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Abstract: The synthesis, structural, and photophysical investigations of CuI complexes with a disilanylene-
bridged bispyridine ligand 1 are herein presented. Dinuclear (2) and ladder-like (3) octanuclear copper(I)
complexes were straightforwardly prepared by exactly controlling the ratio of CuI/ligand 1. Single-
crystal X-ray analysis confirmed that dinuclear complex 2 had no apparent π . . . π stacking whereas
octanuclear complex 3 had π . . . π stacking in the crystal packing. In the solid state, the complexes
display yellow-green (λem = 519 nm, Φ = 0.60, τ = 11 µs, 2) and blue (λem = 478 nm, Φ = 0.04, τ = 2.6 µs,
3) phosphorescence, respectively. The density functional theory calculations validate the differences in
their optical properties. The difference in the luminescence efficiency between 2 and 3 is attributed to the
presence of π . . . π stacking and the different luminescence processes.

Keywords: disilanylene-bridged chelating ligand; copper(I) iodide; photoluminescence

1. Introduction

Cu(I)-based emitters are considered as an attractive alternative to those containing
platinum group metals for the development of luminescent materials because copper is
abundant and inexpensive compared to other noble metals [1–11]. Due to their flexible
coordination properties, Cu(I) halides-aggregates have been incorporated in coordination
oligomers or polymers, which exhibit a range of photophysical properties [12–15]. Pyri-
dine and its derivatives are one of the most investigated ligands for the copper(I) iodide
complexes [16,17]. In general, the structural motifs of the core are dependent on the elec-
tronic and steric properties and stoichiometry of pyridine ligands, and the core structure
affects the luminescent properties of the copper(I) iodide complexes. Besides the molecular
structure, the intermolecular interaction is also critical for the luminescence properties
of the copper(I) iodide complexes because strong intermolecular interactions, such as π

. . . π stacking, in the solid state strongly suppress the luminescence as seen in copper
iodide complexes with 2,2′-bipyridyl or 1,10-phenanthroline ligands [18–23]. Therefore,
the control of the intermolecular interaction in copper(I) iodide complex is also crucial for
efficient luminescent materials.

We recently investigated aromatic compounds connected with disilanylene groups
(-SiR2SiR2-) [24–33]. Disilanylene-linkers extend the conjugated system through σ–π inter-
action, similarly to C=C double bonds. On the other hand, the disilanylene moiety acts as a
bulky group due to the tetrahedral geometry at silicon atoms and substituents on Si, and
the single bond character of the Si-Si bond allows the rotation along with the Si-Si bond,
which are different from the planar and rigid C=C double bond. These steric features of
the disilanylene linker suppress the strong intermolecular π . . . π stacking and give unique
properties, typically in the solid or aggregated states [34,35]. The use of disilanylene is a
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possible candidate for a linker moiety to control intermolecular interactions; the bulkiness
will suppress strong intermolecular interaction and the long Si-Si distance will give a
large bite angle compared with the C-C bond analogues. There are some complexes with
disilanylene-bridged ligands, and they show unique structure and properties, such as
σ-coordination of the Si-Si bond [36], multiple switchable crystal polymorphs in a metal-
organic framework [37], and photo-induced crystalline transformation [38]. However, the
use of chelating disilane-based ligands was still limited.

A variety of inorganic building motifs have been reported for copper(I) with organic
ligands. We herein report di- and octanuclear copper(I) iodide complexes with a disilaylene-
bridged bispyridine bidentate ligand, 1,1,2,2-tetramethyl-1,2-di(pyridin-2-yl)disilane (1).
The linker moiety in 1 is 1,1,2,2-tetramethyldisilanylene, which can act as a bulky linker as
mentioned above. The copper(I) iodide complexes of 2 and 3 were selectively obtained by
the stoichiometric control of copper(I) iodide and showed light blue and yellow-green pho-
toluminescence in the solid state. To rationalize the different optical properties observed,
quantum chemical calculations were performed for two copper clusters.

2. Results and Discussion
2.1. Synthesis and Crystal Structure of Cu Complexes 2 and 3

The disilanylene-bridged bispyridine ligand 1 was synthesized by a reaction of 2-
pyridyllithium with 1,2-dichloro-1,1,2,2-tetramethyldisilane. The structure was determined
by 1H and 13C NMR (Figures S7–S10) and high-resolution mass spectroscopy. The dinu-
clear copper(I) iodide complex [Cu(µ-I)(1)]2 (2) was obtained by a reaction of copper(I)
iodide and 1 in acetonitrile in a 1:1 ratio (Scheme 1a). The complex 2 was isolated as
an air-stable pale-yellow solid. Single crystals were obtained by recrystallization from
dichloromethane and n-hexane. Elemental analysis of 2 gave the expected composition.
Single-crystal X-ray diffraction analysis revealed that the molecular structure consists of
bimetallic iodo-bridged neutral complex [Cu(µ-I)(1)]2, and selected bond distances and
angles are shown in Figure 1. The complex was crystallized in the triclinic space group P-1,
and the asymmetric unit (half of the complex) was related with an inversion center. Two
copper atoms were bridged by two iodo ligands, and each copper center was supported by
a bidentate ligand 1 in an N2I2 distorted trigonal pyramidal geometry. The Cu1 atom posi-
tioned 0.315 Å out of the basal plane defined by N1, N2, and I1 toward I2. The torsion angle
of the disilane moiety (C(pyridine)-Si-Si-C(pyridine)) is 98.51(8)◦, which indicates the stag-
gered conformation of the disilane moiety. The distance of two copper atoms (3.8761(3) Å)
was longer than the double of the covalent radius of copper (1.32 Å), which suggested the
negligible direct Cu . . . Cu interaction [39,40]. The Si1-Si2 distance (2.3441(7) Å) was in the
normal range of Si-Si bonds, and the Cu . . . Si distances were larger than the sum of the van
der Waals radii of Cu and Si, suggestive of the absence of σ-bonding interaction between
the Cu and Si-Si bond [36]. The Cu-I distances (2.7405(3) and 2.9689(3) Å) are significantly
larger than those of related complexes with a Cu2I2 core [41–44]. The Cu-N distances
(1.987(2) and 1.993(2) Å) are slightly shorter than usual (2.02 Å for unsubstituted pyridine
analogue), and the N1-Cu-N2 bite angle in the complex was 140.45(6)◦, ideally 120◦ in a
trigonal pyramidal geometry. This large bite angle possibly affects the long Cu-I bond in
the Cu2I2 core because it makes the distance between the methyl groups on the linker and
iodide ligands shorten to induce the steric repulsion (the shorter C(Me) . . . I distance was
4.196(2) Å). The crystal packing pattern of 2 shows columns along with the c-axis. From
the viewpoint of crystal packing, CH . . . π interactions were observed between methyl
groups and pyridine rings, similarly to other disilyene-connected aromatic compounds
(Figure S1) [45]. It is noteworthy that no significant π . . . π stacking was observed in the
crystal packing (the intermolecular distance of adjacent pyridine-ring centroids: 4.31 Å),
suggesting that the bulky linker moiety suppress the undesirable intermolecular π . . . π
stacking as designed (Figure S3). We measured the powder XRD of 2. The comparison of
the diffraction pattern between the powder and single crystal of 2 is shown in Figure S6a.
We did not observe any major changes in the diffraction pattern.
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Figure 1. ORTEP drawing of complex 2 with thermal ellipsoids at the 50% probability level. Hydro-
gen atoms were omitted for clarity. Selected bond lengths and angles. Cu . . . Cu′: 3.8761(3) Å. Cu-I:
2.7405(3) Å. Cu-I′: 2.9689(3) Å. I . . . I′: 4.1982(3) Å. Cu-N1: 1.987(2) Å. Cu-N2: 1.993(2) Å. Si1-Si2:
2.3441(7) Å. Cu . . . Si1: 3.3453(5) Å. Cu . . . Si2: 3.2611(5) Å. Cu-I-Cu′: 85.417(7)◦. I-Cu-I′: 94.583(7)◦.
N1-Cu-N2: 140.45(6)◦.

Octacopper(I) iodide complex [Cu4I4(1)2] (3) was obtained by a reaction of ligand 1
and CuI in a 1:2 ratio (Scheme 1b). Elemental analysis of 3 gave the expected composition.
The single crystals suitable for X-ray diffraction were obtained by recrystallization from
tetrahydrofuran and n-hexane. Complex 3 crystallized in the monoclinic space group
P21/c. The crystal structure of 3 is shown in Figure 2, which can be interpreted by a dimer
of a ladder [Cu4I4(1)2] cluster. In the asymmetric unit of complex 3, three copper centers
(Cu1, Cu2, and Cu4 in Figure 2) have a quasi-tetrahedral environment, and the other (Cu3)
has quasi-trigonal planar geometry. These copper centers are bridged by three µ3-I and
one µ2-I ligands, and the copper centers at the apical positions are supported by chelating
ligand 1. The Cu-I bond distances of the trigonal planar copper(I) center (2.50–2.56 Å)
are in the normal range of those of Cu-I complexes [46–48]. Similarly to complex 2, the
Cu-I bond lengths of copper centers supported by ligand 1 (Cu1-I1, 2.8580(5) Å; Cu1-I2,
2.9034(5) Å; Cu4-I3, 3.0754(5) Å; Cu4-I4, 2.8532(5) Å) are significantly longer than other
reported complexes. Cu . . . Cu distances are also larger than the double of Cu(I) radius,
suggestive of negligible Cu . . . Cu interaction. The bite angles (N1-Cu1-N2, 143.19(11)◦;
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N3-Cu4-N4, 143.83(11)◦) of ligand 1 are slightly larger than that of complex 2. We also
measured the powder XRD of 3. The comparison of the diffraction pattern between the
powder and single crystal is shown in Figure S6b. The PXRD resulted in the peaks closed
to XRD being simulated by the single crystal, although anisotropic peaks are observed due
to the interplanar π−π stacking in the crystalline packing of 3.
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Figure 2. ORTEP drawing of complex 3 with thermal ellipsoids at the 50% probability level. Hydrogen
atoms were omitted for clarity. Selected bond distances and angles. Cu1 . . . Cu2, 3.0943(7) Å; Cu2
. . . Cu3, 3.0365(6) Å; Cu3 . . . Cu4, 2.9292(7) Å; Cu2 . . . Cu2′, 3.5689(7) Å; Cu1-I1, 2.8580(5) Å; Cu1-I2,
2.9034(5) Å; Cu2-I1, 2.6586(5) Å; Cu2-I2, 2.6801(5) Å; Cu2-I3, 2.6894(7) Å; Cu2-I1′, 2.6801(6) Å; Cu3-I2,
2.5644(7) Å; Cu3-I3, 2.5440(5) Å; Cu3-I4, 2.4996(5) Å; Cu4-I3, 3.0754(5) Å; Cu4-I4, 2.8532(5) Å; I1 . . .
I2, 4.5907(4) Å; I2 . . . I3, 4.2253(5) Å; I3 . . . I4, 4.4563(4) Å; I1 . . . I1′, 3.9705(5) Å; Cu1-N1, 1.964(3) Å;
Cu-N2, 1.966(3) Å; Cu4-N3, 1.971(3) Å; Cu4-N4, 1.965(3) Å; Si1-Si2, 2.3498(14) Å; Si3-Si4, 2.3424(14) Å;
Cu1 . . . Si1, 3.226(1) Å; Cu1 . . . Si2, 3.247(1) Å; Cu4 . . . Si3, 3.208(1) Å; Cu4 . . . Si4, 3.253(1) Å;
Cu-I-Cu′: 85.417(7)◦. I-Cu-I′: 94.583(7)◦. N1-Cu1-N2, 143.19(11)◦; N3-Cu4-N4, 143.83(11)◦.

Ladder-based copper iodide complexes with monodentate ligand generally gave
coordination polymers, and some bulky pyridine ligands yielded tetracopper(I) iodide step
complexes [49]. In the complexes with N,N,N-tridentate ligands, the ligands act as bridging
ones for copper centers by η2-coordination for the apical position and η1-coordination for
the side position [50–53]. In the case of the bidentate ligand 1, the side-positioned copper
atoms (Cu3 and Cu3′) are not supported by the chelating ligand. Presumably, the vacant
site is capped by the iodide of another tetracopper(I) cluster to form complex 3. To the best
of our knowledge, this dimerization of the ladder copper(I) iodide core seems to be a new
core architecture in octanucler copper(I) iodide complexes. The crystal packing pattern of
3 shows columns along with the a-axis similarly to complex 2 and intermolecular π . . . π
stacking of pyridine rings along with the b-axis (the intermolecular distances of adjacent
pyridine-ring centroids: 3.93 Å and 3.81 Å, Figures S2 and S4). All pyridine moieties in
complex 3 are used for the stacking.

2.2. Photophysical Properties

We investigated the photophysical properties of 2 and 3 (Table 1). Figure 3 shows the
excitation spectra, emission spectra, transient luminescence decay curves, and photographs
under UV irradiation of 2 and 3 in the solid state. These Cu complexes did not display
detectable photoluminescence in the solution state. This is in line with related copper-
halide complexes, and it was ascribed to their chemical instability, owing to the flexible
nature of the complex scaffold and ligand dissociation. Although most Cu(I) complexes
with chelating pyridine-based ligands showed weak emission from the MLLCT excited
state with low quantum yield, dicopper complex 2 showed broad and non-structured
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yellow-green (519 nm) emission in the solid state in good photoluminescent intensity
(Φ = 0.60, Figure 2) [54]. The luminescence wavelength and quantum yield of 2 are in a
normal range of the dicopper(I) iodide complexes with a rhombic core, which rationalizes
the initial molecular design [55,56]. Complex 3 also shows broad and nonstructured blue
emission (478 nm, Φ = 0.04) in the solid state. The emission wavelength of 3 is longer than
that of the ladder-type polymer [CuI(4-picoline)]∞ (437 nm) [57] due to the lower LUMO
levels induced by the introduction of the Si-Si moiety [58–60]. The shapes of the spectra
indicate the charge-transfer character of the emission. The lifetimes of the luminescence
were 11 µs for 2 and 2.6 µs for 3, respectively. The lifetimes in the order of µs suggest that
the origins of the emissions are phosphorescence in both 2 and 3.

Table 1. Luminescent properties of 2 and 3 in the solid state at room temperature.

Complex 2 3

λem/nm 519 478
∆ν1/2/eV [a] 0.46 0.43

Φ [b] 0.60 0.04
τ/µs 11 2.6

kr /s−1 [c] 5.5 × 104 1.5 × 104

knr /s−1 [d] 3.6 × 104 3.7 × 105

[a] Full width at half-maximum of the emission. [b] Absolute quantum yield excited at 380 nm in the solid state at
room temperature. [c] Radiative rate constant calculated by kr = Φ/τ. [d] Nonradiative rate constant calculated
by knr = (1 − Φ )/τ.
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Figure 3. (a) Emission (solid lines, excited at 380 nm) and excitation (dashed lines, observed at
519 nm for 2 and 478 nm for 3) spectra of 2 (red lines) and 3 (blue lines) in the solid state at room
temperature. Photographs of 2 (top) and 3 (bottom) under 365 nm light irradiation. (b) Transient
luminescence decay curves of 2 and 3 at room temperature.

2.3. Theoretical Consideration

Finally, we performed quantum chemical calculation based on density functional
theory (DFT) to obtain some insight into the photophysical properties of complexes 2 and
3. The structure optimizations were performed with a B3LYP functional and LANL2DZ
(for iodide) and 6-31g(d) (for others) basis sets, where initial structures were obtained from
the crystal structures. The highest-occupied molecular orbitals (HOMOs) of 2 and 3 are
located on the copper iodide cores, and the lowest unoccupied MOs (LUMOs) are spread
over ligand 1 (Figure 4a). It is noteworthy that complex 3 has higher HOMO energy and
lower LUMO energy compared with complex 2, although the emission wavelength of 3 is
shorter than that of 2 at room temperature.
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To investigate the conflict of the energy gap and the emission wavelength in these
complexes, we next performed time-dependent DFT (TD-DFT) calculations. Because com-
plexes 2 and 3 showed phosphorescence, TD-DFT calculations were performed including
triplet excitations (Figures S11 and S12 and Tables S2 and S3). The lowest energy singlet
transitions of 2 and 3 were calculated as HOMO→ LUMO excitations, which corresponded
to metal-ligand-to-ligand charge-transfer (MLLCT) transitions. The lowest triplet excita-
tions, which should be related to the emission for these complexes, were the corresponding
MLLCT excited state for the dicopper(I) complex 2 but a cluster-centered (CC) excited
state for the octacopper(I) complex 3 (for example, HOMO→ LUMO + 15 in Figure 4a).
The corresponding 3MLLCT excited states of 3 were found at higher energy than the CC
excited states and the MLLCT excited state of 2. In some copper iodide complexes, dual
emission from similar 3MLLCT and 3CC excited states has been reported [61]. Therefore,
both 3MMLCT and 3CC excited states in 3 are also potentially emissive.

From these calculations, the plausible luminescence mechanisms of 2 and 3 at room
temperature are shown in Figure 4b. In dicopper(I) complex 2, photoexcitation gives
the lowest-energy singlet excited state 1MLLCT, which is relaxed to the 3MLLCT state
via intersystem crossing (ISC) owing to the heavy atom effect of the copper iodide core.
Because the 3MLLCT excited state is the lowest-energy triplet state in complex 2, emission
occurs from the excited state. Similarly to 2, photoexcitation of 3 leads to the formation of
the 1MLLCT and 3MLLCT state, from which phosphorescence at a shorter wavelength than
2 can occur. However, the almost 3MLLCT excited state would be relaxed to the lowest-
energy triplet excited state, the 3CC excited state. Because only one emission was observed
in emission spectrum of 3, the 3CC excited state may be quenched at room temperature via
a nonradiative process, such as vibrational relaxation due to the loose Cu-I core structure.
The related ladder-type copper iodide cluster also shows phosphorescence derived from
3MLLCT at room temperature and a longer phosphorescence wavelength is observed at
lower temperatures, suggesting a low-lying potentially emissive 3CC excited state [62,63].

The partial quenching mechanism via the 3CC excited state would decrease the lumi-
nescent quantum yield of 3. Therefore, the much lower quantum yield of 3 (Φ = 0.04) than
that of 2 (Φ = 0.60) at room temperature could originate from the nonradiative relaxation of
the lowest excited state. Another possible explanation of the decrease in the luminescence
intensity of 3 is the intermolecular π . . . π stacking in the crystal packing. In general, when π

. . . π stacking is present in the crystal packing, the excitation energy is delocalized among
molecules, resulting in emission quenching through lattice defect [64–66]. The emission be-
havior of copper iodide clusters and their consideration in this study suggest the importance
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of the core architecture for emissive complexes. These mechanistic insights will provide a
design for efficient luminescent materials based on copper iodide complexes.

3. Conclusions

In conclusion, we synthesized a disilane-bridged bispyridine ligand (1) and its dinu-
clear and octanuclear copper(I) iodide complexes (2 and 3) under the control of the stoichio-
metric ratio of 1 and CuI. Complexes 2 and 3 showed intense yellow-green (λem = 519 nm,
Φ = 0.60, τ = 11 µs) and weak light blue (λem = 478 nm, Φ = 0.04, τ = 2.6 µs) photolumi-
nescence in the solid state, respectively. Single-crystal X-ray diffraction analysis of 2 and
3 revealed that the bulkiness of the linker moiety in ligand 1 suppressed the intermolec-
ular π . . . π interaction in 2 but did not suppress it in 3. DFT and TD-DFT calculations
suggest that the yellow-green emission of 2 originates from the lowest excited 3MLLCT
state while the blue emission of 3 is not derived from the lowest-excited 3CC state but from
a higher-lying 3MLLCT excited state. Thus, the weaker emission of 3 compared with that
of 2 is due to quenching by the intermolecular π . . . π stacking and the nonradiative decay
of the lowest excited state (3CC). These copper clusters with disilane-bridged bispyridine
ligands in this work appear to be a promising tunable building block for application in
photofunctional materials.

Supplementary Materials: The following are available online. The supplementary materials include
Experimental Section, Crystal structures of complexes 2 and 3, NMR spectra of 1, Crystallographic
data for 2 and 3, Results of quantum chemical calculations of 2 and 3.
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