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ABSTRACT

Motivation: The computational identification of transcription factor
binding sites is a major challenge in bioinformatics and an important
complement to experimental approaches.

Results: We describe a novel, exact discriminative seeding DNA
motif discovery algorithm designed for fast and reliable prediction
of cis-regulatory elements in eukaryotic promoters. The algorithm is
tested on biological benchmark data and shown to perform equally
or better than other motif discovery tools. The algorithm is applied
to the analysis of plant tissue-specific promoter sequences and
successfully identifies key regulatory elements.

Availability: The Seeder Perl distribution includes four modules. It is
available for download on the Comprehensive Perl Archive Network
(CPAN) at http://www.cpan.org.

Contact: martina.stromvik@mcgill.ca

Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION

The binding of transcription factors to relatively short and variably
degenerate regulatory DNA sequences (cis-regulatory elements)
is central to the regulation of gene expression (Orphanides and
Reinberg, 2002). While several sequenced genomes are nearly
deciphered in terms of the protein-coding gene repertoire, the
inventory and comprehensive characterization of cis-regulatory
elements remains elusive.

Motif discovery has motivated the development of numerous tools
and algorithms, and the use of various motif models and statistical
approaches (Guha Thakurta, 2006). Motif discovery can be broadly
divided into ‘sequence-driven’ and ‘pattern-driven’ methods. The
former methods typically involve building a position-weight matrix
(PWM) from sequence data, and local search techniques such as
expectation—maximization or Gibbs sampling are used to optimize
the log likelihood ratio until convergence or a maximum number
of iterations is reached. Though routinely fast, those methods
are not guaranteed to yield the best solution, or global optimum
(Stormo, 2000). Enumerative methods, on the other hand, are
guaranteed to find a global optimum but have the drawback of being
computationally expensive and limited to short motifs.

Searching a set of sequences for patterns that are overrepresented
relative to a given background model may converge towards
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motifs that are prevalent in the genome thus not likely to
represent regulatory elements. Sinha (2003) introduced the notion
of ‘discriminative’ motif discovery in which a motif is treated as a
feature that leads to good classification between positive sequences
deemed to contain common cis-regulatory elements and a set of
background sequences.

In this work, we present the Seeder algorithm—a novel, exact
discriminative seeding DNA motif discovery algorithm inspired by
Keich and Pevzner, 2002; Pizzi et al., 2005. The major benefits of the
Seeder algorithm are (i) the use of intuitive and reliable statistics for
the choice of motif seeds and (ii) a data structure that significantly
accelerate the computation of motifs and background models. The
algorithm is benchmarked against popular motif finding tools and
demonstrates greater performance. The algorithm is applied to the
analysis of Arabidopsis thaliana seed-specific (the plant structure
seed, not to be confused with motif seed) promoters and identifies
motifs with high similarity to seed-specific cis-regulatory elements
experimentally characterized in Brassica napus, a closely related
species.

2 METHODS
2.1 The Seeder algorithm

Our algorithm starts by enumerating all nucleotide combinations (words)
of a given length, usually six. For each word, it calculates the Hamming
distance (HD) between the word and its best matching subsequence (we call
this distance the substring minimal distance—SMD) in each sequence of a
background set. This data is used to produce a word-specific background
probability distribution for the SMD. For each word, it then calculates the
sum of SMDs to sequences in a positive set. The P-value for this sum is
calculated using the word-specific background probability distribution. The
word for which the P-value is minimal is retained, and a seed PWM is built
from the closest matches to this word found in every positive sequence. The
seed PWM is extended to full motif width and sites maximizing the score to
the extended PWM are selected, one in each positive sequence. A new PWM
is built from those sites and the process is iterated until convergence, or a
maximum number of iterations is reached.

2.1.1 Input data and parameters Our algorithm takes as input a set
B={By,...,Bn} of m background sequences of length L, a set
P={Py,...,P,} of n positive sequences of length L, the length k of the
motif seed and the length / of the full motif to discover.

2.1.2  Substring minimal distance The HD between two strings of equal
lengths is the number of positions at which symbols differ (Hamming, 1950).
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We define the SMD d(w,w") between a short nucleotide sequence w and
a longer sequence w' as the minimal HD between w and a |w|-length
substring of w'.

2.1.3 Background model A discrete random variable Y(w) is associated
with each word w of seed length k, corresponding to the SMD between
w and a randomly selected background sequence from B. This w-specific
distribution function is obtained empirically from B; for each word w, we
set () =Pr[Y(w) =y]=|{B;: d(w.B;) = y}|/m, for y=0, ...,k.

2.1.4 Seed position weigth matrix For each word w, the sum of SMDs
to the positive sequences S(w)= Zjd (w,Pj) is computed. Under the
background model, the distribution function of this sum of »n independent
and identically distributed (i.i.d.) random variables is g’vf* (v), the n-fold self-
convolution of g,,(y) (Grinstead and Snell, 1997). The P-value (p) for word
w with sum S(w), which is the probability of obtaining a sum lower or equal
to S(w) under the assumption that P;’s are random in respect to w, is

S(w)
PSG)=> gl ) )

y=0

The word w* for which the P-value p (S(w)) is minimal is retained. For each
positive sequence in P, the set of one or more subsequences of length k having
the SMD to w* are retained. A PWM Py is built from this set of selected
subsequences using standard procedures and pseudocounts proportional to
/n (Wasserman and Sandelin, 2004), with the modification that when a
sequence contains more than one match, each match (subsequence) weight
is reduced proportionally. The subsequence associated with the highest score
to Py is retained in each sequence, and the seed PWM P; is built from this
optimal set of n subsequences, as described above.

2.1.5 Full length motifs The seed PWM P; is of width k, smaller than the
full motif width. It is extended to full motif width / by adding null weights at
(I—k)/2 positions upstream and downstream. The full length PWM is then
refined by iterating the following process. (i) Sites (one per sequence in P)
maximizing the score to the extended weight matrix are selected and (ii) a
revised full length PWM is built from those sites. This process is repeated
until convergence (i.e. the sites maximizing the PWM score are fixed in
all sequences) or for at most a default number of 10 iterations, which we
observed to often be sufficient for the convergence of significant seeded
motifs.

2.1.6 N-fold self-convolution Our implementation of the n-fold self-
convolution uses the binary expansion of n (Sundt and Dickson, 2000), and
is an adaptation of the ‘square and multiply’ algorithm (Gordon, 1998) while
convolutions per se are computed using the ‘input side algorithm’ (Smith,
1997).

2.1.7 Multiple hypothesis testing correction For each motif predicted,
a list of 4%P-values is generated thus prompting for a multiple testing
correction. This is carried out by generating a list of g-values from the
list of P-values associated with words of seed length k, using the general
algorithm for estimating g-values described in (Storey and Tibshirani, 2003).
The statistical significance of a motif is evaluated with the g-value of the sum
S(w*), which is the expected proportion of false positives incurred when
calling the sum significant (i.e. not likely to have occurred if the positive
sequences were randomly selected).

2.1.8 Searching both strands Because transcription factor binding sites
(TFBS) can be located either on the forward or the reverse strand, motifs are
typically searched for on both strands. This is easily achieved with Seeder:
one simply redefines the SMD so as to consider matches one both strands (for
both the background and positive sequences) and perform PWM matching
similarly.
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Fig. 1. SMD index generation. The SMD index generation is illustrated for
the word ‘CAG’. N, top-level tree node nucleotide numerical value; d, level.

2.1.9 Multiple motifs When the user asks to retrieve more than one motif,
the sites identified in the preceding run(s) are masked and the motif-finding
process is repeated. The positions of the sites are obtained by scanning each
sequence (plus strand first) until the highest scoring subsequence is found.

2.2 Data structures

The calculation of SMDs using direct string comparison approaches requires
a considerable amount of operations and this probably explains in part why
this quantity has not been more often exploited for DNA motif discovery. We
have designed a data structure based on the organization of the matrix of HDs
between words of length 6 (see Fig. 4, supplied as supporting information).
This structure, called the SMD index (Fig. 1), allows very efficient lookup,
in a given sequence, for a subsequence minimally distant to a given word,
hence improving the efficiency of the SMD computation.

2.2.1 SMD index generation Each nucleotide is mapped to a numerical
value (A,C,GT—0,1,2,3). For a given word w=wj,wy,...,w; of length
k, a list of indices is generated equivalent to a tree structure with levels
d=0,...,k—1. At each new level of the tree, each node is expanded into
four nodes, one for each possible nucleotide N €{0,1,2,3} at that position.
An index iy =N +(4 x iz—1) is assigned to each new node, where iz_1is the
index of the parent node. At the final level, the tree has nodes and indices
corresponding to all possible nucleotide sequences of length k. For a given
node at a given level d, the HD is one more than that of the parent, except
for the node corresponding to nucleotide wy 1, where the HD is unchanged
(Fig. 1). The SMD index is precomputed for every word w of seed length
k and HDs between 0 and 3, which requires a marginal amount of memory
and appreciably accelerates the process.

2.2.2 SMD calculation — The number of occurrences of every word of
length & in each sequence in P is stored using base 4 indexing (word count
array). The SMD between w and sequence P; is obtained by looking up
elements in word count array of P;, in order of increasing HD to w, until a
nonzero count is found.
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2.3 Benchmarking of motif discovery tools

The performance of the Seeder algorithm was compared with that of popular
motif discovery tools using benchmarks designed for robust assessment of
motif discovery algorithms (Sandve et al., 2007). In the benchmark suites,
binding site sequences from the Transfac® database (Wingender er al.,
1996) are represented either in their original genomic context sequences
(‘Model Real’—MR, ‘Algorithm Real’—AR) or in sequences generated
with a third-order Markov model (MM) (‘Algorithm Markov’—AM). The
reverse complement of sequences is used in cases where the original binding
site appears on the negative strand, so all sites within the benchmark suites
appear in the forward sequence. The MR suite contains motifs that, according
to Sandve et al. (2007), are harder to distinguish from the local background
using common motif models (consensus, PWM and mismatch). The AM
and AR suites each contain 50 datasets and a total of 810 sequences of mean
length ~1300 nucleotides, and the MR suite contains 25 datasets and a total
of 410 sequences of mean length ~1250 nucleotides.

2.3.1 Parameter settings In order to be representative of common usage
where parameter adjustment is nominal while providing homogeneous
instructions to different software, sequences were scanned in the forward
orientation, searching for one motif of width 12 with one occurrence (site)
per sequence. Other parameters were left to default values. We ran Seeder
v. 0.01 (this article), Weeder v. 1.3.1 (Pavesi et al., 2004), BioProspector v.
1 (Liu et al., 2001), MEME v. 3.5.4 (Bailey and Elkan, 1994), the Gibbs
Motif Sampler v. 3.03.003 (Lawrence et al., 1993) and Motif Sampler
v. 3.2 (Thijs et al., 2001) on each dataset. The DIPS algorithm (Sinha,
2006) was not included in the benchmark study because it was associated
with prohibitive runtime requirements under our computational conditions.
Background models were generated separately for each suite using all
sequences within the suite. Background distributions for words of length
6 were generated using the Seeder::Background module. Frequency files
(expected values for 6-mers and 8-mers) used by Weeder were generated
using a custom Perl script. A sixth-order MM was generated for MEME
using a custom Perl script, and for Motif Sampler using the INCLUSive
CreateBackgroundModel program (Thijs et al., 2002). The default (third-
order) MM was generated for BioProspector using the genomebg program
provided with the software.

2.3.2  Evaluation of motifs versus known binding sites The predictions
were evaluated using the suite of tools described in (Sandve et al.,
2007) (http://tare.medisin.ntnu.no). The predictions were scored using the
nucleotide-level Pearsons correlation coefficient (nCC) (Tompa et al., 2005).
Differences between scores were assessed using paired z-tests (o =0.05).

2.4 Motif discovery in the promoters of Arabidopsis
seed-specific genes

A background set of 22 032 nuclear protein-coding gene promoters (500 bp
upstream of the transcription start site) was generated using the TAIR
(release 7) ‘loci upstream sequences’ dataset (sequences preceding the
5" end of each transcription unit) and the ‘protein-coding with transcript
support’ listing (loci with supporting cDNA or ESTs deposited in Genbank),
downloaded from the TAIR ftp server (ftp:/ftp.arabidopsis.org). Tissue-
specific promoter sequence sets were assembled according to marker gene
data from Schmid ez al. (2005). The Seeder algorithm was used to perform
motif prediction in seed-specific promoters using a seed length of six and
a motif length of 12, and the ‘protein-coding with transcript support’ gene
promoters as a background.

3 RESULTS

3.1 Performance of motif discovery tools

Figure 2 shows the differences between scores of different motif
discovery tools on the benchmark suites of Sandve et al. (2007).
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Fig. 2. Average benchmarking scores and pairwise differences between
motif discovery tools. Average nucleotide-level Pearson correlation
coefficient (nCC) and pairwise differences (A nCC) for six motif discovery
tools tested on three benchmark suites. Error bars correspond to 95%
confidence intervals. Stars indicate significant differences (« = 0.05) between
scores.

On the AM suite, the performance of each tool was statistically
equivalent. Interestingly, the tool that performed the best (though
by a nonsignificant margin), BioProspector, models background
sequences using a third-order MM, the same type as that used by
Sandve et al. (2007) to generate the AM background sequences.
Seeder, BioProspector, Weeder, MEME and the Gibbs Sampler
scored equally on the AR suite, which contains binding sites in
their original sequence. The MR suite also contains binding sites
in their original sequence, but in this case the binding sites have
a composition that is more similar to that of the surrounding
background sequence. This suite was assembled for the purpose
of testing novel motif models (Sandve et al., 2007). Seeder scored
significantly higher on the MR suite than any other algorithm tested.

At first glance, it may seem surprising that the performance of
some tools is actually higher on the MR suite than on AR suite.
However, although the similarity of motifs to their local background
does complicate the task of motif-finding approaches using local
background models, this does not overly affect those based on global
background models. It nonetheless appears that our discriminative
approach to seed selection yields a nonnegligible advantage to
Seeder. Having said that, it should be noted that for a number of
individual datasets the scores obtained by other tools are higher
than that of Seeder, which highlights the complementary of these
programs.
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Fig. 3. Arabidopsis seed-specific motifs. Sequence logos of motifs
overrepresented in the promoters of A. thaliana seed-specific marker genes.
(A) Full-length forward motifs. (B) Reverse complement of motifs.

3.2 Arabidopsis seed-specific motifs

The Seeder algorithm was used to discover motifs (on both
strands) in a set of 57 promoter sequences of A. thaliana seed-
specific marker genes identified by expression data analysis (Schmid
et al., 2005). The computation of the background distributions
(motif seed length of 6) took 35min using a single Intel® x86
processor, and motif computation took ~3.5 min per motif reported.
This example shows that most of the computing time is used to
compute the background model, particularly when using genome-
scale background datasets. The Seeder::Background module was
therefore designed to precompute background models which can be
reused for any number of motif finding operations.

The top two predictions (g-value < 0.01) were compared to known
plant motifs in the PLACE database (Higo et al., 1998) using the
STAMP web server (Mahony and Benos, 2007). The first motif
(Fig. 3, ml) (g-value=4.4 x 102, information content=7.4) and
the second motif (Fig. 3, m2) (g-value=1.1 x 10~3, information
content=7.6) are similar to two experimentally characterized cis-
regulatory elements found in the napA promoter in B. napus, the
RY repeat (CATGCA) (E =6.32 x 10~3) and the G-box (CACGTG)
(E=2.92 x 1075) (Ezcurra et al., 1999). The function of these
regulatory elements was shown by substitution mutation analysis
using promoter—reporter gene fusions, leading to a strong reduction
of the napA promoter activity in seeds (Ezcurra et al., 1999). The
second motif is also highly similar to a sequence (ACGTGTC)
(E=4.70 x 10_“) overrepresented in the promoters of A. thaliana
genes downregulated during seed germination (Ogawa et al., 2003).

4 CONCLUSION

We have described a novel algorithm for DNA motif discovery
and demonstrated its capacity to discover motifs in real biological
datasets. Advantages of the algorithm over other approaches include
(i) the enumerative-guaranteed optimality of seed selection; (ii)
a background model based on empirical distribution of SMDs;
and (iii) efficient data structures that make background and motif
computations relatively fast at moderate seed lengths.

We have benchmarked the algorithm against popular motif finding
tools and demonstrated its performance to be equal or better than
that of other tools on biological datasets. We note however that,
although the Sandve e al. (2007) benchmarks proved extremely
useful for our performance analysis, it would be ideal to have suites
designed specifically for discriminative motif-finding algorithms.

Tompa er al. (2005) recommend biologists to use a few
complementary tools, and to consider the top few predicted motifs of
each tool. Based on the benchmarks results presented in this study,

we recommend the inclusion of Seeder in the biologist’s DNA motif
discovery toolbox.

The present implementation of Seeder allows for motif searches in
the mode ‘one occurrence per sequence’ (oops). This assumption is
deeply engrained in the algorithm and statistics for the selection
of the motif seed and the construction of the seed PWM. Of
course, once a good seed PWM has been selected, other search
modes [e.g. ‘zero-or-one occurrence per sequence’ (zoops) or ‘any-
number of repetitions’ (anr)] could be implemented using the type
of frameworks previously implemented in tools like MEME or
BioProspector.

We have applied the algorithm to the analysis of A. thaliana seed-
specific promoters and found that the top two motifs were similar
to experimentally characterized cis-regulatory elements found in
the promoters of B. napus seed-storage protein genes. This was
unanticipated, considering the array of gene families and functions
found in the seed-specific gene set from (Schmid et al., 2005).
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