-Lazcano, J.C.; Sánchez-Mendoza, A. PPARalpha stimulation exerts a blood pressure lowering
effect through different mechanisms in a time-dependent manner. Eur. J. Pharmacol. 2010, 627, 185–193. [CrossRef]

50. Touyz, R.M.; Schiffrin, E.L. Peroxisome proliferator-activated receptors in vascular biology-molecular mechanisms and clinical
implications. Vascul. Pharmacol. 2006, 45, 19–28. [CrossRef]

51. Brandt, J.M.; Djouadi, F.; Kelly, D.P. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac
myocytes via the peroxisome proliferator-activated receptor α. J. Biol. Chem. 1998, 273, 23786–23792. [CrossRef]

52. Remick, J.; Weintraub, H.; Setton, R.; Offenbacher, J.; Fisher, E.; Schwartzbard, A. Fibrate therapy: An update. Cardiol. Rev. 2008,
16, 129–141. [CrossRef]

53. Gouni-Berthold, I.; Giannakidou, E.; Müller-Wieland, D.; Faust, M.; Kotzka, J.; Berthold, H.K.; Krone, W. Association between the
PPARalpha L162V polymorphism, plasma lipoprotein levels, and atherosclerotic disease in patients with diabetes mellitus type 2
and in nondiabetic controls. Am. Heart J. 2004, 147, 1117–1124. [CrossRef]

54. Arias, T.; Beaumont, J.; López, B.; Zalba, G.; Beloqui, O.; Barba, J.; Valencia, F.; Gómez-Doblas, J.J.; Teresa, E.D.; Díez, J. Association
of the peroxisome proliferator-activated receptor α gene L162V polymorphism with stage C heart failure. J. Hypertens. 2011, 29,
876–883. [CrossRef]

55. Gu, S.J.; Guo, Z.R.; Wu, M.; Ding, Y.; Luo, W.S. Association of peroxisome proliferator-activated receptor γ polymorphisms and
haplotypes with essential hypertension. Genet. Test. Mol. Biomark. 2013, 17, 418–423. [CrossRef]

56. Halder, I.; Champlin, J.; Sheu, L.; Goodpaster, B.H.; Manuck, S.B.; Ferrell, R.E.; Muldoon, M.F. PPARα gene polymorphisms
modulate the association between physical activity and cardiometabolic risk. Nutr. Metab. Cardiovasc. Dis. 2014, 24, 799–805.
[CrossRef]

http://doi.org/10.4137/CIN.S606
http://doi.org/10.1016/j.heliyon.2022.e09590
http://doi.org/10.1093/bioinformatics/bts251
http://doi.org/10.1038/75556
http://doi.org/10.1093/nar/gkr483
http://doi.org/10.1093/nar/gkw937
http://doi.org/10.1186/1471-2105-11-S1-S61
http://doi.org/10.1038/nprot.2012.004
http://doi.org/10.1186/1752-0509-8-S4-S11
http://doi.org/10.3389/fcvm.2021.748156
http://doi.org/10.1161/CIRCRESAHA.109.209643
http://doi.org/10.21037/atm.2020.01.51
http://doi.org/10.1016/0960-0760(94)90089-2
http://doi.org/10.1128/MCB.15.6.3012
http://doi.org/10.1016/j.reprotox.2008.10.001
http://doi.org/10.1159/000495969
http://doi.org/10.1016/j.mrfmmm.2005.02.024
http://doi.org/10.1016/j.ejphar.2009.10.039
http://doi.org/10.1016/j.vph.2005.11.014
http://doi.org/10.1074/jbc.273.37.23786
http://doi.org/10.1097/CRD.0b013e31816b43d3
http://doi.org/10.1016/j.ahj.2003.12.005
http://doi.org/10.1097/HJH.0b013e3283455027
http://doi.org/10.1089/gtmb.2012.0425
http://doi.org/10.1016/j.numecd.2014.02.007


Genes 2022, 13, 1276 15 of 16

57. Hirano, K.; Tanaka, T.; Ikeda, Y.; Yamaguchi, S.; Zaima, N.; Kobayashi, K.; Suzuki, A.; Sakata, Y.; Sakata, Y.; Kobayashi, K.; et al.
Genetic mutations in adipose triglyceride lipase and myocardial up-regulation of peroxisome proliferated activated receptor-γ in
patients with triglyceride deposit cardiomyovasculopathy. Biochem. Biophys. Res. Commun. 2014, 443, 574–579. [CrossRef]

58. Muggenthaler, M.; Petropoulou, E.; Omer, S.; Simpson, M.A.; Sahak, H.; Rice, A.; Raju, H.; Conti, F.J.; Bridges, L.R.; Anderson, L.J.;
et al. Whole exome sequence analysis reveals a homozygous mutation in PNPLA2 as the cause of severe dilated cardiomyopathy
secondary to neutral lipid storage disease. Int. J. Cardiol. 2016, 210, 41–44. [CrossRef]

59. Pasanisi, M.B.; Missaglia, S.; Cassandrini, D.; Salerno, F.; Farina, S.; Andreini, D.; Agostoni, P.; Morandi, L.; Mora, M.; Tavian, D.
Severe cardiomyopathy in a young patient with complete deficiency of adipose triglyceride lipase due to a novel mutation in
PNPLA2 gene. Int. J. Cardiol. 2016, 207, 165–167. [CrossRef]

60. Rao, M.; Guo, G.; Li, M.; Chen, S.; Chen, K.; Chen, X.; Song, J.; Hu, S. The homozygous variant c. 245G > A/p. G82D in PNPLA2
is associated with arrhythmogenic cardiomyopathy phenotypic manifestations. Clin. Genet. 2019, 96, 532–540. [CrossRef]

61. Alard, J.E.; Dueymes, M.; Mageed, R.A.; Saraux, A.; Youinou, P.; Jamin, C. Mitochondrial heat shock protein (HSP) 70 synergizes
with HSP60 in transducing endothelial cell apoptosis induced by anti-HSP60 autoantibody. FASEB J. 2009, 23, 2772–2779.
[CrossRef] [PubMed]

62. Bodolay, E.; Prohászka, Z.; Paragh, G.; Csipő, I.; Nagy, G.; Laczik, R.; Demeter, N.; Zöld, E.; Nakken, B.; Szegedi, G.; et al.
Increased levels of anti-heat-shock protein 60 (anti-Hsp60) indicate endothelial dysfunction, atherosclerosis and cardiovascular
diseases in patients with mixed connective tissue disease. Immunol. Res. 2014, 60, 50–59. [CrossRef] [PubMed]
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