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Lipolytic enzymes are one of the most important enzyme types for application in
various industrial processes. Despite the continuously increasing demand, only a small
portion of the so far encountered lipolytic enzymes exhibit adequate stability and
activities for biotechnological applications. To explore novel and/or extremophilic lipolytic
enzymes, microbial consortia in two composts at thermophilic stage were analyzed
using function-driven and sequence-based metagenomic approaches. Analysis of
community composition by amplicon-based 16S rRNA genes and transcripts, and
direct metagenome sequencing revealed that the communities of the compost samples
were dominated by members of the phyla Actinobacteria, Proteobacteria, Firmicutes,
Bacteroidetes, and Chloroflexi. Function-driven screening of the metagenomic libraries
constructed from the two samples yielded 115 unique lipolytic enzymes. The family
assignment of these enzymes was conducted by analyzing the phylogenetic relationship
and generation of a protein sequence similarity network according to an integrated
classification system. The sequence-based screening was performed by using a
newly developed database, containing a set of profile Hidden Markov models, highly
sensitive and specific for detection of lipolytic enzymes. By comparing the lipolytic
enzymes identified through both approaches, we demonstrated that the activity-
directed complements sequence-based detection, and vice versa. The sequence-based
comparative analysis of lipolytic genes regarding diversity, function and taxonomic origin
derived from 175 metagenomes indicated significant differences between habitats.
Analysis of the prevalent and distinct microbial groups providing the lipolytic genes
revealed characteristic patterns and groups driven by ecological factors. The here
presented data suggests that the diversity and distribution of lipolytic genes in
metagenomes of various habitats are largely constrained by ecological factors.

Keywords: lipolytic enzymes, function-driven metagenomics, sequence-based metagenomics, profile HMM,
lipolytic enzyme classification, comparative analysis, compost

INTRODUCTION

Enzymes acting on carboxyl ester bonds in lipids, include esterases (EC 3.1.1.1, carboxylesterases)
and true lipases (EC 3.1.1.3, triacylglycerol acyl hydrolases) and are all together called lipolytic
enzymes (LEs; Kovacic et al., 2019). Due to the catalytic versatility, LEs have remarkable
applications in various processes relevant to food, paper, medical, detergent, and pharmaceutical
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industries (Hita et al., 2009; Romdhane et al., 2010; Ferrer
et al., 2015; Sarmah et al., 2018). Nowadays, LEs are
considered to be one of the most important biocatalysts for
biotechnological applications.

In principle, LEs can be classified on the basis of the substrate
preference (Sarmah et al., 2018) and sequence similarity (Chen
et al., 2016). The latter provides an easy-to-perform way for
classification and indication of the similarity and evolutionary
relationship between LEs. Arpigny and Jaeger (1999) have
elaborated the most widely accepted classification of lipolytic
enzymes into eight families (I to VIII). The classification
system was based on conserved sequence motifs and biological
properties of 53 LEs. A recent update of this system resulted
in addition of 11 families (IX to XIX) (Kovacic et al., 2019).
Besides the nineteen families, there are claims of novel families,
such as Est22 (Li et al., 2017), Est9X (Jeon et al., 2009),
LipSM54 (Li et al., 2016), and EstDZ2 (Zarafeta et al., 2016).
To avoid an artificial inflation of the number of families,
previous claims of novelty have to be confirmed and then the
novel families have to be integrated into a classification system
(Hitch and Clavel, 2019).

Lipolytic enzymes are ubiquitous among all aspects of life.
Most known LEs originate from microorganisms (Kovacic et al.,
2019). Environmental microbes, including the so far uncultured
species, encode a largely untapped reservoir of novel LEs.
Metagenomic function-driven and sequence-based approaches
provided access to the genetic resources from so far uncultured
and uncharacterized microorganisms (Simon and Daniel, 2009,
2011). LEs are among the most frequent targets in function-based
screens of metagenomic libraries derived from diverse habitats,
such as compost (Kang et al., 2011; Lu et al., 2019), landfill
leachate (Rashamuse et al., 2009), marine sediment (Peng et al.,
2011; Zhang et al., 2017), activated sludges (Liaw et al., 2010), and
hot springs (López-López et al., 2015).

Most published metagenomic screenings for LEs were enzyme
activity-driven and not sequence-based (Ferrer et al., 2015; Berini
et al., 2017). Only a few studies explored LEs by sequence-driven
approaches, including analysis based on regular expression
patterns (Masuch et al., 2015), ancestral sequence reconstruction
(Verma et al., 2019), and conserved motifs (Zhang et al., 2009;
Barriuso and Jesús Martínez, 2015; Zarafeta et al., 2016). For
various reasons, only a very limited number of LEs were identified
by these strategies. Sequence-based approaches primarily rely on
the reference database to infer functions of newly discovered
biomolecules (Hugenholtz and Tyson, 2008; Berini et al., 2017;
Quince et al., 2017; Ngara and Zhang, 2018). Taking also the
constantly increasing amount of genomic and metagenomic data
in the public repositories (Keegan et al., 2016; Chen et al., 2017;
Sayers et al., 2019) into account the full diversity of LEs is far from
being completely described.

In order to quantitatively analyze LEs distributed in
environmental samples, we developed a LE-specific profile
Hidden Markov Model (HMM) database. Profile HMMs have
been widely adopted for detection of remote homologs (Gibson
et al., 2015; Berglund et al., 2017; Walsh et al., 2017) and
annotation of general functions in microbial genomes and
metagenomes (Skewes-Cox et al., 2014; Reyes et al., 2017;

Bzhalava et al., 2018). However, they have not yet been specifically
applied to LEs. Once developed and validated, the database
was applied to profile the lipolytic genes in metagenomes
from various habitats. Profiling the distribution of LEs among
various habitats provides a straightforward approach for their
downstream analysis. In this study, two composts were sampled
and LEs identified through function-based and sequence-
based approaches were compared. The distribution of lipolytic
genes in 175 metagenomes was also investigated by sequence-
based screening.

MATERIALS AND METHODS

Sample Collection
Compost samples were collected as described previously (Lu
et al., 2019). Briefly, two compost piles fermenting mainly
wood chips (Pile_1) or kitchen waste (Pile_2) were sampled.
Temperatures at the sampling spots were measured, and the two
samples were designated as compost55 (55◦C for Pile_1) and
compost76 (76◦C for Pile_2). Approximately 50 g compost per
sample was collected in sterile plastic tubes and stored frozen
until further use.

Isolation of Nucleic Acids
Total DNA of the compost sample was isolated by using
the phenol-chloroform method (Zhou et al., 1996) and
MoBio PowerSoil DNA extraction kit as recommended by the
manufacturer (MO BIO Laboratories, Hilden, Germany). DNA
obtained from these two methods was pooled per sample and
stored at−20◦C until use.

RNA was extracted by employing the MoBio PowerSoil RNA
isolation kit as recommended by the manufacturer (MO BIO
Laboratories, Hilden, Germany). Residual DNA was removed
by treatment with 2 U Turbo DNase (Applied Biosystems,
Darmstadt, Germany) at 37◦C for 1 h and recovered by
using RNeasy MinElute Cleanup kit as recommended by the
manufacturer (Qiagen, Hilden, Germany). RNA yields were
estimated by employing a Qubit R© Fluorometer as recommended
by the manufacturer (Thermo Fisher Scientific, Schwerte,
Germany). A PCR reaction targeting the 16S rRNA gene was
performed to verify the complete removal of DNA as described
by Schneider et al. (2015). Subsequently, the DNA-free RNA
was converted to cDNA using the SuperScriptTM III reverse
transcriptase (Thermo Fisher Scientific, Schwerte, Germany).
Briefly, a mixture (14 µl) containing 100 ng of DNA-free
RNA in DEPC-treated water, 2 µM of reverse primer (5′ –
CCGTCAATTCMTTTGAGT – 3′) and 10 mM dNTP mix was
incubated at 65◦C for 5 min and chilled on ice for at least
1 min. Then, 10 µl of cDNA synthesis mix including reaction
buffer, 5 mM MgCl2, 0.01 M DTT, 1 µl 40U RiboLockTM RNase
inhibitor (Thermo Fisher Scientific, Schwerte, Germany) and
200U SuperScriptTM III reverse transcriptase (Thermo Fisher
Scientific, Schwerte, Germany) was added to each RNA/primer
mixture of the previous step, and incubated at 55◦C for
90 min. The reaction was ended by incubation at 70◦C
for 15 min.
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Amplicon-Based Analysis of Partial 16S
rRNA Genes and Transcripts
The PCR amplification of the V3–V5 regions of bacterial
16S rRNA genes and transcripts were performed with
the following set of primers comprising the Roche 454
pyrosequencing adaptors (underlined), a key (TCAG), a
unique 10-bp multiplex identifier (MID), and template-
specific sequence per sample: the forward primer
V3for_B (5′-CGTATCGCCTCCCTCGCGCCATCAG-MID-
TACGGRAGGCAGCAG-3′), (Liu et al., 2007), and reverse
primer V5rev_B 5′-CTATGCGCCTTGCCAGCCCGCTCAG-
MID-CCGTCAATTCMTTTGAGT-3′ (Wang and Qian, 2009).
The PCR reaction mixture (50 µl) contained 10 µl of fivefold
reaction buffer, 200 µM of each of the four deoxynucleoside
triphosphates, 0.2 µM of each primer, 5% DMSO, 1 U of Phusion
hot start high-fidelity DNA Polymerase (Finnzymes, Vantaa,
Finland) and 50 ng template (DNA or cDNA). The thermal
cycling scheme comprised initial denaturation at 98◦C for
5 min, 25 cycles of denaturation at 98◦C for 45 s, annealing
for 45 s at 60◦C, and extension at 72◦C for 30 s, followed by
a final extension period at 72◦C for 5 min. All amplicon PCR
reactions were performed in triplicate and pooled in equimolar
amounts for sequencing. The Göttingen Genomics Laboratory
determined the sequences of the partial 16S rRNA gene and
transcript amplicons by using a 454 GS-FLX sequencer and
titanium chemistry as recommended by the manufacturer
(Roche, Mannheim, Germany).

Quality-filtering and denoising of the recovered 16S rRNA
pyrotag reads were performed with the QIIME (1.9.1) software
package (Caporaso et al., 2010) by employing the scheme outlined
by Schneider et al. (2015). Forward and reverse primer sequences
were removed with the split_libraries.py script. Pyrosequencing
noise was removed with Acacia v01.53 (Bragg et al., 2012)
and chimeric sequences were removed with UCHIME (Edgar
et al., 2011). Operational taxonomic unit (OTU) determination
was performed by employing the pick_open_reference_otus.py
script at genetic divergence level of 3%. Taxonomic classification
of OTUs was performed by parallel_assign_taxonomy_blast.py
script against the Silva SSU database release 138 (Quast
et al., 2013). The filter_otu_table.py script was used to remove
singletons, extrinsic domain OTUs (i.e., chloroplast, archaeal, and
eukaryotic sequences), and unclassified OTUs.

Rarefaction curves was calculated with QIIME software by
using alpha-rarefaction.py.

Metagenomic Sequencing and Data
Processing
The sequencing libraries were constructed and indexed with
Nextera DNA Sample Preparation kit and Index kit as
recommended by the manufacturer (Illumina, San Diego, CA,
United States). Paired-end sequencing was performed using a
HiSeq 4000 instrument (2 × 150 bp) as recommended by the
manufacturer (Illumina, San Diego, CA, United States). Raw
reads were trimmed with Trimmomatic version 0.36 (Bolger
et al., 2014) and verified with FastQC version 0.11.5 (Andrews,
2010). Then, reads were submitted to MG-RAST metagenomics

analysis server and processed by the default quality control
pipeline (Keegan et al., 2016). Microbial composition analysis
was performed September 2020 using MG-RAST best hit
classification tool against the databases of M5RNA (Non-
redundant multisource ribosomal RNA annotation) and M5NR
(M5 non-redundant protein) with default settings. Functional
classification was performed based on clusters of orthologous
groups (COGs) and Subsystem categories with default settings.
Since we mainly focused on the bacterial community, the baseline
for all fractions reported referred to the reads assigned to the
bacterial domain.

Construction of Metagenomic Plasmid
Libraries and Function-Based Screening
for Lipolytic Activity
Lipolytic genes were screened by constructing small-insert
plasmid libraries as described by Lu et al. (2019). Briefly, DNA
was sheared by sonication for 3 s at 30% amplitude and cycle
0.5 (UP200S Sonicator, Stuttgart, Germany), and size-separated
using a 0.8% low-melting point agarose gel. DNA fragments from
6 to 12 kb were recovered by gel extraction using the peqGOLD
Gel Extraction kit as recommended by the manufacturer (Peqlab
Biotechnologie GmbH, Erlangen, Germany). The metagenomic
small-insert library was constructed using the vectors pFLD or
pCR-XL-TOPO (Thermo Fisher Scientific, Schwerte, Germany).

Vector pFLD was digested with PmlI at 37◦C for 2 h and
dephosphorylated with 5 U Antarctic phosphatase at 37◦C for
30 min as recommended by the manufacturer (NEB, Ipswich,
MA, United States). Subsequently, the ends of DNA fragments
were blunt-ended and phosphorylated by employing the Fast
DNA End Repair kit (Thermo Fisher Scientific, Schwerte,
Germany). SureClean was applied to purify DNA or vector
between steps as described by the manufacturer (Bioline GmbH,
Luckenwalde, Germany). Finally, metagenomic fragments and
pFLD vector were ligated using T4 DNA ligase (Thermo
Fisher Scientific, Schwerte, Germany) at 16◦C, overnight.
Metagenomic DNA fragments were cloned into vector pCR-
XL-TOPO following the protocol of the manufacturer (Thermo
Fisher Scientific, Schwerte, Germany).

To screen for lipolytic activity, Escherichia coli TOP10 was
used as the host (Dukunde et al., 2017). Library-bearing cells
were plated onto LB agar plates (15 g/L) containing 1% (v/v)
emulsified tributyrin (Sigma) as the indicator substrate and
the appropriate antibiotic (pFLD, 100 µg/ml Ampicillin; pCR-
XL-TOPO, 50 µg/ml Kanamycin). The quality of the libraries
was controlled by checking the average insert sizes and the
percentage of insert-bearing E. coli clones (Table 1). Cells were
incubated on indicator agar at 37◦C for 24 h and subsequently
for 1–7 days at 30◦C. Lipolytic-positive E. coli clones were
identified by the formation of clear zones (halos) around
individual colonies.

The recombinant plasmid DNA derived from positive clones
was isolated by using the QIAGEN plasmid mini kit (QIAGEN)
and digested with PmlI (vector PFLD) or EcoRI (vector pCR-XL-
TOPO) at 37◦C for 2 h. The digestion pattern was analyzed, and
phenotype of positive clones was confirmed by transformation of
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TABLE 1 | Summary of metagenomic libraries used for lipolytic activity screening in this and other studies.

Environmental sampleb Vector type
(average insert
size in kb)

No. of library-containing clones
(confirmed positive hits, No. of hits
per million of clones)

Probability (No. of
hits per Gb of
DNA screened)

References

Compost Plasmid (5.3) 675,200 (156, 213) 43.6 compost55 (this study)

Compost Plasmid (5.6) 234,912 (43, 183) 32.7 compost55 (this study)

Compost Plasmid (6) 281,281 (37, 132) 21.9 compost76 (this study)

Compost Plasmid (6.2) 140,747 (14, 100) 16.1 compost76 (this study)

Compost Plasmid (3.2) 21,000 (14, 670) 208 Lämmle et al., 2007

Compost Fosmid (35) 23,400 (19, 810) 23.2 Kim et al., 2010

Compost Fosmid (37.5) 1,920 (2, 1040) 27.8 Leis et al., 2015

Compost Fosmid (-a) 13,000 (10, 770) -a Kang et al., 2011

Compost plasmid (-a) 66,000 (6, 0.90) -a Popovic et al., 2017

Grassland soil Plasmid (5.7) 510,808 (2, 0.4) 0.714 Nacke et al., 2011

Grassland soil Fosmid (27.8) 50,952 (2, 40) 1.41 Nacke et al., 2011

Forest soil Fosmid (35) 33,700 (8, 240) 6.78 Lee et al., 2004

Forest soil Plasmid (3.1) 70,000 (3, 42) 13.8 Berlemont et al., 2013

River surface water BAC (50) 8,000 (1, 120) 2.5 Wu and Sun, 2009

Hot spring biofilm BAC (50) 68,352 (10, 150) 2.93 Yan et al., 2017

Surface sea water BAC (70) 20,000 (4, 200) 2.86 Chu et al., 2008

Marine sediment plasmid (4.5) 29,000 (6, 200) 46.0 Ranjan et al., 2018

Marine sediment Fosmid (36) 40,000 (19, 480) 13.2 Hu Y. et al., 2010

Marine mud Fosmid (40) 40,000 (5, 120) 3.12 Gao et al., 2016

Deep-sea hydrothermal vent Fosmid (35) 18,000 (7, 390) 11.1 Fu et al., 2015

Paper mill sludge Plasmid (5.1) 15,000 (13, 870) 170 Jia et al., 2019

Activated sludge Plasmid (5.1) 3,818 (12, 3140) 616 Liaw et al., 2010

Activated sludge Plasmid (2.5) 40,000 (1, 24) 10.0 Shao et al., 2013

Solar saltern Fosmid (35) 5,100 (1, 200) 5.60 Jayanath et al., 2018

Oil field soil Plasmid (3.9) 83,000 (1, 12) 3.09 Fan et al., 2011

aThis information is not specified in the reference.
bExcept compost metagenomic libraries, only those included the full library information were listed.

the recovered plasmids from the previous step into the host and
rescreening on indicator agar plates. In addition, lipolytic activity
toward different triacylglycerides was measured qualitatively by
incubating the confirmed lipolytic positive clones on agar plates
emulsified with tributyrin (C4), tricaproin (C6), tricaprylin (C8),
tricaprin (C10), trilaurin (C12), trimyristin (C14), or tripalmitin
(C16). Formation of clearing zones (halos) on agar plates
indicated lipolytic activity.

Analysis of Lipolytic Genes From
Function-Based Screenings
The plasmids recovered from the confirmed positive clones
were pooled in equal amounts (50 ng of each clone) for
compost55 and compost76. Then, the two plasmid DNA mixtures
were sequenced using an Illumina MiSeq instrument with
reagent kit version 3 (2 × 300 cycles) as recommended by
the manufacturer (Illumina, San Diego, CA, United States). To
remove the vector sequences, raw reads were initially mapped
against vector sequences (pFLD or pCR-XL-TOPO) using Bowtie
2 (Langmead and Salzberg, 2012). The unmapped reads were
quality-filtered by Trimmomatic v0.30 (Bolger et al., 2014) and
assembled into contigs by MetaVelvet v1.2.01 (Namiki et al.,
2012) and MIRA 4 (Chevreux et al., 1999). In addition, both

ends of the inserts of each plasmid were sequenced using
Sanger technology and the following primers: pFLD504_F (5′-
GCCTTACCTGATCGCAATCAGGATTTC-3′) and pFLD706_R
(5′-CGAGGAGAGGGTTAGGGATAGGCTTAC-3′) for vector
pFLD, and M13_Forward (5′-GTAAAACGACGGCCAG-3′)
and M13_Reverse (5′-CAGGAAACAGCTATGAC-3′) for vector
pCR-XL-TOPO. The raw Sanger reads were processed with the
Staden package (Staden et al., 2003). Finally, the full insert
sequence for each plasmid was reconstructed by mapping the
processed Sanger reads on the contigs assembled from the
Illumina reads. Open reading frames (ORFs) were predicted
by MetaGeneMark (Zhu et al., 2010) using default parameters.
Lipolytic genes were annotated by searches against NCBI Non-
redundant sequence database1.

Family Classification of Lipolytic
Enzymes Revealed From Function-Based
Screening
Lipolytic enzymes were clustered according to the classification
standard defined by Arpigny and Jaeger (1999). In order to
classify LEs identified from function-based screening, we have
integrated all the so far reported lipolytic families, including

1http://www.ncbi.nlm.nih.gov/gorf/gorf.html
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families I to XIX, and potential novel families reported in recent
studies (Supplementary Table 1). The neighbor-joining tree and
maximum likelihood tree were constructed with LEs identified
from this study and reference proteins (Supplementary Table 2)
using MEGA version 7 (Tamura et al., 2013). The robustness of
the tree was tested by bootstrap analysis using 500 replications.
The phylogenetic tree was depicted by GraPhlAn (Asnicar et al.,
2015). To confirm the classification and group proteins in
clusters, a protein sequence similarity network was generated. In
a protein sequence similarity network, members in a potential
isofunctional group consist of nodes (symbol) that share a
sequence similarity larger than a selected value and are connected
by edges (line). As similarity increases, edges decrease and finally
proteins can be separated into defined clusters (Gerlt et al.,
2015). In this study, a protein sequence similarity network was
generated by submitting the same sequence dataset used in the
phylogenetic analysis to the Enzyme Function Initiative-Enzyme
Similarity Tool web server (EFI-EST)2 (Atkinson et al., 2009)
with an E-value cutoff of ≤1e−10 and alignment score ≥16.
The resulting network was visualized in Cytoscape 3.2.1 using
the organic layout (Shannon et al., 2003). In addition, multiple-
sequence alignments were conducted to explore the presence of
catalytic residues, and conservative and distinct motifs in each
lipolytic family by employing ClustalW (Larkin et al., 2007).

Building Profile Hidden Markov Model
Database for Sequence-Based
Screening
A search method based on profile HMMs was developed to
identify and annotate putative lipolytic genes in metagenomes
(Supplementary Figure 1). In order to target homologous
sequences, profile HMMs were built from multiple sequence
alignments, which requires relatedness in the input
protein sequences. Thus, consistent to the classification of
function-derived LEs, we generally followed the clustering
system of Arpigny and Jaeger (1999).

With the exception of LEs belonging to families II and VIII,
and patatin-like-proteins, LEs in the other families generally
share a conserved α/β-hydrolase fold and a canonical G-x-S-x-
G pentapeptide around the catalytic serine (Kovacic et al., 2019).
ESTHER is a database dedicated to proteins with α/β-hydrolase-
fold and their classifications (Lenfant et al., 2013), containing
approximately 60,000 α/β hydrolases grouped in 214 clusters
(November 2019). In ESTHER, families I-XIX were integrated
into an own classification with corresponding entries3. We
thereby designated lipolytic families that were classified and
named according to ESTHER database as ELFs (abbreviation of
ESTHER Lipolytic Families). For lipolytic families that were not
incorporated into the 19 families (I-XIX), their corresponding
ELFs were determined by searching LEs against ESTHER
database. Generally, a LE was assigned to an ELF if its BLASTp
top hit (with lowest e-value) had ≥60% amino acid identity
and ≥80% query coverage. Protein sequences in all of the

2http://efi.igb.illinois.edu/efi-est/index.php
3http://bioweb.supagro.inra.fr/ESTHER/Arpigny_Jaeger.table

determined ELFs were downloaded from ESTHER database for
profile HMM construction.

Firstly, multiple sequence alignments were performed with
protein sequences in each ELF, using the following three
algorithms and default settings: ClustalW (Thompson et al.,
1994), Clustal Omega (Sievers et al., 2011), and Muscle
(Edgar, 2004). Subsequently, the three alignment sets were
run through hmmbuild in HMMER34 to create three sets
of profile HMMs. Moreover, profile HMMs supplied in the
ESTHER database were downloaded. Finally, four profile HMM
databases were constructed by concatenating and compressing
the respective set of profile HMMs using hmmpress. Thereafter,
we designated the four profile HMM databases with respect to the
corresponding alignment algorithm (ClustalW-pHMMs, omega-
pHMMs, and muscle-pHMMs) or source (ESTHER-pHMMs).
All generated databases are available under https://github.com/
mingji-lu/database-for-lipolytic-enzymes.

For families II, VIII and patatin-like-proteins, profile HMMs
were retrieved directly from Pfam database (Finn et al., 2014)
using the searching keywords of “GDSL,” “beta-lactamase,”
and “patatin,” respectively. The profile HMM database was
constructed as described above and designated as Pfam-pHMMs,
specifying for LEs in families II and VIII, and patatin-like-
proteins.

Validating Profile Hidden Markov Model
Database
The prediction sensitivity and specificity of the profile HMM
databases were evaluated using four datasets. Dataset 1,
LEs recruited in the UniProtKB database using as search
strategy the EC numbers 3.1.1.1 or 3.1.1.3, and protein length
between 200 and 800 amino acids. Only the prokaryotic
LEs were selected for analysis (Supplementary Table 3A).
Dataset 2 comprises LEs reported in literature. Most of these
enzymes were obtained through metagenomic approaches and
biochemically characterized, and with a confirmed lipolytic
family assignment by constructing a multiple sequence alignment
and/or phylogenetic tree (Supplementary Table 3B). Dataset
3 includes protein sequences predicted by MetaGeneMark
(Zhu et al., 2010) from identified inserts harboring functional
lipolytic genes (Supplementary Table 3C). Dataset 4 comprises
randomly selected protein sequences (not recruited from
ESTHER database) that were annotated in UniProt or NCBI
database as non-lipolytic proteins but with sequence similarity
to LEs (Supplementary Table 3D). Proteins in the four datasets
were screened against the profile HMM databases successively
with hmmscan using an E-value cutoff of ≤1e−10. The sensitivity
and specificity of each database were evaluated by the recalls
and false positive returns. In addition, we compared our method
(profile HMMs) with the similarity-based pairwise sequence
alignment method (BLAST; Altschul et al., 1990). The database
for BLAST-based searching was built with the same dataset used
for profile HMM construction. BLASTp was performed at an
E-value cutoff of ≤1e−10.

4http://hmmer.org
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In order to improve the accuracy for assigning proteins to
lipolytic families and distinguishing “true” LEs from the non-
lipolytic proteins, protein sequences were annotated by two
methods and combined for final assignment. Briefly, putative
lipolytic proteins (PLPs) identified by screening against the
selected profile HMM database (one from ClustalW-pHMMs,
omega-pHMMs, muscle-pHMMs, and ESTHER-pHMMs) were
further searched against the ESTHER database (all entries
were included) by BLASTp using an E-value cutoff of ≤1e−10

(Supplementary Figure 1). A PLP was assigned to a lipolytic
family only if it was annotated into the same ELF by hmmscan
and BLASTp. Otherwise, according to the BLAST results, the
remaining PLPs were either annotated as “unassigned” PLPs or
non-lipolytic proteins (Supplementary Figure 1). In principle,
PLPs with the best Blast hits were affiliated to the miscellaneous
ESTHER families (functions were not determined, including
5_AlphaBeta_hydrolase, 6_AlphaBeta_hydrolase, Abhydrolase_7,
and AlphaBeta_hydrolase), or other ESTHER families (with
<60% identity or <70% query coverage) were classified as
unassigned PLPs. The remaining PLPs with the best Blast hits
showing ≥60% amino acid identity and ≥70% query coverage
to the non-lipolytic ESTHER families were classified as non-
lipolytic proteins.

Family annotation of PLPs obtained by screening against
Pfam-pHMMs were confirmed by a further scan against the
CATH HMMs database (Knudsen and Wiuf, 2010) using the
GitHub repository cath-tools-genomescan5. PLPs were assigned to
lipolytic families VIII and II, or patatin-like-proteins only if the
PLP was assigned to the specific FunFams (functional families)
dedicated to lipolytic-related activities, which were inferred from
the functionally characterized LEs and gene ontology (GO)
annotations (Supplementary Table 4). Additionally, based on
our literature search, the LEs in family VIII were generally
restricted to PLPs with sequence length between 350 and 450
amino acids. In other cases, the PLP was grouped into non-
lipolytic proteins. For the unassigned PLPs, these sequences show
low similarity to any ESTHER family with known function or
CATH FunFams, and hence, could contain novel lipolytic or non-
lipolytic proteins. Non-lipolytic proteins were excluded from the
downstream analysis.

Sequence-Based Screening for Putative
Lipolytic Genes
Sequence-based screening for putative lipolytic genes in the
two compost metagenomes were performed as described above.
Briefly, the processed metagenomic short reads were assembled
into contigs with MetaSPAdes version 3.10.1 (Bankevich et al.,
2012). Then, protein sequences were deduced from PROKKA
v1.14.5 annotation (Seemann, 2014). In order to obtain full-
length lipolytic genes, only proteins with an amino acid
sequence length between 200 and 800 amino acids were retained.
Subsequently, the resulting protein sequences were screened
against the selected profile HMM databases using hmmscan
(Eddy, 2011) with an E-value cutoff of ≤1e−10. Identified PLPs
were further assigned into different lipolytic families as described

5https://github.com/UCLOrengoGroup/cath-tools-genomescan

above (Supplementary Figure 1). Moreover, the lipolytic family
classification of assigned PLPs was confirmed by constructing
the protein sequence similarity network (Atkinson et al., 2009).
The taxonomic origins of PLP-encoding genes and their
corresponding contigs were determined using Kaiju web server
(Menzel et al., 2016)6. Taxonomic distributions of assigned PLPs
in each lipolytic family were visualized via Circos software
(Krzywinski et al., 2009).

Comparative Analysis of Metagenomic
Datasets
A total of 175 assembled metagenomes from 15 different habitats
were retrieved from the Integrated Microbial Genomes and
Microbiomes database (IMG/M). These included metagenomes
from anaerobic digestor active sludges (ADAS, n= 9), agriculture
soils (AS, n = 10), composts (COM, n = 18), grassland soils
(GS, n = 11), human gut systems (HG, n = 16), hypersaline
mats (HM, n = 7), hydrocarbon resource environments (HRE,
n = 6), hot springs (HS, n = 14), landfill leachates (LL, n = 10),
marine sediments (MS, n= 12), marine waters (MW, n= 10), oil
reservoirs (OR, n= 13), river waters (RW, n= 11), tropical forest
soils (TFS, n = 14), and wastewater bioreactors (WB, n = 13)
(Supplementary Table 5). Data processing including open
reading frame prediction in assembled contigs and taxonomic
assignment of the corresponding deduced protein sequences were
conducted by the IMG/M built-in pipelines (Chen et al., 2017).
The protein sequences were downloaded from IMG/M database
and used in the sequence-based screening as described above
(Supplementary Figure 1).

For comparative analysis, the abundance of PLP-encoding
genes in each metagenome were normalized according to the
method described by Kaminski et al. (2015). The normalized
count is in units of LPGM (Lipolytic hits Per Gigabase per
Million mapped genes). Unless otherwise stated, LPGM values
were used for all calculations. Heatmap was built in R v3.5.2
(R Core Team, 2016) with the function heatmap.2 using the
“Heatplus” package (Ploner, 2015). The heatmap hierarchical
clustering was performed with “vegan” package (vegdist= “bray,”
data.dist = “ward.D”). Non-metric multidimensional scaling
(NMDS) was also performed with the “vegan” package (Oksanen
et al., 2018). The analysis of similarities (ANOSIM) was
performed with 9,999 permutations using PAST 4 (Hammer
et al., 2001). The taxonomic affiliation of PLPs was retrieved
from IMG/M. Association networks between habitats and
phylogenetic distribution of PLPs at genus level were generated
by mapping significant point biserial correlation values with the
“indicspecies” package in R (De Cáceres, 2013). Only genera with
significant correlation coefficients (P ≤ 0.05) were included. The
resulting bipartite networks were visualized with Cytoscape v3.5
by using the edge-weighted spring embedded layout algorithm,
whereby the habitats were source nodes, genera target nodes
and edges (lines connecting nodes) weighted positive associations
between genera and specific habitat or habitats combinations.

In addition, due to the ambiguity of unassigned PLPs, all
analyses were performed successively using two datasets: (1) only

6http://kaiju.binf.ku.dk/server
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assigned PLPs, as the consideration of excluding the potential
non-lipolytic ones, (2) assigned and unassigned PLPs combined
(total PLPs), in order to include all the possible lipolytic
ones. This paper mainly focuses on the assigned PLPs for the
sake of accuracy, but the comparative analysis of total PLPs
was also performed.

RESULTS AND DISCUSSION

Phylogenetic and Functional Profile of
Microbes in the Compost Metagenomes
During the heating-up process of composting, the succession
of microorganisms plays a key role in degrading organic
matter (Dougherty et al., 2012). In this study, the bacterial
community compositions in two compost samples with
different pile core temperatures of 55 (compost55) and 76◦C
(compost76) were revealed by amplicon-based sequencing of
16S rRNA genes (DNA-based, total community) and transcripts
(RNA-based, potentially active community) (Supplementary
Figures 2, 3, respectively). To extend the taxonomic analysis,
the environmental DNA from both metagenomes were also
directly sequenced (Supplementary Table 6). Generally, the
bacterial community determined by direct sequencing were
consistent with that derived from 16S rRNA gene-based
analysis. The bacterial phyla Actinobacteria, Proteobacteria,
Firmicutes, Bacteroidetes, and Chloroflexi were predominant
(relative abundance >5% each) in compost55 and compost76
(Supplementary Figures 3, 4, respectively). This is in agreement
with previous studies of bacterial communities in thermophilic
composts (Ryckeboer et al., 2003; Antunes et al., 2016; Yu
et al., 2018; Zhou et al., 2018). Differences were detected, which
were derived mainly from the different feedstock composition
(wood chips vs. kitchen waste) and composting conditions (core
temperature 55 vs. 76◦C). Actinobacteria was the most abundant
phylum (>25%) in compost55 (Supplementary Figures 3, 4),
which is accordance with the bacterial communities in composts
using mainly plant material as feedstock (Yu et al., 2007; Zhang
et al., 2014). In compost76, members of the Firmicutes were
most abundant (>55%), which was also reported for composts
harboring high-nitrogen feedstock, such as animal manure
and kitchen waste (Niu et al., 2013; Antunes et al., 2016;
Ma et al., 2018; Zhou et al., 2019). The 16S rRNA gene and
transcript analysis (Supplementary Table 7) revealed presence
of genera (>1%) in compost55 such as Brockia, Rhodothermus,
Thermobispora, Longispora, Geobacillus, Filomicrobium, and
Thermomonospora, and in compost76 such as Symbiobacterium,
Calditerricola, and Thermaerobacter. The detected genera
were among the typical bacterial taxa previously identified in
composting processes (Ryckeboer et al., 2003; Antunes et al.,
2016; Yu et al., 2018; Zhou et al., 2018).

Additionally, the metagenomic reads were searched against
the COG and SEED subsystem databases to assess the functions
prominent in compost microbes (Supplementary Figure 5). In
principle, compost55 and compost76 share similar metabolic
patterns (Supplementary Figure 5). Particularly, the broad
diversity and abundance of gene functions in carbohydrate

metabolism and transport (COG) and carbohydrates (SEED
subsystem) indicated that composts were potential candidates for
exploring biocatalysts (Hu X. et al., 2010; Leis et al., 2015; Wang
et al., 2016; Egelkamp et al., 2019). Notably, the COG category of
lipid transport and metabolism as well as the subsystems category
of fatty acids, lipids, and isoprenoids were more abundant in
the compost55 community than in the compost76 community,
suggesting a higher possibility to identify lipolytic genes in the
compost55 metagenome.

Function-Based Screening of Lipolytic
Enzymes in Compost Metagenomes
In this study, four metagenomic libraries were prepared to probe
the diversity of LEs from compost microbes by the function-
driven approach using tributyrin-containing agar (Table 1).
Overall, approximately 4.89 and 2.56 Gbp of cloned compost
DNA were screened, yielding 199 and 51 positive clones for
compost55 and compost76, respectively. Previous studies have
used various vectors such as BACs, fosmids and plasmids for
function-based screening of LEs from different bioresources
(Lee et al., 2004; Lämmle et al., 2007; Kim et al., 2010; Nacke
et al., 2011; Berlemont et al., 2013; Shao et al., 2013; Leis
et al., 2015; Jia et al., 2019). The hit rate to recover a lipolytic-
positive clone ranged from 0.714 to 208 per Gb of cloned
DNA (Table 1). Among the compost metagenomic libraries, the
targeting probability toward a LE in our study ranged from 16.1
to 43.6 per Gb and is generally consistent with the values from
other studies (Lämmle et al., 2007; Kim et al., 2010; Leis et al.,
2015). In addition, the probabilities in metagenomic libraries
from compost and sludge are generally higher than those from
other environments, such as grassland, forest soil, and river water
(Wu and Sun, 2009; Nacke et al., 2011; Berlemont et al., 2013).
According to Liaw et al. (2010), the probability and/or hit rate
for discovering a lipolytic clone is largely attributed to the sample
source. Other studies further suggested that samples subjected
to specific enrichment processes, such as composting and waste
treatment procedures, usually results in a high hit rate (Mayumi
et al., 2008; Kang et al., 2011; Popovic et al., 2017).

The insert sizes of the recovered plasmids (250 in total) with
a confirmed phenotype ranged from 1,038 to 12,587 bp. In all
inserts, at least one putative gene showing similarities to known
genes encoding lipolytic enzymes was detected. In total, 210 and
60 lipolytic genes were identified from compost55 and compost76
derived libraries, respectively. To identify unique and full-length
LEs, the amino acid sequences deduced from the corresponding
lipolytic genes were clustered at 100% identity. This resulted in
115 (92 for compost55, 23 for compost76, with 7 shared by both
samples) unique and full-length LEs (Supplementary Table 8).
The length of the unique LEs ranged from 223 to 707 amino
acids, with calculated molecular masses from 23.9 to 72.3 kDa
(Supplementary Table 9). Forty-one of the deduced enzymes
showed the highest similarity to esterases/lipases from uncultured
bacteria (40) or archaea (1, EstC55-13). The remaining 74 were
most similar to LEs from cultured bacteria. Seven of the 41
LEs from uncultured prokaryotes showed the highest identities
(53–65%) to lipolytic enzymes obtained during function-based
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screening of metagenomes derived from marine sediment (Hu
Y. et al., 2010), forest topsoil (Lee et al., 2004), mountain soil
(Ko et al., 2012), activated sludge (Liaw et al., 2010), wheat
field (Stroobants et al., 2015), and compost (Okano et al., 2015).
In the remaining 34 cases, the matching esterases/lipases were
mainly detected by sequence-based metagenomic surveys of
composts (15 LEs), soil (7 LEs), marine sediment (6 LEs), and
marine water (3 LEs).

Functionally Derived Lipolytic Enzymes
Are Affiliated to Various Lipolytic Enzyme
Families
The LEs identified through function-based screening were
grouped into families based on the classification system reported
by Arpigny and Jaeger (1999). With the increasing amount
of reports on LEs, claims of new families have been reported
(Arpigny and Jaeger, 1999; Jeon et al., 2011a; Wang et al.,
2013; Esteban-Torres et al., 2014; Fang et al., 2014; Rahman
et al., 2016; Castilla et al., 2017). In this study, we integrated
29 so-called “novel” families into the classification system
for phylogenetic analysis. As shown in the phylogenetic tree
(Figure 1 and Supplementary Figure 6), LEs were assigned
to 12 families, including families I, II, III, IV, V, VII, VIII,
XVII, EM3L4 (Jeon et al., 2011b), FLS18 (Hu Y. et al.,
2010), EstGS (Nacke et al., 2011), LipT (Chow et al., 2012),
patatin-like-proteins and tannases (Supplementary Table 8).
The majority of the LEs were affiliated to families V (25
LEs), VIII (21 LEs), IV (15 LEs), I (8 LEs), and patatin-like-
proteins (9 LEs). Noteworthy, 7 LEs could not be classified
into any known lipolytic family, indicating new branches of
LEs. In agreement with previous studies (Arpigny and Jaeger,
1999; Glogauer et al., 2011; Akmoussi-Toumi et al., 2018),
the “true lipases,” which can hydrolyze long-chain substrates
(≥C10) were all affiliated to family I (Figure 1). The remaining
LEs exhibiting a preference for short-chain substrates (<C10)
were esterases.

To verify the classification result, a protein sequence
similarity network was built (Figure 1). The network visualizes
relationships among evolutionarily related proteins and is usually
considered as an approach complementary to the phylogenetic
analysis (Atkinson et al., 2009; Gerlt et al., 2015). At a threshold
of 1× 10−16, the network produced clusters that almost matched
all the lipolytic families, with the same classification results as
obtained by phylogenetic analysis (Figure 1).

Multiple sequence alignments revealed the catalytic residues
and conserved motifs in each family (Supplementary Figure 7).
For LEs that harbor the canonical α/β-hydrolase fold, the catalytic
triad is consistently composed of a nucleophilic serine, an aspartic
acid/glutamic acid and a histidine residue (Nardini and Dijkstra,
1999). Most of these LEs contain the conserved motif Gly-x-Ser-
x-Gly in which the catalytic serine is embedded (Supplementary
Figure 7). Alternatively, three LEs in family I show variations of
this conserved motif. The variations were Ala-x-Ser-x-Gly, Thr-
x-Ser-x-Gly (Diamond et al., 2019) and Ser-x-Ser-x-Gly (Dalcin
Martins et al., 2018; Supplementary Figure 7).

Family II LEs share a canonical α/β/α-hydrolase fold,
which is characterized by a conserved hydrophobic core
consisting of five β-strands and at least four α-helices (Akoh
et al., 2004). As shown in Supplementary Figure 7A, there
are four conservative regions and one conserved residue
in each region (serine, glycine, asparagine, and histidine,
respectively), which is essential for catalysis (Akoh et al., 2004;
Hong et al., 2008). The structures of family VIII enzymes
show remarkable sequence similarities to β-lactamases and
penicillin-binding proteins (Bornscheuer, 2002). Site-directed
mutagenesis demonstrated that the catalytic triad is composed
of serine and lysine located in a Ser-X-X-Lys motif, and
a tyrosine (Supplementary Figure 7; Biver and Vandenbol,
2013; Kovacic et al., 2019). The patatin-like-proteins display
an α/β/α-hydrolase fold, in which a central six-stranded beta-
sheet is sandwiched between alpha-helices front and back
(Banerji and Flieger, 2004). Unlike the catalytic triad of Ser-
Asp/Glu-His for most lipolytic proteins, the catalytic Ser-Asp
dyad is responsible for the catalytic activity of patatin-like-
proteins. In addition, they also contained the Gly-x-Ser-x-
Gly motif with the catalytic serine embedded (Supplementary
Figure 7).

Development of a Lipolytic Enzyme
Profile Hidden Markov Model Database
for Sequence-Based Screening
Profile HMMs are statistical models that convert patterns,
motifs and other properties from a multiple sequence alignment
into a set of position-specific hidden states, i.e., frequencies,
insertions, and deletions (Reyes et al., 2017). Profile HMMs
are sensitive in detecting remote homologs. They have been
used to detect, e.g., viral protein sequences (Skewes-Cox et al.,
2014; Bzhalava et al., 2018), antibiotic resistance genes (Gibson
et al., 2015), GDSL esterase/lipase family genes (Li et al., 2019)
in metagenomes.

In this study, a total of 32 ELFs were used for profile HMM
database construction (Supplementary Table 10). Subsequently,
four profile HMM databases (Omega-pHMMs, Muscle-pHMMs,
ClustalW-pHMMs, ESTHER-pHMMs)7 specific for LEs affiliated
to α/β hydrolase superfamily were constructed. Each database
consists of 32 profile HMMs (Supplementary Table 11). The
prediction sensitivity and specificity of the four databases were
evaluated using four datasets (Table 2). All of the four databases
obtained high recalls for the datasets 1, 2, and 3 (Table 2),
with the highest ones for omega-pHMMs (4,446 in total),
followed by muscle-pHMMs (4,444), ClustalW-pHMMs (4,425),
and ESTHER-pHMMs (4,425). Noteworthy, omega-pHMMs did
not identify any false positive LEs for dataset 3. Thus, omega-
pHMMs was chosen for downstream screening. In addition, we
compared omega-pHMMs with the pairwise sequence alignment
method (BLASTp) for their ability to predict LEs. The omega-
pHMM database exhibited improved sensitivity for datasets 1,
2, and 3. In total, 135 more LEs were identified using omega-
pHMMs than BLASTp (Table 2).

7https://github.com/mingji-lu/database-for-lipolytic-enzymes
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FIGURE 1 | Classification of LEs identified through the function-driven approach. (A) Scheme of a phylogenetic tree. The unrooted phylogenetic tree was
constructed using FA-identified LEs in this study obtained and references retrieved from GenBank (Supplementary Table 2). Phylogenetic tree was constructed
using MEGA 7 with neighbor-joining method. The robustness of the tree was tested by bootstrap analysis with 500 replications. Inner tree: the circles represent LEs
detected in compost55 (blue) and compost76 (red), sized by abundance (counts of replicates). LEs assigned to families of I-XIX were shaded in green background.
Patatin-like-proteins and tannases (designated as P and T, respectively) were shaded in yellow. Other recent reported lipolytic families were shaded in magenta: 1,
Est22 (Li et al., 2017); 2, EstL28 (Seo et al., 2014); 3, Rv0045c (Guo et al., 2010); 4, EstGX1 (Jiménez et al., 2012); 5, EstLiu (Rahman et al., 2016); 6, EstY (Wu and
Sun, 2009); 7, EstGS (Nacke et al., 2011); 8, EM3L4 (Jeon et al., 2011b); 9, FLS18 (Hu Y. et al., 2010); 10, Est903 (Jia et al., 2019); 11, EstJ (Choi et al., 2013); 12,
PE10 (Jiang et al., 2012); 13, Est12 (Wu et al., 2013); 14, EstDZ2 (Zarafeta et al., 2016); 15, Est9x (Jeon et al., 2009); 16, Lip10 (Guo et al., 2016); 17, EstGH (Nacke
et al., 2011); 18, EML1 (Jeon et al., 2009); 19, FnL (Yu et al., 2010); 20, EstP2K (Ouyang et al., 2013); 21, LipA (Couto et al., 2010); 22, LipSM54 (Li et al., 2016); 23,
MtEst45 (Lee, 2016); 24, LipT (Chow et al., 2012); 25, EstSt7 (Wei et al., 2013); 26, Rlip1 (Liu et al., 2009); 27, EstA (Chu et al., 2008); 28, FLS12 (Hu Y. et al., 2010);
29, lp_3505 (Esteban-Torres et al., 2014). Outer ring: substrate specificity of corresponding clones toward different carbon chain length (C4–C14) of triglycerides.
(B) Protein sequence similarity network of LEs belonging to different families. Networks were generated from all-by-all BLAST comparisons of amino acid sequences
from the same dataset used for the construction of the phylogenetic tree. Each node represents a sequence. Larger square nodes represent LEs derived from
function-based screening performed in this study. Small circle nodes represent LEs retrieved from GenBank. Nodes were arranged using the yFiles organic layout
provided in Cytoscape version 3.4.0. Each edge in the network represents a BLAST connection with an E-value cutoff of ≤1e−16. At this cut-off, sequences have a
mean percent identity and alignment length of 36.3% and 273 amino acids, respectively.

TABLE 2 | Comparison of profile HMM databases based on different alignment tools to detect LEs.

Recall of LEs (α/β hydrolase) Recall of LEs
(non-α/β hydrolase)

Datasetsa Nr. of LEs
(α/β hydrolase)

Nr. of LEs
(non-α/β hydrolase)

Omega-
pHMMs

Muscle-
pHMMs

ClustalW-
pHMMs

ESTHER-
pHMMs

BLASTp Pfam-pHMMs

Dataset 1 4382 554 4243 4244 4228 4225 4122 554

Dataset 2 130 32 125 125 121 124 117 32

Dataset 3 80 36 78 75 76 76 70 36

Dataset 4 68 0 56 55 53 53 51 0

aDataset 1, LEs from UniProt database; Dataset 2, recently reported LEs; Dataset 3, MetaGeneMark-predicted proteins from inserts conferring lipolytic activity; Dataset
4, potential non-lipolytic proteins with homology to LEs.
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The accuracy of omega-pHMMs for lipolytic family
assignment was also assessed. For datasets 2 and 3, we achieved
high precision of annotating LEs into the known lipolytic families
but not for LEs from novel families (Supplementary Table 12).
Dataset 4 included non-lipolytic proteins, such as epoxide
hydrolases, dehalogenases and haloperoxidases, which exhibited
some amino acid sequence similarity (20–25%) to LEs in
subfamilies V.1 and V.2 (Arpigny and Jaeger, 1999). Our
“homology-based” method only differentiated part of these
non-lipolytic homologs from “true” LEs (Table 2). To improve
the annotation accuracy, putative lipolytic proteins (PLPs)
were further searched against the entire ESTHER database by
BLASTp. By combining the annotations from both methods
(Supplementary Figure 1), these “novel” LEs in datasets 2
and 3 were correctly identified as “unassigned,” in terms of
not assigned to any known ELF (Supplementary Table 12).
Moreover, almost all of the non-lipolytic proteins (>92%)
in dataset 4 were distinguished from LEs (Supplementary
Table 12).

To identify LEs affiliated to families VIII and II, and patatin-
like proteins, enzymes were successively screened against Pfam-
pHMMs and CATH HMMs database. For the first three datasets,
all the LEs in the three families were correctly identified by
screening against Pfam-pHMMs (Table 2 and Supplementary
Table 13).

As demonstrated in other sequence-based metagenomic
approaches (Liu et al., 2015b; Maimanakos et al., 2016; Azziz
et al., 2019), our screening strategy is also vastly dependent
on the completeness and accuracy of the reference databases
(ESTHER and CATH database in this study). Hence, PLPs
exhibiting closest similarity to members affiliated to the
miscellaneous ESTHER families or no ESTHER/CATH hits
returned, were classified into the “unassigned” group in this
study (Supplementary Table 12). This might have resulted in an
underestimation of assigned lipolytic proteins (Supplementary
Table 13).

Sequence-Based Screening Confirmed
Compost Metagenomes as Reservoir for
Putative Lipolytic Genes
Initial screening of the assembled metagenomes of compost55
and compost76 resulted in the identification of 4,157 and 2,234
PLPs, respectively. Among them, 1,234 and 759 were further
assigned into 28 and 26 families, respectively. The assigned
PLPs belonged mainly to family VIII, hormone-sensitive
lipase-like proteins, patatin-like proteins, II, A85-Feruloyl-
Esterase, Carb_B_Bacteria and homoserine transacetylase
(Supplementary Figure 8). The family assignment was
also verified by constructing a protein sequence similarity
network (Supplementary Figure 9). The large number
of unassigned PLPs (2,460 for compost55 and 1,208 for
compost76) indicated the presence of candidates for
novel lipolytic families. The assigned PLPs were generally
of bacterial origin (>95%), and mainly affiliated to the
phyla (>5%) Actinobacteria, Proteobacteria, Firmicutes,
and Bacteroidetes (Figure 2). The corresponding contigs

were also taxonomically assigned and exhibited a similar
phylogeny as seen for the embedded PLP-encoding gene
sequences (Figure 2).

Members of the Actinobacteria have been reported as
important biomass degraders (Ryckeboer et al., 2003; Hubbe
et al., 2010; Lewin et al., 2016; Wang et al., 2016). In this
study, 34.7 (compost55) and 15.8% (compost76) of the assigned
PLPs originated from Actinobacteria. At genus level, the
assigned PLPs were affiliated to Mycobacterium, Actinomadura,
Thermomonospora, Streptomyces, Micromonospora,
Pseudonocardia, and Thermobifida (Supplementary Table 14).
Members of these genera have been reported as producers of
lipases/esterases (Wei et al., 1998; Alisch et al., 2004; Chahinian
et al., 2005; Guo et al., 2010; Hu X. et al., 2010; Brault et al.,
2012; Mander et al., 2014; Sriyapai et al., 2015). Moreover, some
of the corresponding families, such as Micromonosporaceae,
Streptomycetaceae, and Thermomonosporaceae, are commonly
found in thermophilic composts (Schloss et al., 2003; Blaya
et al., 2016; Lima-Junior et al., 2016). Proteobacteria are also
an abundant source of the assigned PLPs in compost55 (26.2%)
and compost76 (31.4%) (Figure 2). Popovic et al. (2017)
identified 80 LEs, of which 65% were proteobacterial origin
by screening of 16 metagenomic DNA libraries prepared
from seawater, soils, compost and wastewater. In our study,
lipolytic genes exhibited high taxonomic diversity at genus
level, they were distributed across 97 and 111 genera for
compost55 and compost76, respectively (Supplementary
Table 14). The assigned PLPs affiliated to Firmicutes originated
mainly from Clostridiales and Bacillales (Figure 2). By
analyzing the microbial diversity and metabolic potential of
compost metagenomes, members of Clostridiales and Bacillales
were shown to play key roles in degradation of different
organic compounds (Martins et al., 2013; Antunes et al.,
2016). Bacteroidetes is the fourth most abundant phylum of
assigned PLPs in compost55 (8.4%) and compost76 (18.8%)
(Figure 2). At genus level, the assigned PLPs derived mainly
from Rhodothermus in compost55, and Sphingobacterium,
Flavobacterium, Niastella, and Flavihumibacter in compost76
(Supplementary Table 14). Members of these genera
are known as important fermenters during composting
(Neher et al., 2013; Antunes et al., 2016; Lapébie et al.,
2019).

The phylogenetic distribution of assigned PLPs in each
sample, to some extent, corresponded well to the taxonomic
composition revealed from the whole contigs (Figure 2)
but with minor differences in the rank abundance order.
The 16S rRNA gene amplicon (Supplementary Figure 3)
and metagenomic datasets (Supplementary Figure 4) also
showed a composition of dominant orders similar to that
deduced from lipolytic genes/contigs (Figure 2). Wang et al.
(2016) showed that the phylogenetic distribution of CAZyme
genes in the rice straw-adapted compost consortia was in
accordance to its microbial composition. Mapping resistance
gene dissemination between humans and their environment
by Pehrsson et al. (2016) revealed that resistomes across
habitats were generally structured by bacterial phylogeny along
ecological gradients.
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FIGURE 2 | Phylogenetic distribution of assigned PLP-encoding genes identified in compost55 and compost76 metagenomes. The phylogenetic origin of
PLP-encoding genes, the contigs harboring these genes, and the whole assembled contigs were annotated by Kaiju (Menzel et al., 2016), and expressed as the
proportion of the respective total counts in each sample. The pie charts represent the taxonomic composition at phylum level. Taxa with an abundance of less than
1% were grouped into “others.”
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FIGURE 3 | Lipolytic family profile of assigned PLPs across samples. Hierarchical clustering analysis of the lipolytic family profile in each sample was performed using
the Ward.D clustering method and Bray-Curtis distance matrices. LPGM values were log10 transformed. The color intensity of the heat map (light green to red)
indicates the change of LPGM values (low to high). The habitats are depicted by different colors. The lipolytic family profile in each sample was generally clustered by
habitat (overall R value = 0.621, P < 0.001, ANOSIM test). The boxplot (top) represents the distribution of the assigned PLPs in each ELF across samples. Mean
values (n = 175 samples) are given. The bar plot (right) shows the total abundance of assigned PLPs by summing up the abundance in each family of each sample.
Abbreviations of habitats: ADAS, anaerobic digestor active sludge; AS, agricultural soil; COM, compost; GS, grassland soil; HG, human gut; HM, hypersaline mat;
HRE, hydrocarbon resource environment; HS, hot spring; LL, landfill leachate; MS, marine sediment; MW, marine water; OR, oil reservoir; RW, river water; TFS,
tropical forest soil; WB, wastewater bioreactor; ELF, ESTHER lipolytic family.
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Comparison Between Function-Driven
and Sequence-Based Screening of
Lipolytic Enzymes
Metagenomics allows tapping into the rich genetic resources
of so far uncultured microorganisms (Simon and Daniel,
2011) through function-driven or sequence-based approaches.
The function-driven strategy targets a particular activity of
metagenomic library-bearing hosts (Ngara and Zhang, 2018).
In this way, we identified 13 novel LEs (Supplementary
Table 9 and Supplementary Figure 7B), which confirmed
functional screening as a valuable approach for discovering
entirely novel classes of genes and enzymes, particularly
when the function could not be predicted based on DNA
sequence alone (Reyes-Duarte et al., 2012; Lam et al., 2015;
Villamizar et al., 2017).

The sequence-based screening strategy is also frequently used
due to the easy access to a wealth of metagenome sequence data
and continuous advances in bioinformatics (Chan et al., 2010; Liu
et al., 2015c; Maimanakos et al., 2016). The hit rate for LEs was
higher by sequence-based than by function-based screening, but
the sequence-based derived hits need to be functionally verified.
By mapping the metagenomic short reads to the functional
screening-derived lipolytic genes, 63 genes out of 115 lipolytic
genes in total had a coverage of 100% and 88 of ≥99%
(Supplementary Table 15). Blast-based comparison between
lipolytic genes derived from function-driven and sequence-based
approaches indicated that 31 genes from each approach exhibited
100% sequence identity (Supplementary Table 16).

Function-driven screenings are generally constrained by
factors, such as labor-intensive operation, limitations of the
employed host systems and low hit rate (Simon and Daniel,
2011). However, function-based approaches are activity-directed,
and sequence- and database-independent, thus, they bear the
potential to discover entirely novel genes for biomolecules of
interest (Rabausch et al., 2013; Lam et al., 2015). Sequencing-
based screening, on the other hand, is effective in identifying
sequences and potential genes encoding targeted biomolecules
in metagenomes. Sequence-based screens largely rely on the
used search algorithms, and quality and content of the
reference databases to infer the functions of discovered candidate
genes (Ngara and Zhang, 2018). Thus, the best way to
explore novel molecules is to combine the two approaches
(Barriuso and Jesús Martínez, 2015).

Assigned Putative Lipolytic Proteins Are
Distributed by Ecological Factors
In this study, 175 metagenomes representing various ecology
niches were selected for sequence-based searching of PLPs. In
total, we have screened approx. 1.23 billion genes in assembled
metagenomes and recovered approx. 0.22 million (absolute
counts) PLP-encoding genes. The assigned PLPs (34% of the
total counts) were normalized to LPGM values for comparative
analysis. In accordance with the function-based screening,
samples subjected to certain enrichment processes, particularly
lipid-related, tend to have a higher hit rate (Figure 3). For
example, samples with high LPGM values were derived from

a hydrocarbon resource environment and an oil reservoir that
are enriched with oil-degrading microbes (Liu et al., 2015a,
2018; Hu et al., 2016; Vigneron et al., 2017), and composts and
wastewater bioreactors that are reservoir for microbes degrading
organic compounds (Dougherty et al., 2012; Silva et al., 2012;
Antunes et al., 2016; Berini et al., 2017). Intriguingly, samples
from human gut systems were also candidates for LEs (LPGM
values > 7,500). The human intestinal microorganisms play an
import role in degrading diet components into metabolizable
molecules (Wang et al., 2015). The function- and sequence-based
study of human gut metagenomes have proved that the human
gut microbiome is a rich source for various carbohydrate active
enzymes (Li et al., 2009; Turnbaugh et al., 2009; Tasse et al., 2010;
Moore et al., 2011).

Overall, the assigned PLPs were classified into 34
lipolytic families (Figure 3). Members of the hormone-
sensitive_lipase_like and patatin-like-protein families were most
abundant (average LPGM values across samples >2,000),
followed by families of A85-EsteraseD-FGH, VIII and
Bacterial_lip_FamI.1 (average LPGM values >700; Figure 3).
However, no family was shared by all samples. Nevertheless,
members from families of hormone-sensitive-lipase-like,
patatin-like-proteins, VIII, homoserine transacetylase, II
and A85-Feruloyl-Esterase were detected in more than 90%
of samples (Figure 3). Enzymes belonging to families of
PHAZ7_phb_depolymerase, Bact_LipEH166_FamXII, and
Bacterial_lip_FamI.2 were not or only rarely detected (<6%
of all samples) and showed a low abundance (LPGM values
<1). The prevalence and abundance of a lipolytic family
revealed by the sequence-based screening are dependent on
the distribution of the corresponding target genes in the
microbial consortia (Wang et al., 2016). Taking members
from the “abundant” family hormone-sensitive_lipase_like as
example, the corresponding genes are widely distributed in
more than 1,200 species as recorded in the ESTHER database
so far. This was, somehow, also reflected by the function-
based screening, in which a large proportion of the identified
LEs belonged to the hormone-sensitive_lipase_like family. In
contrast, according to the ESTHER database, only 23, 8 and
6 species harboring LEs were affiliated to the “rare” families
like PHAZ7_phb_depolymerase, PC-sterol_acyltransferase and
Bact_LipEH166_FamXII, respectively.

To investigate the distribution of assigned PLPs that cause
the observed lipolytic family profiles across samples and habitats,
a matrix with LPGM values representing the abundance of
PLPs per lipolytic family identified in each metagenome was
generated. The lipolytic family profiles clustered by habitats
(Figure 3), which was confirmed by NMDS (Supplementary
Figure 10). ANOSIM (Clarke, 1993) was used to pairwise
compare the multivariate (group) differences of lipolytic family
profiles between habitats. A R value-based matrix was generated
among habitats (Supplementary Figure 10), a high R value
(between 0 and 1) indicated a high group dissimilarity between
two habitats. Generally, each habitat exhibited a distinctive
pattern of lipolytic family profiles (overall R value = 0.6168;
Supplementary Table 17). For example, PLPs detected in
agricultural soils were only present in eight lipolytic families with
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FIGURE 4 | Taxonomic distribution of assigned PLPs. Taxonomic distributions of assigned PLPs in abundant bacterial phyla possessing PLP-encoding genes across
all the samples. The abundance inferred from LPGM values matrix of assigned PLPs per family identified in each bacterial phylum was generated by summing the
corresponding LPGM values across all samples. The width of each seperated sector from each bacterial phylum (A-J) and lipolytic family (1–21) indicates their
relative abundances across all samples. The corresponding colors were shown in the third ring (from outside in). In the outermost ring, sectors A–J indicate the
distribution of lipolytic families in each bacterial phylum. This is also the case for bacterial phyla in each lipplytic family of sectors 1–21. A, Acidobacteria; B,
Actinobacteria; C, Bacteroidetes; D, Chloroflexi; E, Cyanobacteria; F, Deinococcus-Thermus; G, Firmicutes; H, Planctomycetes; I, Proteobacteria; J,
Verrucomicrobia; 1, Hormone-sensitive_lipase_like; 2, patatin-like-protein; 3, A85-EsteraseD-FGH; 4, Bacterial_lip_FamI.1; 5, VIII; 6, Homoserine_transacetylase; 7,
II; 8, Lipase_3; 9, A85-Feruloyl-Esterase; 10, ABHD6-Lip; 11, Carb_B_Bacteria; 12, Bacterial_lip_FamI.3; 13, Lysophospholipase_carboxylesterase; 14,
Carboxymethylbutenolide_lactonase; 15, CarbLipBact_2; 16, Chlorophyllase; 17, Tannase; 18, Polyesterase-lipase-cutinase; 19, Duf_3089; 20, Fungal_Bact_LIP;
21, Lipase_2. Only phyla and lipolytic families with a relative abundance >0.5% are shown.

low abundances. In contrast, PLPs in composts were detected in
almost all lipolytic families, and with remarkably high abundance
in families such as hormone-sensitive_lipase_like, patatin-like-
protein and VIII (Supplementary Figure 11). Notably, the
lowest group dissimilarity was observed between the habitats
compost and wastewater bioreactor (R = 0.1941, P < 0.001,

ANISOM; Supplementary Figure 10). The analysis of lipolytic
profiles across habitats allows selecting suitable habitats for
function-based screening, e.g., targeting LEs of a specific family
or with some properties for desired applications. Metagenomes
from composts are promising for recovering LEs in families
LYsophospholipase_carboxylesterase (family VI), CarbLipBact_2
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FIGURE 5 | Association networks between bacterial origin of assigned PLPs at genus level and habitats. The abundance of PLPs in each genus per sample was
presented by LPGM values, and only genera with mean LPGM values of ≥0.5 across all the samples were used. Source nodes (rounded squares) represent
habitats, target node represent bacterial genera (circles, diamonds, and triangles), and edges represent associations between habitats and bacterial genera. Target
node size represent its mean abundance inferred from LPGM values across habitats. Target node is colored according to its phylogenetic origin at phylum level. The
length of edges is weighted according to association strength. Unique clusters, which associate with only one habitat, consist of nodes shaped as diamond. Triangle
and circle nodes represent genera with significant cross association between two and more habitats, respectively. Data only represents genera that showed
significant positive association with habitats (P = 0.05). For ease of visualization, edges were bundled together, with a stress value of 3. Abbreviations of habitats:
ADAS, anaerobic digestor active sludge; AS, agricultural soil; COM, compost; GS, grassland soil; HG, human gut; HM, hypersaline mat; HRE, hydrocarbon resource
environment; HS, hot spring; LL, landfill leachate; MS, marine sediment; MW, marine water; OR, oil reservoir; RW, river water; TFS, tropical forest soil; WB,
wastewater bioreactor; ELF, ESTHER lipolytic family.

(family XIII-2/XVIII), and CarbLipBact_1 (family XIII-1)
(Supplementary Figure 12).

The Phylogenetic Distribution of
Assigned Putative Lipolytic Proteins
More than 98% of the assigned PLPs were encoded by bacterial
community members. Although LEs are widely encoded
in various microbial genomes (Hausmann and Jaeger, 2010;

Ramnath et al., 2016; Kovacic et al., 2019), the assigned PLPs
were mainly derived from the bacterial phyla Proteobacteria
(66.5%), Bacteroidetes (12.5%), Actinobacteria (7.7%),
Firmicutes (6.7%) (Figure 4). This is consistent with the
taxonomic origin of reference LEs in ESTHER database
(Supplementary Figure 13). Moreover, enzymes from members
of Proteobacteria were dominant in almost all lipolytic families
(Figure 4). At genus level, the phylogenetic origins of assigned
PLPs were scattered across approx. 2,000 bacterial genera
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(Supplementary Figure 14), with enriched abundance
in the genera Acinetobacter, Pseudomonas, Bacteroides,
Bradyrhizobium, and Mycobacterium (average LPGM values
across samples >180). Many of the LEs from these genera were
described as exoenzymes (Rudek and Haque, 1976; Gilbert, 1993;
Snellman and Colwell, 2004; Guo et al., 2010; Liu et al., 2018).
Notably, a similar taxonomic enrichment at genus level was also
observed for the reference LEs in ESTHER database as 960 LEs
were encoded by Mycobacterium, 410 by Pseudomonas, 260 by
Bacteroides, 166 by Acinetobacter, and 164 by Bradyrhizobium
species (Supplementary Table 18).

The taxonomic origin of assigned PLPs at genus level
varied significantly across habitats (overall R value = 0.821,
P < 0.01), especially for the human gut system, oil reservoir and
hydrocarbon resource environment (Supplementary Figure 15).
The average R value was 0.98, 0.97, and 0.94, respectively
(Supplementary Table 19). The lowest dissimilarity was observed
between compost and wastewater bioreactor (R value = 0.2317,
P < 0.001, ANISOM).

Habitats Harboring Prevalent and
Distinct Microbial Clusters Are Main
Drivers of Putative Lipolytic Protein
Distribution
Bipartite association networks have been used to identify
microbial taxa responsible for shifts in community structures
(Hartmann et al., 2015; Dukunde et al., 2019). In this study,
a bipartite association network was constructed to visualize
the associations between bacterial members at genus level that
harbor lipolytic genes and habitats or habitat combinations
(Figure 5). 225 of the total 712 genera were not significantly
separated in abundance and frequency by habitat. These
belonged mainly to Proteobacteria (82 genera), Bacteroidetes (43
genera), Firmicutes (33 genera), and Actinobacteria (25 genera)
(Supplementary Table 20). These non-significant genera were
conserved across different habitats, generally represented the
“indigenous group” (Hartmann et al., 2015; Wemheuer et al.,
2017), and formed the core microbiota harboring lipolytic genes.
This core microbiota was also an indication of the prevalence
of lipolytic genes across microbes and habitats (Bornscheuer,
2002; Hasan et al., 2006; Barriuso and Jesús Martínez, 2015;
Berini et al., 2017). In contrast, the significant indicators,
with respect to the “characteristic group” (Rime et al., 2016;
Dukunde et al., 2019), highlighted the bacterial genera that
were responsible for the change of assigned PLPs distribution
across habitats (Figure 5). Particularly, the indicators associated
with only one habitat defined the distinctiveness of microbiota
in each habitat (Hartmann et al., 2015). In this study, the
unique-associated indicators accounted for 76% of all significant
indicators (Supplementary Table 20). This strongly resembled
the ANISOM result, in which the high overall R value (0.8199)
suggested a significant distinctiveness of the phylogenetic origins
of assigned PLPs across habitats (Supplementary Table 19).
With respect to each habitat, a high ratio of unique-associated
indicators to the total significant genera in a habitat generally
indicated a high R value (Pearson’s r correlation = 0.6672,

P < 0.01, linear regression; Supplementary Figure 16). For
example, out of the 75 indicators that were significantly
associated to the habitat hydrocarbon resource environment, 65
were unique-associated indicators with a mean R value of 0.93
(Supplementary Table 19). This is also the case for the habitats
oil reservoir (60 out of 75; mean R value = 0.96) and human gut
system (35 out of 41; mean R value= 0.97).

Only a small fraction of the indicators exhibited cross
associations between two (14% of the total indicators) or more
(10%) habitats. Nevertheless, the 29 cross-associated indicators
between habitats compost and wastewater bioreactor explained
the low dissimilarity of phylogenetic distributions of assigned
PLPs between the two habitats (R= 0.2317, P < 0.001, ANISOM).

Similar to the “indigenous group,” the “characteristic group”
consisted mainly of genera affiliated to Proteobacteria (224
genera), Bacteroidetes (72), Firmicutes (49), and Actinobacteria
(36). Among them, proteobacterial genera largely characterized
the major habitats, such as tropical forest soil (83%), wastewater
bioreactor (67%), hypersaline mat (52%), hydrocarbon resource
environment (51%), oil reservoir (51%), compost (50%), marine
water (46%), river water (45%), and grassland soil (42%), whereas
Bacteroidetes and Firmicutes characterized the human gut system
(68%) and the active sludge of an anaerobic digestor (53%)
(Supplementary Table 20). Noteworthy, the unique-associated
indicators affiliated to Cyanobacteria were primarily enriched
in the hypersaline mat (95% indicators), which is also the case
for Planctomycetes and Verrucomicrobia in river water (88 and
80%, respectively). Pehrsson et al. (2016) detected a link between
microbial community structure and functional gene repertoire.
This link could be extended to the distribution pattern of
indicators in our study. For example, various studies have proved
that the microbes in human gut systems were dominated by
Firmicutes (Mahowald et al., 2009; Vital et al., 2014; Rinninella
et al., 2019), which in turn leads to the Firmicutes-dominated
indicators for lipolytic genes (Figure 5). Among all the habitats,
only hypersaline mats were featured by the Cyanobacteria-
dominated oxygenic layer for photosynthesis (Sørensen et al.,
2005; Lindemann et al., 2013), which explained that almost all
the Cyanobacteria indicators were associated with the hypersaline
mat (Figure 5).

CONCLUSION

In this study, two compost samples (compost55 and compost76)
were used for metagenomic screening of potential lipolytic
genes. Through the function-driven screening, 115 unique LEs
were identified and assigned into 12 known lipolytic families.
In addition, 7 LEs were not assigned to any known family,
indicating new branches of lipolytic families. Our results show
that functional screening is a promising approach to discover
novel lipolytic genes, particularly for targeted genes, whose
function is not predicted based on DNA sequence alone.
For sequence-based screening, we have developed a search
and annotation strategy specific for putative lipolytic genes in
metagenomes (Supplementary Figure 1). Our profile HMM-
based searching methods yielded higher sensitivity (recall) for
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LEs than the BLASTp-derived counterpart. The annotation
method also remarkably increased the specificity and accuracy
in distinguishing lipolytic from non-lipolytic proteins. With this
sequence-based strategy, we identified the putative lipolytic genes
within the two compost metagenomes. Analysis of the taxonomic
origin of these genes indicated a potential link between microbial
taxa and their functional traits. By comparing the lipolytic hits
identified by function-driven and sequence-based screening, we
conclude that the best way for exploring and exploiting LEs is to
combine both approaches.

In addition, assembled metagenomes from samples of various
habitats were used for comparative analysis of the PLP
distribution. We profiled the lipolytic family and phylogenetic
origin of assigned PLPs for each sample. The two profiles were
generally driven by ecological factors, i.e., the habitat. Moreover,
the habitat also determined the conserved and distinctive
microbial groups harboring the putative lipolytic genes.

Putative lipolytic proteins were also mainly enriched in
the bacterial phyla Proteobacteria, Bacteroidetes, Actinobacteria,
Firmicutes (Supplementary Figure 17). The profile of the
phylogenetic total PLP distribution in each sample clustered
also by habitats (Supplementary Figures 18–20). The bipartite
association network identified the conserved and distinctive
microbial groups harboring PLP-encoding genes among the
habitats (Supplementary Tables 21, 22). Thus, our study
provided a sequence-based strategy for effective identification
and annotation of potential lipolytic genes in assembled
metagenomes. More importantly, through this strategy, the
overview of how the lipolytic genes distributed ecologically
(in various habitats), functionally (in different lipolytic enzyme
families), and phylogenetically (in diverse microbial groups) is an
advantage for novel and/or industrially relevant LE identification.
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