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Facial expressions contribute 
more than body movements 
to conversational outcomes 
in avatar‑mediated virtual 
environments
Catherine Oh Kruzic*, David Kruzic, Fernanda Herrera & Jeremy Bailenson

This study focuses on the individual and joint contributions of two nonverbal channels (i.e., face 
and upper body) in avatar mediated-virtual environments. 140 dyads were randomly assigned to 
communicate with each other via platforms that differentially activated or deactivated facial and 
bodily nonverbal cues. The availability of facial expressions had a positive effect on interpersonal 
outcomes. More specifically, dyads that were able to see their partner’s facial movements mapped 
onto their avatars liked each other more, formed more accurate impressions about their partners, 
and described their interaction experiences more positively compared to those unable to see facial 
movements. However, the latter was only true when their partner’s bodily gestures were also 
available and not when only facial movements were available. Dyads showed greater nonverbal 
synchrony when they could see their partner’s bodily and facial movements. This study also employed 
machine learning to explore whether nonverbal cues could predict interpersonal attraction. These 
classifiers predicted high and low interpersonal attraction at an accuracy rate of 65%. These findings 
highlight the relative significance of facial cues compared to bodily cues on interpersonal outcomes 
in virtual environments and lend insight into the potential of automatically tracked nonverbal cues to 
predict interpersonal attitudes.

Nonverbal cues are often heralded as the main source of social information during conversations. Despite the 
many decades social scientists have studied gestures, however, there are only a handful of large sample stud-
ies in which the body movements of interactants are measured in detail over time and associated with various 
communication outcomes. Hence, this experiment capitalizes on dramatic advancements in virtual reality (VR) 
technology to track and quantify the facial expressions and body movements of over 200 people speaking to one 
another while embodied in an avatar.

Steuer1 defines VR as “a real or simulated environment in which a perceiver experiences telepresence.” Under 
this definition, VR includes immersive and non-immersive experiences involving technologies that contribute 
to feelings of vividness and interactivity, the two core dimensions of telepresence1. Multiple companies have 
launched avatar-mediated social VR platforms, which allow users to connect with others using customized 
avatars (i.e., digital representations of users controlled in real-time2) in virtual environments. One development 
that has made avatar-mediated communication particularly attractive has been the possibility to achieve unprec-
edented levels of behavioral realism3. Optical tracking systems (e.g., HTC Vive, Microsoft Kinect, Oculus Rift 
CV1) can measure users’ physical movements in real-time with great accuracy4 and render virtual representations 
accordingly. Although less common in consumer products, developments in computer vision allow for facial 
tracking through information extracted from RGB and/or infrared cameras. While facial tracking is yet to be 
widely available on social VR platforms, there has been a growing interest in developing technology that allows 
for a more seamless facial tracking experience5–7.

Despite the significant interest in adding nonverbal cues to VR, little is known about the impact of incorpo-
rating nonverbal channels in avatar-mediated environments. While current industrial trends appear to revolve 
around the belief that ‘more is better’, studies show that technical sophistication does not necessarily lead to 
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more favorable outcomes8,9 Furthermore, considering that even minimal social cues are enough to elicit social 
responses10 and that verbal strategies are sufficient to communicate emotional valence11, it is unclear whether 
incorporating additional nonverbal cues will linearly improve communication outcomes.

Understanding the impact of facial expressions and bodily movements within avatar-mediated environ-
ments can help further our understanding of the significance of these channels in FtF contexts. While there are 
a handful studies that lend insight into the independent and joint contributions of various nonverbal channels 
during FtF interactions, the majority of these studies were either conducted with static images12,13 or posed 
expressions14–16, rather than FtF interactions. In addition, the limited number of studies that did study the 
impact of different nonverbal cues in FtF dyadic contexts asked participants to wear sunglasses17,18 or covered 
parts of their bodies19,20, which inevitably alters the appearance of the target individual and reduces both the 
ecological validity and generalizability of results. By using identical avatars across conditions and only allowing 
the nonverbal information to differ, the present study offers an ideal balance between experimental control and 
ecological validity3.

Behavioral realism and interpersonal outcomes
The extant literature offers a mixed picture regarding the relationship between nonverbal cues and interpersonal 
outcomes within avatar-mediated contexts. On the one hand, studies show that increasing behavioral realism 
can improve communication outcomes21,22. Moreover, past studies have demonstrated that increasing behavioral 
realism by augmenting social cues exhibited by avatars (e.g., eye gaze and facial expressions) can enhance col-
laboration and produce meaningful interactions23–25. It is important to note, however, that the nonverbal cues 
included in these studies often manipulated responsive behaviors (e.g., mutual gaze, nodding), which are associ-
ated with positive outcomes26,27. As such, it is uncertain if the purported benefits of behavioral realism were due 
to the addition of nonverbal cues or perceptions of favorable nonverbal behavior.

In contrast, other studies28,29 found that general levels of behavioral realism do not uniformly improve com-
munication outcomes. For instance, two studies30,31 found that adding facial expressions or bodily gestures to 
avatar-mediated virtual environments did not consistently enhance social presence or interpersonal attraction. 
However, both of these studies employed a task-oriented interaction without time limits and a casual social inter-
action, which may have given participants enough time and relevant social information to reach a ceiling effect 
regardless of the nonverbal cues available. This is a reasonable conjecture, considering that increased interaction 
time can allow interactants to overcome the lack of nonverbal cues available in CMC32. As such, the effects of 
nonverbal cues independent of increased time or availability of social content are unclear. In addition, despite 
ample research that points to the association between interpersonal judgments based on nonverbal behavior33, 
most studies did not utilize the automatically tracked nonverbal data to explore its association with interper-
sonal outcomes which could further our understanding of the sociopsychological implications of automatically 
tracked nonverbal cues.

Taking these limitations into account, the present study attempts to elucidate the unique influences of includ-
ing facial expressions and bodily gestures on interaction outcomes (i.e., interpersonal attraction, social presence, 
affective valence, impression accuracy) by employing a goal-oriented task with time constraints. The present 
study also offers a less constricted representation of participants’ nonverbal behavior including expressions of 
negative and/or neutral states, rather than limiting the available nonverbal cues related to feedback or friendli-
ness (e.g., head nodding, reciprocity, smiling).

Predicting interpersonal attraction with automatically detected nonverbal cues
Nonverbal cues not only influence impression formation, but also reflect one’s attitude toward their communica-
tion partner(s)34,35 such as interpersonal attraction31, bonding36, and biased attitudes37. In addition to nonverbal 
cues that are isolated to the individual, studies have shown that interactional synchrony is associated with more 
positive interpersonal outcomes38–41. Interactional synchrony is defined as the “the temporal linkage of nonverbal 
behavior of two or more interacting individuals”42. Under this definition, synchrony refers to the motion inter-
dependence of all participants during an interaction focusing on more than a single behavior (e.g., posture or 
eye gaze). This view of synchrony is consistent with Ramseyer and Tschacher’s39 characterization of synchrony 
and is grounded within the dynamical systems framework43. Interactional synchrony has been associated with 
the ability to infer the mental states of others44 and rapport45. For example, spontaneous synchrony was related 
to Theory of Mind46 for participants with and without autism, such that increased synchrony was associated with 
higher ability to infer the feelings of others47.

While research has consistently found that nonverbal behavior is indicative of interpersonal outcomes38, the 
vast majority of these studies quantified nonverbal behavior by using human coders who watched video record-
ings of an interaction and recorded the target nonverbal behaviors or Motion Energy Analysis (MEA; automatic 
and continuous monitoring of the movement occurring in pre-defined regions of a video). Coding nonverbal 
behavior by hand is not only slow and vulnerable to biases42,48, but also makes it difficult to capture subtle non-
verbal cues that aren’t easily detectible by the human eye. While MEA is more efficient than manual coding, it 
is limited in that it is based on a frame-by-frame analysis of regions of interest (ROI) and thus susceptible to 
region-crossing (i.e., movement from one region being confused with that of another region49). That is, MEA does 
not track individual parts of the body, but pixels within ROI. Given these limitations, researchers have recently 
turned to the possibility automating the quantification of nonverbal behavior by capitalizing upon dramatic 
improvements in motion detection technology (e.g., tracking with RGB-D cameras) and computational power 
(e.g., machine learning)36,42,50. While these methods are also prone to tracking errors, they have the advantage 
of tracking nonverbal cues in a more targeted manner (i.e., specific joints, facial expressions) and offer higher 
precision by utilizing depth data in addition to color (RGB) data.
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While researchers have started to employ machine learning algorithms to determine the feasibility of using 
automatically detected nonverbal cues to predict interpersonal outcomes, they either relied solely on isolated 
nonverbal behaviors36 or entirely on nonverbal synchrony42,51 instead of both isolated and interdependent non-
verbal cues. In addition, previous studies have employed relatively small sample sizes (Ndyad range: 15–53). Per-
haps for this reason, prior machine learning classifiers either performed above chance level only when dataset 
selection was exclusive42,51 or showed unreliable performance in terms of validation and testing set accuracy 
rates36. Consequently, there is inconclusive evidence if automatically tracked nonverbal cues can reliably predict 
interpersonal attitudes. By employing machine learning algorithms to explore whether nonverbal behaviors can 
predict interpersonal attitudes, the present study aims to address if and, if so how, automatically tracked nonver-
bal cues and synchrony are associated with interpersonal outcomes through an inductive process.

Methods
Study design.  The present study adopted a 2 Bodily Gestures (Present vs. Absent) × 2 Facial Expressions 
(Present vs. Absent) between-dyads design. Dyads were randomly assigned to one of the four conditions, and 
gender was held constant within a dyad. There was an equal number of male and female dyads within each con-
dition. Participants only interacted with each other via their avatars and did not meet or communicate directly 
with each other prior to the study. The nonverbal channels that were rendered on the avatar were contingent on 
the experimental condition. Participants in the ‘Face and Body’ condition interacted with an avatar that veridi-
cally portrayed their partner’s bodily and facial movements. Participants in the ‘Body Only’ condition interacted 
with an avatar that veridically represented their partner’s bodily movements, but did not display any facial move-
ments (i.e., static face). In contrast, participants in the ‘Face Only’ condition interacted with an avatar that veridi-
cally portrayed their partner’s facial movements, but did not display any bodily movements (i.e., static body). 
Finally, participants in the ‘Static Avatar’ condition interacted with an avatar that did not display any movements. 
A graphical representation of each condition is available in Fig. 1.

Participants.  Participants were recruited from two medium-sized Western universities (Foothill College, 
Stanford University). Participants were either granted course credit or a $40 Amazon gift card for their par-
ticipation. 280 participants (140 dyads) completed the study. Dyads that included participants who failed the 
manipulation check (Ndyad = 10) and/or participants who recognized their partners (Ndyad = 6) were excluded 
from the final analysis. To determine if participants who were part of a specific condition were more likely to fail 
the manipulation check or to recognize their interaction partners, two chi-square tests were conducted. Results 
indicated that there were no differences between conditions for either dimension (manipulation check failure: 
χ2(3) = 1.57, p = 0.67, partner recognition: χ2(3) = 1.78, p = 0.62).

Materials and apparatus.  A markerless tracking device (Microsoft Kinect for Xbox One with adaptor for 
Windows) was used to track participants’ bodily gestures. Using an infrared emitter and sensor, the Microsoft 
Kinect is able to provide the positional data for 25 skeletal joints at 30 Hz in real-time, allowing unobtrusive 
data collection of nonverbal behavior. Studies offer evidence that the Kinect offers robust and accurate estimates 
of bodily movements52. While even higher levels of accuracy can be achieved with marker-based systems, this 
study employed a markerless system to encourage more naturalistic movements53. The joints that are tracked by 
the Kinect are depicted in Fig. 2. The present study used 17 joints that belong to the upper body as studies have 
suggested that the Kinect tends to show poorer performance for lower body joints52 (i.e., left hip, right hip, left 
knee, right knee, left ankle, right ankle, left foot, right foot), which can result in “substantial systematic errors in 
magnitude” of movement54.

Participants’ facial expressions were tracked in real-time using the TrueDepth camera on Apple’s iPhone XS. 
The TrueDepth camera creates a depth map and infrared image of the user’s face, which represents the user’s 
facial geometry55. More specifically, the TrueDepth camera captures an infrared image of the user’s face and pro-
jects and analyzes approximately 30,000 points to create a depth map of the user’s face, which are subsequently 
analyzed by Apple’s neural network algorithm. Among other parameters, Apple’s ARKit SDK can extract the 
presence of facial expressions from the user’s facial movements. A full list of the 52 facial expressions that are 
tracked by ARKit are included in “Appendix 1”. The value of the facial expression (i.e., blendshape) ranges from 
0 to 1 and is determined by the current position of a specific facial movement relative to its neutral position55. 
Each blendshape was mapped directly from the participant’s facial movements. While we do not have a quantita-
tive measure for tracking accuracy, qualitative feedback from pilot sessions with 40 participants suggested that 
participants found the facial tracking to be accurate.

Discord, one of the most commonly used Voice over Internet Protocol (VoIP) platforms56, was used for verbal 
communication. Participants were able to hear their partner’s voice through two speakers (Logitech S120 Speaker 
System) and their voices were detected by the microphone embedded in the Kinect sensor. Participants were 
able to see each other’s avatars on a television (Sceptre 32" Class FHD (1080P) LED TV (X325BV-FSR)), which 
was mounted on a tripod stand (Elitech). The physical configuration of the study room can be seen in Fig. 3. 
The person pictured in Fig. 3 gave informed consent to publish this image in an online open-access publication. 
The avatar-mediated platform in which participants interacted was programmed using Unity version 2018.2.2. 
Further details of the technical setup are available in “Appendix 2” and information regarding the system’s latency 
can be seen in “Appendix 3”.

Procedure.  All study procedures and materials received approval from the Institutional Review Board of 
Stanford Univeristy. All methods were performed in accordance with relevant guidelines and regulations. Par-
ticipants in each dyad were asked to come to two separate locations to prevent them from seeing and interacting 
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with each other prior to the study. Participants were randomly assigned to one of the two study rooms, which 
were configured identically (Fig. 3). Once participants gave informed consent to participate in the study, they 
completed a pre-questionnaire that measured their personality across five dimensions57 (extraversion, agreea-
bleness, neuroticism, conscientiousness, openness to experience). After each participant completed the pre-
questionnaire the experimenter explained that two markerless tracking systems would be used to enable the 
participant and their partner to interact through the avatar-mediated platform. The participant was then asked 
to stand on a mat measuring 61 cm × 43 cm that was placed 205 cm away from the Kinect and 20 cm away from 
the iPhone XS. After the participant stood on the mat, the experimenter asked the participant to confirm that 
the phone was not obstructing her/his view. If the participant said that the phone was blocking his/her view, the 
height of the phone was adjusted. Upon confirming that the participant was comfortable with the physical setup 
of the room and that the tracking systems were tracking the participant, the experimenter opened the avatar-
mediated platform and let the participants know that they would be completing two interaction tasks with a 
partner. After answering any questions that the participants had, the experimenter left the room.

Prior to the actual interaction, participants went through a calibration phase. During this time, participants 
were told that they would be completing a few calibration exercises to understand the physical capabilities of 
the avatars. This phase helped participants familiarize themselves to the avatar-mediated platform and allowed 
the experimenter to verify that the tracking system was properly sending data to the avatar-mediated platform. 
Specifically, participants saw a ‘calibration avatar’ (Fig. 4) and were asked to perform facial and bodily movements 
(e.g., raise hands, tilt head, smile, frown). The range of movement that was visualized through the calibration 
avatar was consistent with the experimental condition of the actual study. All participants were asked to do the 
calibration exercises regardless of condition in order to prevent differential priming effects stemming from these 
exercises and demonstrate the range of movements that could be expected from their partner’s avatars.

After completing the calibration exercises, participants proceeded to the actual study. Participants were 
informed that they would collaborate with each other to complete two referential tasks: an image-based task 
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Figure 1.   Graphical representations of the four conditions: static avatar (A), body only (B), face only (C), body 
and face (D).
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(i.e., visual referential task) and a word-based task (i.e., semantic referential task). The order in which the tasks 
were presented was counterbalanced across all conditions.

The image-based task was a figure-matching task adapted from Hancock and Dunham58. Each participant 
was randomly assigned the role of the ‘Director’ or the ‘Matcher’. The Director was asked to describe a series of 
images using both verbal and nonverbal language (e.g., tone/pitch of voice, body language, facial expressions). 
The Matcher was asked to identify the image that was being described from an array of 5 choices and one “image 
not present” choice and to notify the Director once he or she believed the correct image had been identified 
(Fig. 5). Both the Matcher and Director were encouraged to ask and answer questions during this process. The 
Matcher was asked to select the image that he or she believed was a match for the image that the Director was 
describing; if the image was not present, the Matcher was asked to select the “image not present” choice. After 
7 min or after participants had completed the entire image task (whichever came first), participants switched 
roles and completed the same task one more time.

The word-based task was a word-guessing task adapted from the ‘password game’ used in Honeycutt, Knapp, 
and Powers59. Each participant was randomly assigned the role of the ‘Clue-giver’ or the ‘Guesser’. The Clue-giver 
was asked to give clues about a series of thirty words using both verbal and nonverbal language. The Guesser was 
asked to guess the word that was being described. Both the Clue-giver and the Guesser were encouraged to ask 
and answer questions during this process. Given the open-ended nature of the task, participants were told that 
they were allowed to skip words if they thought that the word was too challenging to describe or guess. After 
7 min or after they had completed the word task (whichever came first), participants switched roles and com-
pleted the same task one more time; the Clue-giver became the Guesser and the Guesser became the Clue-giver. 
The words used in the word-based task were chosen from A Frequency Dictionary of Contemporary American 
English60, which provides a list of 5,000 of the most frequently used words in the US; 90 words were chosen from 
the high, medium, and low usage nouns and verbs from this list. The selected words were presented in a random 
order for the Clue-giver to describe.

These tasks were chosen for the following reasons: first, two types of referential tasks (i.e., visual and semantic) 
were employed in order to reduce the bias of the task itself toward verbal or nonverbal communication. That is, 
the visual task was selected as a task more amenable to nonverbal communication, while the semantic task was 
selected as one more amenable to verbal communication. Second, we adopted a task-oriented social interaction 
to avoid ceiling effects of the interpersonal outcome measures, given that purely social exchanges are more likely 

Figure 2.   Joints tracked by the kinect: only colored joints were mapped to avatar.
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Figure 3.   Configuration of study room (left): (A) iPhone XS for facial tracking, (B) Kinect for Xbox One for 
body tracking, (C) person being tracked during visual referential task.

Figure 4.   Avatar used during calibration phase.
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to support personal self-disclosures, which are associated with interpersonal attraction and facilitate impression 
formation.

After the interaction, participants completed the post-questionnaire which assessed perceptions of inter-
personal attraction, affective valence, impression accuracy, and social presence. Participants’ bodily and facial 
nonverbal data were tracked and recorded unobtrusively during the interaction. As noted in “Methods”, par-
ticipants gave consent for their nonverbal data to be recorded for research purposes. Once they completed the 
post-questionnaire, participants were debriefed and thanked.

Measures.  Interpersonal attraction.  Based on McCroskey and McCain61, two facets of interpersonal attrac-
tion were measured, namely social attraction and task attraction. Social attraction was measured by modifying 
four items from Davis and Perkowitz62 to fit the current context and task attraction was assessed by modifying 
four items from Burgoon63. Participants rated how strongly they agreed or disagreed with each statement on a 7 
point Likert-type scale (1 = Strongly Disagree, 7 = Strongly Agree). The wording for all questionnaire measures is 
included in “Appendix 4”.

Due to the similarity of the social and task attraction scales, a parallel analysis64 (PA) was run to determine 
the correct number of components to extract from the eight items. PA results indicated that the data loaded on 
to a single component, as indicated by Fig. 6. A confirmatory factor analysis with varimax rotation showed that 
56% of the variance was explained by the single component, and that the standardized loadings for all items were 
greater than 0.65 (Table 1). Thus, the two subscales of interpersonal attraction were collapsed into a single meas-
ure of interpersonal attraction. The reliability of the scale was good, Cronbach’s α = 0.89. Greater values indicated 
higher levels of interpersonal attraction (M = 5.84, SD = 0.61); the minimum was 3.75 and the maximum was 7. 

Affective valence.  A Linguistic Inquiry Word Count65 (LIWC) analysis was performed on an open-ended ques-
tion that asked participants to describe their communication experience. LIWC has been used as a reliable meas-
ure for various interpersonal outcomes, including the prediction of deception66, personality67, and emotions68. 
Affective valence was computed by subtracting the percentage of negative emotion words from the percentage of 

Figure 5.   Examples of stimuli for visual referential task.

Figure 6.   Parallel analysis scree plots of actual and resampled interpersonal attraction data.
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positive emotion words yielded by the LIWC analysis69. Greater values indicated relatively more positive affect 
than negative affect (M = 3.59, SD = 3.4); the minimum was − 2.94 and the maximum was 20.

Impression accuracy.  Participants completed a self and an observer version of the short 15-item Big Five 
Inventory70,71 (BFI-S). Participants rated themselves and their partner on 15 items that were associated with 
five personality dimensions (i.e., extraversion, agreeableness, conscientiousness, neuroticism, and openness to 
experience) on a 7 point Likert-type scale (1 = Strongly Disagree, 7 = Strongly Agree). Participants were given the 
option to select “Cannot make judgment” for the observer version of the BFI-S.

Impression accuracy was defined as the profile correlation score, which “allows for an examination of judg-
ments in regard to a target’s overall personality by the use of the entire set of […] items in a single analysis”72; 
that is, impression accuracy was assessed by computing the correlation coefficient across the answers that each 
participant and their partner gave for the 15 items72,73. Greater values indicated more accurate impressions 
(M = 0.39, SD = 0.36); the minimum was − 0.64 and the maximum was 0.98.

Social presence.  Social presence was measured with items selected from the Networked Minds Measure of 
Social Presence74,75, one of the most frequently used scales to measure social presence. To reduce cognitive 
load, 8 items were selected from the scale, which consisted of statements that assessed co-presence, attentional 
engagement, emotional contagion, and perceived comprehension during the virtual interaction. Participants 
rated how strongly they agreed or disagreed with each statement on a 7 point Likert-type scale (1 = Strongly Disa-
gree, 7 = Strongly Agree). The reliability of the scale was good, Cronbach’s α = 0.77. Greater values indicated higher 
levels of social presence (M = 5.47, SD = 0.65); the minimum was 3.38 and the maximum was 6.75.

Nonverbal behavior.  Participants’ bodily movements were tracked with the Microsoft Kinect. Due to non-uni-
form time distances in the tracking data, linear interpolation was used to interpolate the data to uniform time 
distances of 30 Hz. Then, a second-order, zero-phase bidirectional, Butterworth low-pass filter was applied with 
a cutoff frequency of 6 Hz to provide smooth estimates76. Participants’ facial expressions were tracked in real-
time using the TrueDepth camera on Apple’s iPhone XS and this data was also interpolated to 30 Hz.

Synchrony of bodily movement.  Synchrony of bodily movements is defined as the correlation between the 
extent of bodily movements of the two participants, with higher correlation scores indicating higher synchrony. 
More specifically, the time series of the extent of bodily movements of the two participants were cross-correlated 
for 100 s of the interaction. Cross-correlation scores were computed for both positive and negative time lags 
of five seconds, in accordance to Ramseyer and Tschacher39, which accounted for both ‘pacing’ and ‘leading’ 
synchrony behavior. Time lags were incremented at 0.1 s intervals, and cross-correlations were computed for 
each interval by stepwise shifting one time series in relation to the other39. While the Kinect can capture frames 
at 30 Hz, the sampling rate varies and the resulting data is noisy. During post-processing, we addressed both 
shortcomings by filtering and downsampling to a uniform frequency. As noted above, a Butterworth low-pass 
filter with a cutoff frequency of 6 Hz was applied to remove signal noise, and then was interpolated to 10 Hz to 
achieve a uniform sampling rate across the body and face. In instances wherein less than 90% of the data were 
tracked within a 100 s interval, the data from that interval were discarded. Participants’ synchrony scores were 
computed by averaging the cross-correlation values.

Synchrony of facial expressions.  Synchrony of facial expressions is similarly defined as the correlation between 
the time series of facial movements. Once again, the time series of facial movements of the two participants were 
cross-correlated for each 100 s interval of the interaction. Cross-correlations were computed for both positive 
and negative time lags of 1 s, in accordance with Jaques et al.36). Time lags were incremented at 0.1 s intervals, 
and cross-correlations were computed for each interval by stepwise shifting one time series in relation to the 
other. The facial tracking data was downsampled to 10 Hz to compensate for gaps that were introduced after 

Table 1.   Factor analysis of interpersonal attraction with varimax rotation.

Item # Question Factor 1

1 I enjoyed completing the tasks with my partner .80

2 I had fun completing the tasks with my partner .78

3 I would like to interact with my partner again .79

4 It was interesting to complete the tasks with my partner .70

5 I like my partner .76

6 I would get along well with my partner .77

7 I would enjoy a casual conversation with my partner .72

8 My partner is friendly .68

Eigenvalue 4.52

% of variance explained 56%

Cronbach’s α .89
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the data was mapped from a continuous to a uniformly spaced time scale. (Fig. 7). Once again, if less than 90% 
of the data were tracked within a given 100 s interval, the data from that interval were discarded. Participants’ 
synchrony scores were computed by averaging the cross-correlation values.

Extent of bodily movement.  To assess the extent to which participants moved their body, the between-second 
Euclidean distance for each joint was computed across the interaction. This is equivalent to the Euclidean dis-
tance for each joint for each 0.03 s (30 Hz). The average Euclidian distance for each 0.03 s interval for each joint 
was then averaged across the 17 joints to form a single composite score.

Extent of facial movement.  To assess the extent of facial movement during the interaction, the confidence 
scores for each facial movement (i.e., the deviation of each facial movement from the neutral point) was sampled 
at a rate of 30 Hz and averaged to form a single composite score. Facial expressions that had a left and right 
component (e.g., Smile Left and Smile Right) were averaged to form a single item. Finally, facial movements that 
showed low variance during the interaction were excluded to avoid significant findings due to spurious tracking 
values.

Machine learning.  Machine learning is defined “a set of methods that can automatically detect patterns in data, 
and then use the uncovered patterns to predict future data, or to perform other kinds of decision making under 
uncertainty”77. Machine learning is an inductive method which can be used to process large quantities of data to 
produce bottom-up algorithms42. This makes machine learning suitable for discovering potential patterns within 
millions of quantitative nonverbal data points. Two machine learning algorithms—random forest and a neural 
network model (multilayer perceptron; MLP)—that used the movement data as the input layer and interper-
sonal attraction as the output layer were constructed. To allow for the machine learning algorithm to function as 
a classifier, participants were divided into high and low interpersonal attraction groups based on a median split78. 
Then, the dataset was randomly partitioned into a training (70%) and test dataset (30%).

There were 827 candidate features for the input layer; bodily synchrony among 17 joints and 10 joint angles42; 
facial synchrony among the 52 facial expressions (“Appendix 1”; four different types of nonverbal synchrony 
were included as candidates: mean cross-correlation score, absolute mean of cross-correlation scores, mean of 
non-negative cross-correlation scores, and maximum cross-correlation score); the mean, standard deviation, 
mean of the gradient, standard deviation of the gradient, maximum of the gradient, and maximum of the second 
gradient for each joint coordinate (i.e., X, Y, Z); the mean and standard deviation of the Euclidean distance for 
each joint for each 0.1 s interval; the mean, standard deviation, mean of the absolute of the gradient, and the 
standard deviation of the absolute of the gradient for the joint angles; the mean and standard deviations of the 
head rotation (i.e., pitch, yaw, roll); the mean and standard deviations of the gradient of the head rotation; the 
mean and standard deviations of the 52 facial expressions; the mean and standard deviation of the X and Y coor-
dinates of point of gaze; the percentage of valid data and the number of consecutive missing data points; gender.

Two methods of feature selection were explored for the training set. First, features were selected using a 
correlation-based feature selection method, wherein features that highly correlated with the outcome variable, 
but not with each other were selected79. Then, support vector machine recursive feature elimination80 was used 
to reduce the number of features and identify those that offered the most explanatory power. The test dataset 
was not included in the data used for feature selection. 23 features were selected using this method (Table 2).

Using five-fold cross-validation, the selected features were used to train two different machine learning 
models (i.e., random forest, MLP) in order to assess initial model performance. More specifically, five-fold cross-
validation was used to validate and tune the model performance given the training dataset prior to applying the 
classifier to the holdout test data. Five-fold cross-validation divides the training set into five samples that are 
roughly equal in size. Among these samples, one is held out as a validation dataset, while the remaining samples 
are used for training; this process is repeated five times to form a composite validation accuracy score (i.e., the 
percentage of correctly predicted outcomes).

Statistical analyses.  Data from participants who communicate with each other are vulnerable to violating 
the assumption of independence and are thus less appropriate for ANOVA and standard regression approaches81. 
Multilevel analysis “combines the effects of variables at different levels into a single model, while accounting for 
the interdependence among observations within higher-level units”82. Because neglecting intragroup depend-
ence can bias statistical estimates including error variance, effect sizes and p values83,84, a multilevel model was 
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Figure 7.   Illustration of post-processing sequence for facial movement data.
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used to analyze the data. Random effects that arise from the individual subjects who are nested within dyads 
were accounted for and a compound symmetry structure was used for the within-group correlation structure. 
Gender was included as a control variable, as previous research has found that females tend to report higher 
levels of social presence than their male counterparts85. In line with these studies, correlation analyses (Table 3) 
showed that gender correlated with several of the dependent variables. A summary of the results of the multilevel 
analyses are available in Table 4.

Results
Manipulation check.  To confirm that the manipulation of the nonverbal variables was successful, par-
ticipants were asked if the following two sentences accurately described their experience (0 = No, 1 = Yes): “My 
partner’s avatar showed changes in his/her facial expressions, such as eye and mouth movements” and “My part-
ner’s avatar showed changes in his/her bodily gestures, such as head and arm movements”. 11 participants who 
belonged to 10 separate dyads failed the manipulation check; these participants and their partners were removed 
from the final data analyses (Ndyad = 10, Nparticipant = 20).

Table 2.   Features selected.

Channel Nonverbal cue Input feature

Face

Upward compression of lower left lip
Absolute maximum of cross-correlation score

Mean of cross-correlation score

Upward compression of lower right lip
Absolute maximum of cross-correlation score

Mean of cross-correlation score

Upward movement of left mouth corner
Absolute maximum of cross-correlation score

Mean extent of movement

Outward movement of upper lip Mean extent of movement

Upward gaze of right eye Absolute mean of cross-correlation score

Inward gaze of left eye Mean extent of movement

Body

Head joint Mean of y position

Neck joint Absolute maximum of cross-correlation score

Spine shoulder joint Absolute maximum of cross-correlation score

Right elbow angle

Absolute maximum of cross-correlation score

Maximum of the gradient

Maximum of the second gradient

Mean of x position

Right hand tip joint
Maximum of the gradient

Maximum of the second gradient

Right shoulder joint Mean of x position

Left wrist joint
Absolute maximum of cross-correlation score

Mean of x position

Left hand angle Absolute maximum of cross-correlation score

Left shoulder angle Standard deviation

Table 3.   Bivariate Pearson correlations of variables. † p < .10, *p < .05, **p < .01, ***p < .001.

Measures 1 2 3 4 5 6 7 8 9

1. Social presence

2. Interpersonal attraction .57***

3. Affective valence .24** .20**

4. Impression accuracy .16* .18** .14*

5. Bodily movement (extent) .18* .16* .11† − .09

6. Facial movement (extent) .18** .21*** .20** .08 .21**

7. Bodily synchrony .12† .09 − .06 .01 − .02 .14*

8. Facial synchrony .24*** .30*** .09 .03 − .02 .09 .40***

9. Gender .22*** .22*** .06 .00 .13† 0.07 .08 .39***

10. Task order − .01 .00 .08 − .05 .01 .01 − .10† − .14* .02
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An additional 7 participants who belonged to 6 separate dyads reported that they recognized their interaction 
partners. These participants and their partners (Ndyad = 6, Nparticipant = 12) were also removed from data analyses, 
resulting in a final sample size of 248 participants (Ndyad = 124).

Interpersonal attraction.  There was a significant main effect of facial movements on interpersonal attraction 
(Fig. 8), such that dyads that were able to see their partner’s facial movements mapped on their avatars felt higher 
levels of interpersonal attraction than those that were unable to see these facial movements (b = 0.09, p = 0.02, 
d = 0.30). In contrast, the availability of bodily movements did not significantly influence interpersonal attrac-
tion (b = − 0.02, p = 0.57). The interaction effect between facial and bodily movements was also non-significant 
(b = 0.05, p = 0.17).

Affective valence.  There was a significant interaction between facial and bodily movements (b = 0.46, p = 0.03, 
Fig. 9). Simple effects tests showed that while dyads that could see their partner’s facial movements described 
their experience more positively, this was only true when their partner’s bodily movements were also visible 
(b = 0.84, p = 0.01, d = 0.50); in contrast, the positive effect of facial movement on affective valence was non-
significant when bodily movements were not visible (b = − 0.07, p = 0.80). These results suggest that dyads only 
described their experiences most positively when they were able to see both their partner’s bodily movements 
and their facial movements, lending partial support to studies that showed a preference for representation 
consistency86.

Impression accuracy.  Impression accuracy was significantly and positively influenced by the availability of 
facial movements (b = 0.06, p = 0.02, d = 0.34, Fig. 10). In contrast, being able to see one’s partner’s bodily move-
ments did not influence impression accuracy (b = − 0.01, p = 0.60). The interaction between facial and bodily 
movements was also non-significant (b = 0.03, p = 0.27).

Table 4.   Summary of multilevel analyses. † p < .10, *p < .05, **p < .01, ***p < .001.

Interpersonal 
attraction Affective valence

Impression 
accuracy Social presence Bodily movement Facial movement Bodily synchrony Facial synchrony

B (SE) B (SE) B (SE) B (SE) B (SE) B (SE) B (SE) B (SE)

Body .09*
(.04)

.39
(.21)

.06*
(.02)

.04
(.04)

.02***
(.01)

.001
(.001)

.002†

(.001)
.01***
(.003)

Face − .02
(.04)

− .16†

(.21)
− .01
(.02)

.04
(.04)

− .01
(.01)

− .0004
(.001)

.002
(.001) − .0002 (.003)

Gender .28***
(.08)

.45
(.46)

.001
(.05)

.29***
(.08)

.01
(.01)

.003
(.003)

.002
(.002)

.02***
(.005)

Body * Face .05
(.04)

.46*
(.21)

.03
(.02)

.06
(.04)

.01*
(.01)

.002
(.001)

− .001
(.001) .00004 (.003)

AIC 470.97 1320.62 217.46 507.25 − 480.53 − 1164.98 − 1404.92 − 1331.03

BIC 498.91 1348.57 245.13 535.19 − 452.72 − 1137.10 − 1377.04 − 1303.18
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Figure 8.   Mean interpersonal attraction by condition.
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Social presence.  Neither the availability of facial movements (b = 0.04, p = 0.29) nor the availability of bodily 
movements (b = 0.04, p = 0.31) had a significant effect on social presence. The interaction effect between facial 
and bodily movements was also non-significant (b = 0.06, p = 0.16).

Extent of bodily movement.  Dyads who were able to see their partner’s bodily movements being mapped on to 
their partner’s avatars moved their body more (b = 0.02, p < 0.0001), although this main effect was qualified by a 
significant interaction effect (b = 0.01, p = 0.048). Simple effects tests showed that dyads who could see their part-
ner’s bodily movements moved more when their partner’s facial movements were also visible (b = 0.04, p < 0.001, 
d = 0.89); this effect of bodily movement was only marginally significant when their partner’s facial movements 
were not visible (b = 0.01, p = 0.09).

Extent of facial movement.  In contrast to bodily movements, the visibility of one’s partner’s facial movements 
did not influence the extent to which dyads moved their faces (b = − 0.0004, p = 0.79). Neither the main effect 
of bodily movements (b = 0.001, p = 0.60) nor the interaction effect between facial and bodily movements were 
significant (b = 0.002, p = 0.18).

Nonverbal synchrony.  The visibility of facial movements positively predicted synchrony in facial movements 
(b = 0.01, p < 0.001), while the presence of bodily movement did not predict facial synchrony (b = − 0.0002, 
p = 0.95); the interaction term between face and body was also non-significant (b = 0.00004, p = 0.99). Gender 
significantly predicted facial synchrony, such that females displayed higher facial synchrony than males (b = 0.02, 
p < 0.001).

Dyads that were able to see their partner’s bodily movements exhibited marginally higher levels of bod-
ily synchrony compared to those that were unable to see each other (b = 0.002, p = 0.09, d = 0.28). Neither the 
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Figure 9.   Mean affective valence by condition.
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Figure 10.   Mean impression accuracy by condition.
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presence of facial movement nor gender significantly predicted synchrony in bodily movement (both ps > 0.10). 
The interaction term was also non-significant (b = − 0.001, p = 0.62).

To assess the robustness of the synchrony measure, we explored synchrony patterns across different time lags 
(Fig. 11) and found that synchrony scores decrease as the time lag increases for both facial and bodily synchrony, 
which suggests that the scores are representative of true synchrony42. That is, as the time lag between the two 
streams of each participant’s nonverbal data increases, the synchrony score approaches closer to zero, which is the 
expected pattern, given that nonverbal synchrony is defined as the “temporal co-occurrence of actions”87. T-tests 
also showed that both synchrony scores were significantly different from zero (Bodily Synchrony: t(245) = 14.72, 
p < 0.001; Facial Synchrony: t(244) = 14.66, p < 0.001), with a large effect size (Cohen’s d = 0.939 and Cohen’s 
d = 0.937 for bodily synchrony and facial synchrony, respectively).

Movement data and interpersonal attraction.  Both classifiers were able to predict interpersonal 
attraction at an accuracy rate higher than chance, suggesting that automatically detected nonverbal cues can 
be used to infer interpersonal attitudes. After tuning the hyperparameters (Table 5) based on the cross-valida-
tion performance of the training set, the random forest model achieved a cross-validation accuracy of 67.33% 
(SD = 8.28%) and a test accuracy of 65.28%; the MLP model achieved a cross-validation accuracy of 68.67% 
(SD = 5.63%) and a test accuracy of 65.28% (majority class baseline: 51.39%). Confusion tables that depict sensi-
tivity and specificity assessments for the two models are in Fig. 12.

Discussion
The present study aimed to understand the relative and joint influence of facial and bodily cues on communica-
tion outcomes. Contrary to hypotheses based on behavioral realism, the inclusion of bodily gestures alone did 
not have a significant main effect on interpersonal attraction, social presence, affective valence, and impression 
formation. Additionally, when facial cues were not available, LIWC data suggested that participants felt more 
positively when bodily gestures were not available, compared to when they were. These results are in line with 
studies that did not find support for the conjecture that avatar movement would increase social presence or 
improve interpersonal outcomes30,31. At the same time, they appear to contradict previous research and theories 
suggesting that additional social cues and/or social realism lead to higher levels of social presence and more 
positive communication outcomes21,22,88,89. In contrast to the null effect of including bodily gestures, the present 
study found evidence that the presence of facial expressions can moderately improve communication outcomes 
across multiple dimensions, including interpersonal attraction, affective valence, and impression accuracy.

The null main effect of bodily gestures on interpersonal outcomes may, at least in part, be explained by the 
following mechanisms. First, participants may have been able to compensate for the lack of bodily cues with the 
other cues at their disposition (e.g., verbal cues). This explanation is in line with previous CMC theories (e.g., 
Social Information Processing Theory32), which found that increased interaction time allows interactants to 
overcome the lack of nonverbal cues available. At the same time, the positive interpersonal effects of facial cues 
suggest that, at minimum, facial cues offered a unique value to participants within the current avatar-mediated 
context that bodily cues did not.

Second, bodily movements may have been less relevant than facial movements and speech within the context 
of the present study. Although we adopted a visual and semantic referential task to encourage both nonverbal and 
verbal communication, the presence (or absence) of bodily movements was not an integral part of completing 

Figure 11.   Averaged correlations of bodily (left) and facial (right) movements: represents changes in synchrony 
scores based on offset interval*.
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Table 5.   Hyperparameters and values.

Hyper-parameter/classifier Random forest MLP

activation – logistic

α – 0.03

batch_size – auto

β1 – 0.9

β2 – 0.999

bootstrap True –

criterion entropy –

early_stopping – False

ε – 110–8

hidden_layer_sizes – (50)

learning_rate – constant

learning_rate_init – 0.001

max_depth 10 –

max_features 20 –

max_iter – 200

max_leaf_nodes None –

min_impurity_decrease 0 –

min_impurity_split None –

min_samples_leaf 7 –

min_samples_split 2 –

min_weight_fraction_split 0 –

momentum – 0.9

n_iter_no_change – 10

nesterovs_momentum – True

nestimators 500 –

njobs None –

Powert – 0.5

random_state 30 30

shuffle – True

solver – adam

tol – 110–4

oob_score False –

validation_fraction – 0.1
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Figure 12.   Confusion table for random forest model (left) and multi-layer perceptron model (right).
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the tasks. In addition, because the participants were not immersed in the same virtual space (i.e., communicated 
in separate rooms through a screen), it is possible that they lacked the common ground to effectively commu-
nicate via gestures. Considering that the interaction context heavily influences the communicational value of 
gestures90,91 the inclusion of gestures may have yielded more positive outcomes if participants had been com-
municating within a context where gestures carried higher semantic and practical value.

In addition to the specific requirements of the tasks performed by the participants, the experimental setup 
itself may have encouraged participants to focus on the avatar’s face, rather than its body. As depicted in Fig. 2, 
participants interacted with an avatar whose representation was limited to the upper body. This was an intentional 
choice primarily due to the limitations of the Kinect in tracking lower body joints. However, it is possible that the 
lack of ‘full body representation’ led to a cognitive bias favoring the face. Taken together with the results of the 
present study, it appears that upper body gestures within separate (‘non-shared’) virtual spaces may be relatively 
less important for dyadic interactions.

A final explanation for the null—and in some cases, negative—impact of bodily movements, however, may be 
that the technical limitations of the systems led to poor body tracking. While plausible, the fact that participants 
who were able to see their partner’s facial expressions and bodily movements described their experience the 
most positively suggests that, at the very least, technical limitations were not uniquely responsible for the nega-
tive impact of bodily movements on affective valence. That is, even when considering the technical limitations, 
having access to bodily gestures had a positive impact on affective valence when they were coupled with facial 
expressions. This is consistent with Aviezer and colleagues12 who argue that facial and bodily cues are processed 
as a unit rather than independently.

While the accuracy rate of the machine learning model was weak (approximately 65%), it is important to 
note that interpersonal attitudes are difficult for even human judges to predict. For example, judges who viewed 
videotaped interactions between two individuals were able to rate interpersonal rapport at an accuracy rate that 
was higher than chance, but the effect size was fairly small92 (i.e., r = 24). In addition, it is important to note that 
previous studies showed inconclusive evidence that machine learning could be applied to consistently predict 
interpersonal attitudes for a non-selective data set. For instance, the accuracy rate of previous studies42,51 were 
at chance level when the classifier was applied to the entire dataset, and were above chance only when data set 
selection was exclusive (i.e., increasingly removing interaction pairs that scored closer to the median). Similarly, 
the validation accuracy rate for Jacques and colleagues36 was close to chance level (approximately 5% higher than 
baseline), which is a relatively large difference from the testing set accuracy (approximately 20% higher than 
baseline), a limitation which is also noted by the authors. Albeit low, the present study shows validation and test 
accuracy rates that are both approximately 15% higher than the baseline, offering stronger evidence that machine 
learning can be applied to the prediction of more complex interpersonal outcomes.

Investigating which cues most strongly influence avatar-mediated interactions can help researchers isolate 
the cues that people rely on to form affective and cognitive judgments about others and communication expe-
riences using an inductive process. While the majority of extant studies have used deductive processes to test 
whether specific nonverbal cues would affect user perceptions of virtual interactions30,93,94, only a select number 
of studies have jointly relied on inductive processes (e.g., machine learning) to isolate cues that contribute most 
strongly to interpersonal outcomes36. Machine learning can help identify significant nonverbal cues for inter-
personal outcomes through feature selection processes and model comparisons. Identifying and testing these 
cues can help inform theories of person perception and impression formation. Recent advancements in facial 
and motion tracking technology and computing power render this bottom-up approach particularly attractive 
for nonverbal theory development.

From a practical standpoint, identifying nonverbal cues with the strongest social influence can help VR 
designers and engineers prioritize features that should be available within virtual environments. Given the 
amount of resources that are being invested into developing social VR platforms, understanding where to focus 
development efforts can aid in allocating resources more effectively. For instance, the present study suggests that 
facial animations are critical for positive avatar-mediated interactions, especially when there are bodily move-
ments. As such, the development of avatars that are able to both express realistic facial expressions and credibly 
transition between expressions coupled with technologies that can accurately track the user’s facial expressions in 
real time could improve interpersonal outcomes and improve human–machine interactions. Within the context 
of immersive VR, however, most of the tracking technology has thus far focused on body tracking (e.g., Oculus 
Touch, HTC Vive Lighthouse). This bias is likely due to the fact that most of these systems rely on bodily non-
verbal behavior as input to render the virtual environment appropriately. Additionally, the use of head-mounted 
displays makes it challenging to track facial expressions. The current findings offer some evidence that social 
VR platforms, immersive or not, may benefit from investing in technologies that can capture (or infer) and map 
facial expressions within avatar-mediated environments.

This investigation employed a novel technical set up that allowed for the activation and deactivation of 
specific nonverbal channels to study their individual and joint effects on interpersonal outcomes. Our setup 
differentiates itself from prominent social VR applications, which are generally limited to body tracking. While 
a small number of applications do support face tracking, these have remained relatively costly solutions that 
aren’t widely available. We demonstrate a solution capable of tracking both the face and body by combining 
ubiquitously available consumer electronics.

Outside the study of avatar-mediated environments, this setup could be adapted by nonverbal communica-
tion researchers to further understand the impact of specific nonverbal channels during FtF interaction and help 
address methodological challenges associated with manually coding nonverbal behavior or reduced ecological 
validity (e.g., having to block out specific body parts19). Additionally, with the increasing availability of large data 
sets of automatically detected nonverbal behavior, inductive processes can be leveraged to produce bottom-up 
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algorithms42 that can help identify nonverbal patterns during specific interactions that cannot be perceived by 
the human eye.

Limitations
It is important to note the limitations associated with the present study. First, the technical setup of the present 
study focused on the tracking and rendering of nonverbal cues, but did not account for dimensions such as ste-
reoscopic viewing or perspective dependency. This limits the generalizability of our findings to contexts wherein 
different VR technologies are utilized. Future studies would benefit from exploring the interplay between different 
technological affordances and the availability of nonverbal cues.

Second, our focus was limited to two nonverbal channels: body and face. As such, we were unable to explore 
the effects of additional nonverbal cues such as tone or intonation. While this is beyond the scope of the present 
study, future research should explore the impact of these cues along with facial and nonverbal behavior to better 
understand the effects of various nonverbal channels on interaction outcomes.

Another limitation of the study lies in the relatively specific interaction context wherein participants were 
asked to collaborate on one visual and one semantic referential task. This decision was made primarily to avoid 
ceiling effects on impression formation58 and to control for the variance in communication content (e.g., extent 
of self-disclosure) that can influence interpersonal outcomes. However, it is likely that the task-centered nature 
of the interaction context restricted the social and affective aspects of the interaction, which may have limited 
the role of nonverbal communication. Furthermore, due to the collaborative nature of the task, participants may 
have been more prone to display favorable nonverbal cues. The specificity of the current context also reduces 
the generalizability of the current findings, as everyday interactions are characterized by a combination of both 
task-oriented and social content95,96. Future studies should employ different interaction contexts to understand 
potential boundary conditions.

Additionally, while we simultaneously varied facial and bodily cues for the visual referential task (see “Meth-
ods”), it is possible that participants found this task to be biased toward facial expressions as they resembled 
emojis, rendering facial expressions more salient than bodily cues. Follow-up studies should thus sample different 
tasks to account for stimuli effects97.

Finally, the technical limitations associated with markerless tracking need to be addressed. While the present 
study used two of the most precise motion tracking systems that are currently available, there were still limita-
tions in terms of the range of movements that the systems could track. For instance, participants needed to stay 
within a specific distance from the facial tracking camera in order to ensure smooth tracking (see “Methods”) 
and touching the face or turning the head completely away from the camera resulted in tracking errors. In addi-
tion, while our latency was within the established range for video-based communication (“Appendix 4”), it is 
unlikely that our system was able to reliably capture and render micro-expressions.

The Kinect was also limited in its tracking when there was an overlap between joints (e.g., when the partici-
pant crossed his or her arms) and for certain rotation angles. Because this tracking data was used to animate 
the avatars, it is probable that these technical limitations led to instances wherein the movements of the avatar 
appeared unnatural. While this was an inevitable limitation given the current state of the technology, more studies 
should be conducted as motion tracking technology continues to advance.

Conclusion
The present study found that people who are able to see their partner’s facial cues mapped on their avatars like 
their partners more and form more accurate impressions in terms of personality. Contrary to hypotheses, the 
availability of bodily cues alone did not improve communication outcomes. In addition, we found that machine 
learning classifiers trained with automatically tracked nonverbal data could predict interpersonal attraction at 
an accuracy rate that was approximately 15% higher than chance. These findings provide new insights on the 
individual and joint interaction of two nonverbal channels in avatar-mediated virtual environments and expand 
on previous research suggesting that the automatic detection of nonverbal cues can be used to predict emotional 
states. This is particularly prescient as technology makes it increasingly easy to automatically detect and quantify 
nonverbal behavior.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.

Appendix 1: Facial movements tracked by Apple iPhone55

Apple blendshapes Description

browDownLeft Downward movement of outer portion of left eyebrow

browDownRight Downward movement of outer portion of right eyebrow

browInnerUp Upward movement of inner portion of left and right eye-
brows

browOuterUpLeft Upward movement of outer portion of left eyebrow

browOuterUpRight Upward movement of outer portion of right eyebrow

cheekPuff Outward movement of both cheeks

cheekSquintLeft Upward movement of cheek around and below the left eye
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Apple blendshapes Description

cheekSquintRight Upward movement of cheek around and below the right eye

eyeBlinkLeft Closure of the eyelid over the left eye

eyeBlinkRight Closure of the eyelid over the right eye

eyeLookDownLeft Movement of the left eyelid consistent with a downward gaze

eyeLookDownRight Movement of the right eyelid consistent with a downward 
gaze

eyeLookInLeft Movement of the left eyelid consistent with an inward gaze

eyeLookInRight Movement of the right eyelid consistent with an inward gaze

eyeLookOutLeft Movement of the left eyelid consistent with an outward gaze

eyeLookOutRight Movement of the right eyelid consistent with an outward gaze

eyeLookUpLeft Movement of the left eyelid consistent with an upward gaze

eyeLookUpRight Movement of the right eyelid consistent with an upward gaze

eyeSquintLeft Contraction of the face around the left eye

eyeSquintRight Contraction of the face around the right eye

eyeWideLeft Widening of the eyelid around the left eye

eyeWideRight Widening of the eyelid around the right eye

jawForward Forward movement of the lower jaw

jawLeft Leftward movement of the lower jaw

jawOpen Opening of the lower jaw

jawRight Rightward movement of the lower jaw

mouthClose Closure of the lips independent of jaw position

mouthDimpleLeft Backward movement of the left corner of the mouth

mouthDimpleRight Backward movement of the right corner of the mouth

mouthFrownLeft Downward movement of the left corner of the mouth

mouthFrownRight Downward movement of the right corner of the mouth

mouthFunnel Contraction of both lips into an open shape

mouthLeft Leftward movement of both lips together

mouthRight Rightward movement of both lips together

mouthLowerDownLeft Downward movement of the lower lip on the left side

mouthLowerDownRight Downward movement of the lower lip on the right side

mouthPressLeft Upward compression of the lower lip on the left side

mouthPressRight Upward compression of the lower lip on the right side

mouthPucker Contraction and compression of both closed lips

mouthRollLower Movement of the lower lip toward the inside of the mouth

mouthRollUpper Movement of the upper lip toward the inside of the mouth

mouthShrugLower Outward movement of the lower lip

mouthShrugUpper Outward movement of the upper lip

mouthSmileLeft Upward movement of the left corner of the mouth

mouthSmileRight Upward movement of the right corner of the mouth

mouthStretchLeft Leftward movement of the left corner of the mouth

mouthStretchRight Rightward movement of the right corner of the mouth

mouthUpperUpLeft Upward movement of the upper lip on the left side

mouthUpperUpRight Upward movement of the upper lip on the right side

noseSneerLeft Raising of the left side of the nose around the nostril

noseSneerRight Raising of the right side of the nose around the nostril

tongueOut Extension of the tongue

Appendix 2: Technical setup details

VR chat application (face and body tracker)
The face tracker was implemented as an iOS application running on an iPhone XS. Apple’s ARKit 2.0 SDK, which 
is built into the iPhone XS, was used to extract tracking status, continuous facial features, and rotation data of 
the eyes and head. All facial features as well as eye rotation were mapped to the corresponding blendshapes of 
the avatar head model.

While both the iPhone and Kinect can track head rotation, we found the iPhone data to be more reliable. As 
such, the head rotation provided by the iPhone XS was used as the primary input data for avatar animation; the 
head rotation data provided by the Kinect was used as a fallback for instances wherein the iPhone XS failed to 
track the participant. The face model used for the avatar in the study was Mateo 3D model by Faceshift, licensed 
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under Creative Commons Attribution 3.0. For the female avatar, the same model was used, but the hair was 
created separately by our lab.

The VR Chat Application was implemented as a Unity application running on a Windows PC and includes 
the body tracker, and experiment overlay. It includes the body tracker which uses the Kinect for Windows SDK 
2.0 and the corresponding Unity plugin. The body model used in the study was AJ 3D Model by Mixamo (Adobe 
Systems). All Kinect joints from spine base and upward were mapped to the model depicted in Fig. 2. While 
the Kinect reports joint rotation, we found that this performed poorly on arm joints and therefore rotation data 
were only used for spine joints. Arm, hand and shoulder joint rotation was inferred using inverse kinematics. A 
detailed list of the software programs used in the current study is as follows:

Software Version

Unity 2018.1.6f1

Kinect for Windows SDK 2.0.1410.19000

iOS on iPhone XS 12.1

protobuf 3.1.0

python 3.7.4

numpy 1.16.4

pandas 0.24.2

sklearn 0.21.3

Control panel
The control panel was implemented as a Unity application running on a Windows PC. It allows the Experimenter 
to monitor the tracking and connection status of all trackers. It was also used to configure, calibrate, start, record 
responses, pause, resume and conclude the experiment. A diagram of how the body and face tracking data were 
processed can be seen in Fig. 13 and a network diagram of the connections between the devices is available in 
Fig. 14. 

Appendix 3: Latency assessment for experimental setting
System latency was computed based on the latency of the subsystems. The latency of each individual component is 
listed in the table below. ARKit provides a capture timestamp, which was used to measure capture delay through-
out the study. As the Kinect lacks this feature, we relied on previous research by Waltemate and colleagues98. We 
observed network latency and variance for the face trackers that we connected via wireless network. In order to 
achieve the required time synchronization between trackers, we timestamped a message when captured, sent, 
received and rendered, and use a time synchronization approach99 to calculate time offset and network delay. 
The rolling average and standard deviation of the calculated latencies were logged every second. We calculate 
the render delay as the difference between the time the data is received and the time when Unity completed 
rendering the frame.

While 100 ms is established as a safe latency that ensures user satisfaction in video conferencing100, a more 
recent study101 suggests that latencies as high as 500 ms do not have a significant negative impact on likeability 
and naturalness. Of note, there were no complaints regarding system performance during the pilot study with 
40 participants, which is expected as our total latency was within the established target range. In addition to the 
approach taken in the present study, future studies may also benefit from conducting a video-based assessment 
in order to determine motion-to-photon latencies.

Body tracking Face tracking

Sensor/capture delay 98.8 ± 19.2 ms 84.8 ± 9.0 ms

Network stream latency < 1 ms 8.5 ± 33.9 ms

Render delay 30.4 ± 10.9 ms

Display response delay 8 ms*

Total 138.2 ± 22.1 ms 131.7 ± 36.7 ms

 *As reported by the display manufacturer.

Appendix 4: Measures for social presence, interpersonal attraction, and impression 
accuracy (BFI‑S)

Social presence74,75

How strongly do you agree or disagree with the following statements about your partner?

1 2 3 4 5 6 7

Strongly disagree Disagree Somewhat 
disagree

Neither agree  
nor disagree Somewhat agree Agree Strongly agree
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1.	 I felt that my partner was present.
2.	 I felt that my partner was aware of my presence.
3.	 I paid close attention to my partner.
4.	 My partner paid close attention to me.
5.	 I was influenced by my partner’s emotions.
6.	 My partner was influenced by my emotions.
7.	 My thoughts were clear to my partner.
8.	 My partner’s thoughts were clear to me.

Sender - Face TrackerSender - Body Tracker

Receiver

Capture Body Tracking Frame Capture Face Tracking Frame

Adjust Timestamp Adjust Timestamp

Send Body Tracking Frame Send Face Tracking Frame

Log Body Tracking Frame Log Face Tracking Frame

Receive New Body Frame

Update Avatar Body Transforms Update Avatar Blendshapes

Update Avatar Head Rotation

Receive New Face Frame

Calculate and Apply Joint Angles

Apply Low-Pass Filter Transform

On Frame Update

Figure 13.   Sequence chart of how body and face tracking data were processed.

Figure 14.   Network diagram of the connections between the devices.
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Interpersonal attraction62, 63

Task attraction.  How strongly do you agree or disagree with the following statements about your experi-
ence?

1 2 3 4 5 6 7

Strongly disagree Disagree Somewhat 
disagree

Neither agree nor 
disagree Somewhat agree Agree Strongly agree

 

1.	 I enjoyed completing the tasks with my partner.
2.	 I had fun completing the tasks with my partner.
3.	 I would like to interact with my partner again.
4.	 It was interesting to complete the tasks with my partner.

Social attraction.  How strongly do you agree or disagree with the following statements about your partner?

1 2 3 4 5 6 7

Strongly disagree Disagree Somewhat 
disagree

Neither agree nor 
disagree Somewhat agree Agree Strongly agree

 

1.	 I like my partner.
2.	 I would get along well with my partner.
3.	 I would enjoy a casual conversation with my partner.
4.	 My partner is friendly.

Impression Accuracy (Short 15‑item big five inventory; BFI‑S70,71)
BFI‑S observer version.  You will now see a number of statements, each of which starts with, "I see MY 
PARTNER as someone who…". For each statement, indicate how much you agree or disagree with this. If you 
are unable to make a judgment, select "Cannot make judgment".

1 2 3 4 5 6 7  N/A

Strongly 
disagree Disagree Somewhat 

disagree
Neither agree 
nor disagree

Somewhat 
agree Agree Strongly agree Cannot make 

judgment

BFI‑S self version.  You will now see a number of statements, each of which starts with, "I see MYSELF as 
someone who…". For each statement, indicate how much you agree or disagree with this.

1 2 3 4 5 6 7

Strongly disagree Disagree Somewhat 
disagree

Neither agree nor 
disagree Somewhat agree Agree Strongly agree

Trait Items

Openness to experience

comes up with new ideas

values artistic experiences

has an active imagination

Conscientiousness

does a thorough job

tends to be lazy

does things efficiently

Extroversion

is talkative

is outgoing

is reserved

Agreeableness

is sometimes rude to others

has a forgiving nature

is kind

Neuroticism

worries a lot

gets nervous easily

remains calm in tense situations
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