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Abstract
Background: Structure-based computational methods are needed to help identify and
characterize protein-protein complexes and their function. For individual proteins, the most
successful technique is homology modelling. We investigate a simple extension of this technique to
protein-protein complexes. We consider a large set of complexes of known structures, involving
pairs of single-domain proteins. The complexes are compared with each other to establish their
sequence and structural similarities and the relation between the two. Compared to earlier studies,
a simpler dataset, a simpler structural alignment procedure, and an additional energy criterion are
used. Next, we compare the Xray structures to models obtained by threading the native sequence
onto other, homologous complexes. An elementary requirement for a successful energy function
is to rank the native structure above any threaded structure. We use the DFIREβ energy function,
whose quality and complexity are typical of the models used today. Finally, we compare near-native
models to distinctly non-native models.

Results: If weakly stable complexes are excluded (defined by a binding energy cutoff), as well as a
few unusual complexes, a simple homology principle holds: complexes that share more than 35%
sequence identity share similar structures and interaction modes; this principle was less clearcut in
earlier studies. The energy function was then tested for its ability to identify experimental
structures among sets of decoys, produced by a simple threading procedure. On average, the
experimental structure is ranked above 92% of the alternate structures. Thus, discrimination of the
native structure is good but not perfect. The discrimination of near-native structures is fair.
Typically, a single, alternate, non-native binding mode exists that has a native-like energy. Some of
the associated failures may correspond to genuine, alternate binding modes and/or native
complexes that are artefacts of the crystal environment. In other cases, additional model filtering
with more sophisticated tools is needed.

Conclusion: The results suggest that the simple modelling procedure applied here could help
identify and characterize protein-protein complexes. The next step is to apply it on a genomic scale.

Background
Many cellular functions are mediated by protein-protein
interactions [1-3]. An aim of modern genomics is to iden-

tify and characterize these interactions. With hundreds of
genomes completely sequenced, computational methods
that exploit sequence data are an attractive goal. Methods

Published: 9 October 2008

BMC Bioinformatics 2008, 9:427 doi:10.1186/1471-2105-9-427

Received: 14 April 2008
Accepted: 9 October 2008

This article is available from: http://www.biomedcentral.com/1471-2105/9/427

© 2008 Launay and Simonson; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 16
(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/9/427
http://creativecommons.org/licenses/by/2.0
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18844985
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


BMC Bioinformatics 2008, 9:427 http://www.biomedcentral.com/1471-2105/9/427
have been proposed to identify, classify, and validate
putative interactions [4-8]. For example, amino acids that
participate in a stable protein-protein interface tend to
undergo correlated mutations during evolution, provid-
ing an interaction signature [4,9,10]; proteins that inter-
act, physically or functionally, have an increased chance
of being encoded by genes that are physically nearby, so
that analyses of genome structure can also provide infor-
mation on protein interactions [5,6].

Structure-based computational methods provide addi-
tional information, and are especially useful to character-
ize direct, physical interactions between proteins [11-19].
Docking algorithms are increasingly powerful and can
provide a detailed description of the interaction [13,20-
22]; however, they are too costly for routine large scale
studies. A more attractive possibility is to perform homol-
ogy modelling, and exploit the ever-growing structural
databases [23] to model putative protein-protein com-
plexes [16,18]. Homology modeling of a protein-protein
complex requires that a structural similarity principle
should hold: similar proteins should interact in a similar
way. Previous studies show that this is true in many cases
[24]. However, exceptions have also been found, where
two homologous pairs of proteins interact in two very dif-
ferent ways [25]. In particular, a recent, systematic study
by Aloy & Russell [24] found only a moderate correlation
between sequence and structural similarity for protein-
protein complexes.

Here, we examine the possibilities and limitations of a
simple homology modelling procedure for protein-pro-
tein complexes. The method is closely related to earlier
methods [18], but differs in many significant details. Ulti-
mately, the method should allow us to predict whether a
pair of proteins interact, given that a homologous pair
forms a complex of known structure. We focus on the sim-
plest type of protein-protein interactions: stable interac-
tions between pairs of monodomain proteins. Domains
are tightly-packed, globular structures. Their interactions
can be considered as fairly representative of the interac-
tions that take place between larger proteins [12,14,15].
Protein domains are usually thought to be structures that
have been conserved in the course of evolution. The SCOP
database [26], for example, provides a hierarchical classi-
fication of domains of known 3D structure according to
their probable evolutionary relationships. Thus, domains
are the logical starting point to attempt homology model-
ling.

As a first step, we examine the structural and sequence
similarity among known domain-domain complexes.
This question has been examined at length in the past
[15,24]. Here, we use a slightly simpler dataset (binary
complexes between single-domain proteins), a simpler

method to align and superimpose pairs of complexes, and
an additional energy criterion. A simple structural homol-
ogy principle holds for most cases. Excluding complexes
with weak association energies (which may be artefacts of
the crystal environment), most complexes in the dataset
that share over 35% sequence identity always share simi-
lar interaction modes and structures. Note that we are
referring here to the sequence identity averaged over the
whole complex, not just the interface region. This result is
more clearcut than the earlier studies.

As a second step, we examine the performance of a simple
homology modelling approach, which could be used for
large-scale studies. It combines structure-based align-
ments with a very simple threading procedure and an
empirical energy function. For a given domain-domain
complex, several possible templates are considered, made
up of homologous complexes. We compare the associa-
tion energy of experimental complex to the energies of the
modelled complexes. This test represents the most basic
requirement for a successful energy function. With the
simple, DFIREβ energy function [21], discrimination is
good but not perfect for this relatively easy test.

Finally, we perform a more realistic test, comparing near-
native structures to distinctly non-native models. Most
near-native structures are ranked above most non-native
models. Typically, however, a single alternate, non-native
binding mode is found with a native-like energy. In some
cases, this could correspond to a genuine binding mode;
in other cases, such modes artefacts that would have to be
filtered out using more sophisticated models.

Overall, it appears that our simple homology modelling,
despite its limitations, can help identify and characterize
protein-protein complexes, at least in a preliminary way.
The method is computationally inexpensive and could be
applied on a large scale. It can also be used in combina-
tion with other, purely sequence-based methods. In the
following, we describe the Results. The next section is a
Discussion. Computational Methods are described last.

Results
Datasets of protein-protein complexes
Three datasets of protein-protein complexes are used.
Importantly, all the complexes are formed from pairs of
single-domain proteins. Two of the datasets are from pre-
vious publications [15,18,27]. The first, "Keskin" dataset
[15,27] includes 21686 pairs of domains, divided into
3799 groups of complexes with similar interaction modes.
It will be used to judge the accuracy of our structural align-
ments. Indeed, the domains in this set were carefully
aligned and grouped into clusters by Keskin et al [15];
therefore, they provide a benchmark to check that our
own alignment procedure is reasonable. The second,
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much smaller, "Aloy" dataset [18] includes 35 complexes,
divided into nine functional groups. This dataset was used
by Aloy and Russell to test their own, earlier modelling
procedure [18]. By applying our procedure to this dataset,
we can directly compare our performance to theirs, and
judge the accuracy of our procedure.

Finally, a third set of complexes was constructed here,
larger than the Aloy set, based on the SCOP classification,
and comprising only single domain protein complexes
(unlike the Keskin set). Most members of this dataset are
also found in the Keskin set. This set was constructed as
follows. The starting point was the ASTRAL Compendium
of SCOP domains [26,28], which is based on version 1.67
of SCOP and contains 65122 domains. From the Protein
Data Bank [23], we collected all structures that included
more than one chain. Cross-checking with the ASTRAL
Compendium [26,28], we discarded structures that con-
tained more than two SCOP domains or were absent from
ASTRAL. We also required that the two domains be con-
tinuous and carried by different polypeptide chains, thus
excluding complexes between two domains within the
same protein. We were left with 4765 structures. To
exclude complexes that are obviously non-biological,
such as crystal contacts, we discarded structures that had
fewer than ten contacts between their two domains. An
interface contact was said to occur when one domain of
the complex had a nonhydrogen atom less than 8 Å from
a nonhydrogen atom of the other domain [29,30]. This
left just 1509 complexes. Each one was checked with the
program PQS [31]; only those for which PQS returned a
dimeric status were retained. The 750 remaining com-
plexes were partitioned into groups based on proximity in
the SCOP classification. Specifically, two complexes A:B
and A':B' were put in the same group if A and A' are part
of the same SCOP superfamily (say, SA) and B and B' are
part of the same SCOP superfamily (which can be differ-
ent from SA). Groups containing three or fewer complexes
were discarded, since they allow just a few threading mod-
els to be built (see below) and just a few discrimination
tests to be done. At the end of this selection process, we
were left with 743 domain-domain complexes, parti-
tioned into 40 groups, with between 4 and 71 complexes
per group. 667 complexes are homodimers; 66 are het-
erodimers. Each group will be labelled by its pair of SCOP
superfamily identifiers. We will refer to each of the 40
groups as an "Interacting Superfamily Group", or ISG.

Testing our alignments by classifying interaction modes
We first evaluate the accuracy of our structural alignments
by comparing to the earlier, benchmark study by Keskin et
al. [32]. The Keskin dataset contains 21686 complexes,
clustered [27] according to the structural similarity of
their binding modes [33]. 621 of the Keskin complexes
are also part of our dataset. We performed a similar geo-

metrical analysis of our own dataset, to identify the bind-
ing modes present in each Interacting Superfamily Group,
or ISG (see Methods). All the complexes within each ISG
(40 groups; 743 complexes in all) were compared to each
other (see Methods), for a total of 9630 pairwise compar-
isons. The structural deviation is measured by an "Interac-
tion rmsd", or Irmsd, which corresponds to the rms Cα
coordinate deviation between the smaller partners after
superimposition of the larger partners; see Methods. The
Irmsd was computed for each pair of complexes. A hiera-
chical, average-linkage clustering was then performed,
using the Irmsd as the distance metric. A maximum dis-
tance of 6 Å was allowed between any member of a clus-
ter. With this procedure, each ISG yields a certain number
of clusters, corresponding to distinct interaction modes
between the two domains.

With this procedure, our clusters are in good agreement
with the Keskin set (Table 1). This shows that our align-
ment method is reasonable. In particular, the use of a
sequence alignment of regions that flank the MATRAS
structural alignment (see Methods) does not cause diffi-
culties. Most ISGs contain several interaction modes, most
of which were also identified by Keskin et al. There are
very few complexes from different ISGs that are clustered
in the same interaction mode by Keskin et al. Only four
clusters out of the 201 identified by Keskin et al. (Table 1)
contain complexes from different ISGs (clusters 287, 653,
773, and 1133; data not shown).

Compared to the Keskin interaction modes, our analysis
returned nine additional modes (Table 1). Most of these
modes should probably be considered false positives, or
"overcounts" of our mode counting. They correspond to
structural similarities between interaction modes that
were underestimated by our comparison method. Note
that a few are genuine, since our dataset includes some
additional complexes that were not part of the Keskin
study.

Both our own and the Keskin analyses frequently identify
very diverse modes of interaction within the same SCOP
superfamily. In fact, this diversity is misleading. We will
see below that the different interaction modes are almost
always associated either with sets of complexes having a
low mutual sequence identity, or with small, weakly-sta-
ble interfaces that are probably non-biological, induced
by a given crystal environment.

Relation between sequence and structure similarity
Homology modelling of protein-protein complexes is
only viable if similar sequences lead to similar structures.
To understand more clearly the relation between sequence
and structural homology, we consider our 743 complexes,
grouped into 40 ISGs. We begin by identifying complexes
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whose interfaces are sufficiently large and energetically
stable. Specifically, we identify complexes that have a bur-
ied surface of at least 600 Å2 and a DFIREβ interaction
energy of -10 kcal/mol or better. Following earlier analy-
ses of protein-protein complexes [29,30], we assume that
complexes with such large and stable interfaces are likely
to be biologically meaningful complexes, whereas the
other complexes are much more likely to be artefacts of
the crystal environment. The energy cutoff is a small but

partly arbitrary value; see below. Of the 743 complexes,
30 are eliminated by their small surface areas. Another
233 are eliminated by the energy cutoff. We are left with
480 "large and stable" complexes.

From each pairwise comparison, we obtain a sequence
identity and a structural similarity score, as described in
Methods. The sequence identity is given by the optimal
alignment (structural, plus flanking sequence alignment if

Table 1: Binding modes within each Interacting Superfamily Group (ISG)

number of modes
interacting superfamilies number of complexesa this work Keskin overcountsb

c.67.1 c.67.1 71(65) 12 13 1
d.174.1 d.174.1 47(34) 2 2 1

c.37.1 c.37.1 41(32) 20 17 0c

b.1.1 b.1.1 39(18) 14 8 1
c.1.1 c.1.1 38 3 3 0

d.117.1 d.117.1 36 1 1 0
c.76.1 c.76.1 32(31) 2 1 0
c.2.1 c.2.1 26(25) 9 8 0

c.71.1 c.71.1 25(24) 6 5 0
d.169.1 d.169.1 21 5 5 0
b.60.1 b.60.1 21(19) 10 9 1
b.29.1 b.29.1 20(17) 7 9 0
e.3.1 e.3.1 18(13) 6 7 0

c.69.1 c.69.1 18(12) 14 10 0
d.17.4 d.17.4 17(11) 4 4 0
d.5.1 d.5.1 16 8 8 0

d.144.1 d.144.1 16(11) 12 7 0
c.68.1 c.68.1 16(12) 5 4 0
a.39.1 a.39.1 16(14) 7 6 0
e.7.1 e.7.1 15 2 2 0

a.133.1 a.133.1 15(12) 10 7 2
b.47.1 g.3.11 17 1 1 0

a.118.6 a.102.4 15(7) 1 1 0
b.47.1 b.47.1 13(11) 12 9 1
c.61.1 c.61.1 12 5 5 0
d.92.1 d.92.1 11 5 5 0
d.32.1 d.32.1 11(9) 3 3 0
c.94.1 c.94.1 11(7) 4 4 0
c.1.10 c.1.10 11(9) 5 4 0
c.52.1 c.52.1 10 6 5 1
d.1.1 d.1.1 9(5) 3 2 0

c.47.1 c.47.1 9(4) 6 4 0
a.1.1 a.1.1 9(8) 4 3 0
d.9.1 d.9.1 8(6) 3 3 0
b.6.1 b.6.1 8 1 1 0

a.123.1 a.123.1 8(4) 3 2 1
c.26.1 c.26.1 5(3) 4 3 0
c.66.1 c.66.1 4(2) 3 2 0
d.2.1 d.2.1 4 3 3 0
c.1.8 c.1.8 4 2 2 0

Total 743(621) 206 195 9

aIn parentheses, the number of complexes that are part of the Keskin dataset [15]. bModes found in our study but not in the Keskin study. cWhen a 
complex is not found in the Keskin set, and it is the only representative of its interaction mode, the mode is not considered an overcount. In the 
c.37.1/c.37.1 case, for example, we find 20 modes, but 3 are represented by a single complex each, not found in the Keskin dataset: there are no 
overcounts. dIn a few cases (eg, c.67.1 c.67.1), our dataset misses some of the Keskin modes.
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required; see Methods). The structural similarity is meas-
ured by the pairwise Irmsd (computed by first superim-
posing the larger members of a complex, say Ai and Aj,
then comparing all equivalent Cα's of the smaller mem-
bers, say Bi and Bj; see Methods). The Irmsd values are
plotted vs. the corresponding sequence identities in Fig. 1
for the whole dataset (9630 points). In Fig. 1, each large
dot corresponds to a comparison between two of the
"large and stable" complexes. Each small dot corresponds
to a comparison where one or (usually) both of the com-
plexes being compared have small and/or less stable inter-
faces. Large, gray dots correspond to comparisons where
the structural alignment with MATRAS provided fewer
than 80% of the equivalent residues used for the Irmsd
calculation; the rest of the equivalent residues are pro-

vided by a sequence alignment (see Methods). All the gray
points lie in the lefthand part of the plot, below a 35%
sequence identity. Thus, our use of a flanking sequence
alignment for some complexes does not affect the qualita-
tive results. We can now comment on our choice of energy
cutoff: -10 kcal/mol is in fact the largest (least negative)
value that gives a clean separation between the large and
small dots in Figure 1.

In a previous study, Aloy and Russell extensively studied
the relationship between the sequence and structural sim-
ilarities of numerous protein complexes; see Fig. 1 in ref-
erence [24]. In contrast with their approach, which used a
simplified geometric representation to measure structural
deviations (four sites per subunit), we compute the Irmsd

The relationship between sequence and structural similarityFigure 1
The relationship between sequence and structural similarity. 743 complexes from 40 interacting superfamily groups 
(ISGs) were analyzed. All pairs within each ISG were compared, for a total of 9630 pairwise comparisons. Small points corre-
spond to comparisons involving at least one complex with either a small interface (buried area < 600 Å2) or a weak association 
energy (Eint > -10 kcal/mol; see text). Points labelled A-G are discussed in the text. The horizontal line corresponds to Irmsd = 
6 Å; the vertical line corresponds to a 35% sequence identity. Gray points correspond to comparisons where the MATRAS 
structural alignment provided fewer than 80% of the equivalent residues used for the Irmsd calculation. All the gray points lie 
below the 35% similarity threshold.
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between pairs of complexes using an atomic level of
detail. We also apply an energy cutoff that yields addi-
tional insights, and we use a simpler, more homogeneous
dataset (binary complexes between single-domain pro-
teins).

With these modifications, the sequence/structure homol-
ogy principle is more clearcut. Indeed, considering only
the large dots (black or gray), we see that when two com-
plexes share at least 35% sequence identity between their
subunits, they almost always have a similar mode of inter-
action. Note that the sequence identity is averaged here
over the whole complex, not just the interface region. At
this level of sequence identity, almost all of the measured
Irmsd's are below 6 Å (Fig. 1). Thus, in the vast majority
of cases, sequence homology implies structural homol-
ogy. This is a basic requirement to allow homology mod-
elling of protein-protein complexes. Below 35% of
sequence identity, the interaction modes often differ.

In contrast, the small dots are widely distributed through-
out Fig. 1. One group of points, for example, forms a band
at around 100% sequence identity, extending up to Irmsd
values of 80 Å. These points presumably arise from differ-
ent packing modes in different crystal forms. A detailed
analysis of crystal packing effects is beyond the scope of
this paper; see [29,30].

In some cases, two "large and stable" complexes have sub-
units that share more than 35% sequence identity and yet
they do present strongly dissimilar interaction modes
(Irmsd above 6 Å). In Fig. 1, such complexes form nine
groups, identified by the letters A-G. Group A involves two
structures of the endonuclease EcoRV, which is a
homodimer, either bound to DNA (1BSU) or unbound
(1RVE). Although the whole enzyme is considered to
form a single domain by SCOP (c.52.1 superfamily), the
structure is actually made of two distinct, globular
regions. Upon binding to the DNA, there is a relative
motion of these two regions, which leads to a fairly high
Irmsd between the two structures (7.8 Å), despite their
nearly identical sequences (98.3% identity). Group B cor-
responds to another two endonucleases, with the same
structural change upon DNA binding. Group C is similar.
One complex has a large overall Irmsd value with respect
to two others; if only the regions close to the interface are
compared, the structural deviations are very small (<2 Å).
The large Irmsd values are thus produced by a compact,
globular region far from the interface which could be con-
sidered as a separate domain [34]. All these cases can be
considered artefacts of the SCOP domain definitions.

Group D involves the complex 1A64, a member of the
Immunoglobulin-like ISG. The subunits of this complex
are are artificially engineered mutants of the variable anti-

body domains. The mutants were specifically selected to
produce different interaction modes [35]. Group E corre-
sponds to Ribonuclease A structures. These homodimeric
structures are known to provide remarkable examples of
domain swapping [36,37]. This leads to geometrically dif-
ferent interfaces, despite identical or very similar
sequences. Such phenomena are relatively rare among
protein dimers. Group F corresponds to a dimeric snake
toxin protein [38], compared to a complex of a homolo-
gous toxin with an inhibitor. The inhibitor is expressed in
the snake to modulate the activity of the toxin [39].
Remarkably, the inhibitor is strongly homologous to the
toxin (~50% identity), and modulates its action by form-
ing a heterodimer with one of the toxin subunits. The
mode of interaction between the toxin and the inhibitor
differs from the toxin homodimerization mode. This is an
unusual case where a new biological interface has evolved
that violates the homology principle (similar sequences
but different interaction modes).

Another region of interest is the one between 33 and 37%
sequence identity. Here, there are three small groups with
large Irmsd values: G1, G2, G3. Group G3 is another case
where structural deviations arise from a domain swapping
event (complexes 1E8A, 1HT9, 1KSO). Group G1 arises
from three complexes (1DEK, 1KO5, 1KO8), two of
which (1KO5, 1KO8) are very similar (Irmsd of 1.5 Å).
Comparing 1DEK and the other two, the interaction
modes are very different, despite a 35% sequence identity.
However, the interfaces are not very large (~2000 Å2) and
the DFIREβ association energies are about -11 kcal/mol,
barely below our -10 kcal/mol threshold. Finally, Group
G2 contains two complexes (1G64 and 1HOP) with dif-
ferent interaction modes despite a 35% sequence identity,
large buried surfaces, and large association energies (<-20
kcal/mol). Thus, the region between 35 and 37%
sequence identity is a limiting region, where the structural
homology principle begins to be violated. Notice that the
precise location of this threshold region (~35%) is a result
of our precise method of sequence and structural compar-
ison, and the precise energy cutoff employed; slightly dif-
ferent methods would lead to a slightly different
threshold.

Overall, structural homology holds in the vast majority of
cases when the sequence identity is above 35% and the
association energy is sufficiently large.

Recognition of native interfaces: comparing the 
experimental structure to threading models
The structural homology principle observed above (in
agreement with earlier work [24]) is a necessary but not a
sufficient condition for homology modelling of protein-
protein complexes. We turn now to the problem of the
energy function. We first perform a very simple test, both
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with DFIREβ and with a simpler, residue-based energy
function [40]. Their discrimination power was evaluated
by their ability to assign a lower association energy Eint to
the experimental, Xray structure, compared to alternate
structures obtained by threading the sequence onto other,
homologous dimers. This discrimination, again, is a basic,
necessary condition for a successful modelling procedure.
17 groups of homologous dimers were used, for a total of
123 complexes. Eight of these groups, containing 88 com-
plexes, came from our own, ISG dataset. Nine groups,
containing 35 complexes, came from the work of Aloy
and Russell [18], who performed the same discrimination
test.

The DFIREβ function has a 92% success rate in the discrim-
ination tests (1035 successes out of 1124 tests). The
number of successful and failed tests are given in Table 2
for each superfamily group. Each sequence within a group
is threaded onto every other structure in the group (see
Methods). Success means that a positive Sthread score is
obtained when an experimental structure is compared to
a threaded model (see Methods). The residue-based
energy function has a respectable, but poorer discrimina-
tion rate of 66%. Among the structures used by Aloy and
Russell, those from the peptidase and squash trypsin
groups were the hardest to discriminate. This is in fair
agreement with the results they reported [18], using a dif-
ferent energy function and a different measure of struc-
tural similarity.

36 complexes out of the 123 were not fully discriminated:
their sequences had a better energy for at least one of the

models than for their Xray structure (negative Sthread). For
most of these, either the model was very similar to the
Xray structure (Irmsd values of 2 Å or less), or the Xray
structure had a weak association energy (suggesting that it
may not be a biological complex). We consider each case
in detail.

In the b.29.1 group (15 complexes), there are four com-
plexes not fully discriminated. For two, the Xray complex
has a structure very similar to the model complex that
leads, after threading, to a better association score (Irmsd
values of 1–2 Å), so that these are very mild failures. The
other two complexes both have weak DFIREβ association
energies (-5 and -6 kcal/mol). In the c.61.1 group, four
complexes are not discriminated. In each case, the Xray
complex has a structure very similar to the model complex
that outscores it (Irmsd values of 1.5 Å or less). The same
is true for the d.17.4 group (seven complexes not discrim-
inated, outscored by models very similar to them; Irmsd
values of 1 Å or less). In the d.5.1 group, three complexes
are not discriminated. One (1H8X) is a domain-swapped
dimer (see above). The other two (1DYT and 2RNF) are
enzyme homodimers where the monomer is functional
and there is no indication in the literature of a functional
dimer. In the e.3.1 group, there are three real failures, two
of which correspond to complexes with weak association
energies. In the c.2.1 group, there are 26 complexes (Table
1). Only 14 were used in the discrimination tests (Table
2), as several redundant complexes were excluded (100%
sequence identity with other complexes in the group and
very similar structures; for example 1fk8 and 1fjh, 1keu
and 1ker). Five of the 14 complexes are not discriminated.

Table 2: Discriminating experimental complexes from threaded models

Superfamily identifiers Superfamily names sequence Id ranges (%) number of complexes number of tests number of successesa

DFIREβ Launay

a.133.1 Phospholipase A2 33–99 11 110 77 62
d.17.4 NTF2-like 11–98 13 156 140 92
b.29.1 lectins 33–99 15 210 205 148
c.61.1 Ribosyltransferase 15–99 10 90 80 65
e.3.1 β lactamase-like 9–100 11 110 107 59
d.5.1 RNase A-like 25–94 6 30 26 17
c.2.1 Rossmann-fold 11–43 14 182 174 152

a.118.6 a.102.4 Prenylyltransferase 94–99 8 56 56 27
RhoGDI/Ras 54–94/73–100 4 12 11 6

FGF receptor/FGF 20–35/22–62 3 6 6 6
Trypsin/inhibitor 30–100/10–100 12 132 127 87
Trypsin/inhibitor 65–83/56–71 3 6 4 1

Peptidase M10/TIMP 42–98/50–100 3 6 4 6
Trypsin/inhibitor 14/98 2 2 2 1
Trypsin/inhibitor 39/42 2 2 2 0

Collicin, Pyocin/HNH 39/42 2 2 2 1
Elongation factor/EF-TS 20–57/6–22 4 12 12 7

Total 123 1124 1035 737

aThe number of tests giving a positive Sthread score. Both the 6-class, residue-based and the DFIREβ, atom-based were used for scoring.
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Four of them are very similar to each other (Irmsd values
of ~2 Å) so that, in fact, there are only two real failures in
this group. For the two cases, the sequence identity
between the Xray complex and the relevant model com-
plex is around 25%.

Finally, in the a.133.1 group, there are 10 complexes not
fully discriminated. For one (1AOK), the model that out-
scores it (1JLT) is very similar to the Xray complex (Irmsd
= 1 Å). Of the other nine, eight have weak association
energies, with DFIREβ scores between -3 and -8 kcal/mol.
All eight prefer the same model, 1JLT. The 1JLT template
provides the threaded sequences with a large interface of
3100 Å2 and numerous interface contacts (50 interacting
residues per subunit). We speculate that the eight Xray
complexes could be artefacts of the crystal environment.
For these complexes, 1JLT could represent a true biologi-
cal interaction mode. The other failure (1PP2) corre-
sponds to a large, stable interface; the sequence identity
with the preferred model (1JLT, again) is about 50%.

Overall, if we include near successes, exclude very weak
complexes, and take into account mutually similar,
redundant structures, this first, basic, discrimination test
has just 20 real failures.

Recognition of native interfaces: comparing near-native 
and distinctly non-native models
In a practical modelling situation, one does not know the
experimental structure; rather, one must distinguish
between models that are close to the real structure ("near-
native" models) and others that deviate significantly from
the true structure ("non-native" models). It is therefore of
interest to examine the variation of the association energy
as a function of the deviation Irmsd from the native struc-
ture. Ideally, a smooth increase should be observed. To
illustrate the possibilities and limitations of the present
modelling procedure, we focus on two ISGs in particular:
c.2.1 and a.133.1. These groups are fairly representative of
the full set of discrimination tests (Table 2). Fig. 2 shows
the complete set of threading events for each group (650
and 210 events, respectively), relating each Sthread score to
the structural similarity (Irmsd) between the Xray struc-
ture and the corresponding model. The dataset includes
both "non-native" and "near-native" tests; a "near-native"
model occurs when the native sequence is threaded onto
another complex that happens to be structurally homolo-
gous. The energy "surfaces" thus constructed appear com-
plex, with no simple relation between Sthread and Irmsd.
We do not observe a smooth increase with Irmsd. A more
detailed analysis shows, however, that the model does dis-
play a distinct, albeit imperfect correlation between
energy and structure.

Indeed, Fig. 3 gives a more detailed view of the c.2.1 data.
Several distinct binding modes were identified above
(Table 1). Using a somewhat finer clustering here, we dis-
tinguish 11 modes (instead of nine in Table 1). These are
shown in the upper part of Fig. 3. Complexes are colored
according to their binding mode; eleven colors can be
seen. For simplicity, only 18 complexes are shown in the
Figure (of the 26 in this group; some very similar struc-
tures are left out of the Figure). In the lower part of Fig. 3,
each panel corresponds to one Xray complex and one
binding mode; the Xray complex is compared to all possi-
ble threading models. Only eight of the eleven binding
modes are shown. With this detailed representation, the
few, very mild discrimination failures within this group
can be seen individually (points with a negative Sthread;
e.g., there are two failures in the 1EK6 and 1KEW panels,
which correspond to the yellow and green binding
modes). Except for a few points, Sthread does tend to
increase with Irmsd. This indicates a correlated energy sur-
face. In the 1ID1 panel, for example, Sthread increases rap-
idly then remains roughly constant for 40 ≤ Irmsd < 60 Å.
In the 1JAX and 1EK6 panels, the situation is similar,
except for one brown point. In all panels, any points with
low energies but large Irmsds are associated with one or
all of the red, blue, and especially brown binding modes.
These binding modes are mutually similar; see tree in
upper panel of Fig. 3. Clearly, this group of binding
modes represents a strong competitor for several other,
experimental modes. It may be that this group represents
a genuine, alternate mode that could be observed under
the right experimental conditions; it may also be that
some of the other, experimental modes are artefacts of the
crystal environment. Even if the low energy assigned to
this group of modes is a pure artefact of the model, we
note that our procedure has allowed most other modes to
be correctly positioned in the high energy region. The few,
low energy, competing structures (red, brown, and blue)
all correspond to a single, competing binding mode that
could possibly be discriminated by further, more sophis-
ticated energy calculations such as all-atom models.

Fig. 4 shows the a.133.1 data. The situation is somewhat
less favorable, since there are several discrimination fail-
ures in this group. The largest failures are circled in each
panel; they all correspond to sequences threaded onto the
same model structures: 1JLT, 1AOK, and 1PP2. Thus, all
the discrimination failures are produced by purple or grey
points. 1PP2 also has a negative Sthread when it is threaded
onto the 1JLT model. Excluding these points, the variation
of Sthread is rather smooth in the 1FX9, 1PP2, and 1JLT
panels. In the other panels, the variation of Sthread is less
regular, although large Irmsd values do correspond to
large or intermediate energies. All these other panels cor-
respond to weak complexes (see the association energies
and buried surface areas in each panel's header). Thus,
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Sthread vs. Irmsd relative to the Xray structureFigure 2
Sthread vs. Irmsd relative to the Xray structure. Representation of all the modelled complexes within the c.2.1 (top) and 
a.133.1 (bottom) groups.
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c.2.1 group: representation of binding modesFigure 3
c.2.1 group: representation of binding modes. Above, tree representation of binding modes. Nodes are labelled with the 
mean Irmsd (Å) between leaves. Below, Sthread vs. Irmsd relative to the Xray structure. Each panel corresponds to an Xray com-
plex and is labelled with its PDB code, number of residue-residue contacts, Eint (kcal/mol), and buried surface area (Å2). Each 
point corresponds to the threading onto a particular template; the color identifies the template; the point representing the 
Xray structure (zero Sthread zero Irmsd) is not shown.
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a.133.1 group: representation of binding modesFigure 4
a.133.1 group: representation of binding modes. Same view as in Fig. 3. The largest discrimination failures in each panel 
are circled. They all correspond to sequences threaded onto the same model structures: 1JLT, 1AOK, and 1PP2, which have 
especially large interfaces (see text and panel headers).
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some or all of the corresponding, experimental binding
modes could be artefacts of the crystal environment; this
would explain the observed violations of the energy/struc-
ture correlation. For this ISG, we compared the sequence
identity at the interface to the overall sequence identity for
several pairs of complexes that share the same interaction
mode. In 7 cases out of 7, the overall sequence identity
was higher than the interface sequence identity.

Overall, the procedure is much more successful than sug-
gested by the simplistic analysis shown in Fig. 2. The
energy/structure correlation is mainly violated by a few
models, corresponding to one or a small group of very
similar binding modes. In both ISGs analyzed, some or all
of these violations may be due to experimental binding
modes induced artificially by the crystal environment.
Even if the violations are pure artefacts of our modelling
procedure, their number is small enough so that a more
sophisticated modelling procedure could be used for their
further analysis. Indeed, a larger number of high-Irmsd
models are clearly eliminated by our energy values. A clus-
tering of binding modes and their detailed energy analysis
was needed to reveal this more promising picture. Such an
analysis had not been performed in the past.

Discussion and conclusion
For individual proteins, structure-based homology mod-
elling is by far the most important prediction method.
Most of the difficulties that exist for individual protein
modelling can also affect complex modelling. However,
complexes include an additional structural level, namely
quaternary structure. Therefore additional difficulties
occur, especially for large, multi-domain, multi-protein
complexes. Here, we limited ourselves to the simplest
class of complexes: binary complexes between single
domain proteins. These already present several specific
difficulties, at least four of which were illustrated in this
work. First, in the PDB, there are far fewer structures of
complexes than of individual proteins. Second, it is often
hard to distinguish biologically-meaningful complexes
from those induced by the crystal environment. Third,
two proteins with similar structures may have very differ-
ent modes of interaction with a third protein, simply
because a few surface residues differ. Fourth, domains
within the same protein may shift with respect to each
other in different environments.

To overcome these difficulties, we took two main steps.
We limited ourselves to binary complexes between single-
domain proteins, and we identified complexes that have a
weak association free energy (Eint >-10 kcal/mol). When
comparing two complexes, we also paid care to the defini-
tion of equivalent residues (see Methods), so that a simple
and intuitive measure of structural distances could be

used (the Irmsd), and to the treatment of gaps in the
threading procedure.

We obtained two main results. First, complexes that share
over 35% sequence identity usually share similar struc-
tures and interaction modes. The same qualitative result
was obtained in earlier studies [24]. Here, however, our
dataset is simpler, our analysis somewhat more detailed,
and the overall result is more clearcut. Note that the
reverse situation has also been observed: complexes with
weak sequence homology can occasionally have similar
binding modes. The literature provides just a few known
cases, such as cytochome c' and its homolog, the Erv2p
thiol oxydase [41]. The precise value of the sequence iden-
tity threshold obtained here, 35%, obviously depends on
the details of our data set and our alignment method.
Exceptions to the similarity principle were either weakly-
stable complexes or a few unusual cases (such as domain
swapped structures). Below 35% identity it is common to
find different interaction modes for homologous com-
plexes.

Our second main result is the imperfect but still respecta-
ble success rate obtained when comparing near-native
and non-native models (Figs. 3 and 4). The energy/struc-
ture correlation is mainly violated by a few models, corre-
sponding to one or a small group of similar binding
modes. In both ISGs analyzed above, some of the failures
correspond to weakly-stable complexes. These failures
and possibly others may be due to experimental binding
modes induced artificially by the crystal environment. In
general, we expect poor discrimination for highly-tran-
sient and weakly-stable complexes, which were shown
above to depart from the simple similarity principle. We
expect that the small number of other failures could be
resolved using a more sophisticated, all-atom energy func-
tion. Such an energy function will require a detailed
model for the protein sidechains (in contrast to DFIREβ,
which only uses the Cβ); this could introduce additional
errors. Note that the performance of DFIREβ is already
comparable to several all-atom energy functions [42,43].

Overall, our results suggest that the simple modelling pro-
cedure applied here could help identify and characterize,
at least in a preliminary way, protein-protein complexes.
The next step is to apply it on a genomic scale [17].

Methods
We describe first the procedure used for the structural and
sequence comparisons. Next, we describe the energy func-
tion employed. Finally, we describe the structure mode-
ling procedure, which involves a simple threading
technique.
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Measuring similarities between pairs of protein domains
The dimers within each ISG were compared in terms of
their structures and sequences. To compare two com-
plexes, Ai:Bi and Aj:Bj, we first superimpose the structures
of Ai onto Aj and Bi onto Bj. Both pairs were aligned using
the MATRAS web server [44], which provides a local struc-
tural alignment. MATRAS uses a heuristic method to solve
the problem of the structural alignment of two proteins. It
employs different similarity scores which are all con-
structed by applying a Markovian Transition Model to
observed data frequencies [45]. A first, rough alignment of
the two proteins is obtained by superimposing pairs of
secondary structures. This initial alignment is refined by
performing two consecutive dynamic programming align-
ments. Each one uses a specific score and an affine gap
penalty. The first score is an "environment score", charac-
terizing the local chain structure combined with a binary
description of the solvent accessibility [45]. The second
dynamic programming alignment uses a "distance score"
between pairs of residues in each protein. This score func-
tion was parameterized based on the observed pairwise
distances between Cβ's in proteins.

The final alignments usually included only a subset of one
or both proteins (8054 out of 9630 pairs of dimers, corre-
sponding to 11055 out of 19260 alignments). The regions
flanking the aligned segments were sometimes quite large;
for 6.9% of the alignments, they represented over 20% of
the sequence length (Fig. 5). In these cases, we supple-
mented the MATRAS alignment with a sequence-based
alignment of the regions not aligned by MATRAS. Indeed,
we want to characterize the relation between sequence/
structure similarity for single-domain, binary complexes.
While it is reasonable to limit ourselves to regions with a
significant sequence homology, there is no reason to
exclude regions where the structures are less similar (i.e.,
they are not aligned by MATRAS). If we excluded such
regions, we would assume, not prove a correlation
between sequence and structure similarity. It is more
appropriate to take into account flanking regions whose
sequences can be aligned, even though their structures
were not aligned by MATRAS.

Therefore, we aligned separately the sequences N-terminal
and C-terminal with respect to the segment aligned by

MATRAS contributions to the alignmentsFigure 5
MATRAS contributions to the alignments. Length of the MATRAS structural alignment, as a fraction of the total align-
ment length (not counting gaps). For 9407 out of 19260 alignments, the structural alignment covered 100% of the sequence; 
these cases are not represented.
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MATRAS. We used the EMBOSS implementation [46] of
the Needleman and Wunsch algorithm [47], with 10 and
0.5 as penalties for the opening and the extension of gaps.
This way, we could include additional N- or C-terminal
regions in the final alignment. The two alignments (with
and without the flanking regions) define two sets of
equivalent residues in Ai and Aj (respectively, Bi and Bj).

The equivalent residue sets were then used to compute
structural deviations, as follows. The largest of the two
domains Ai and Bi was chosen, say Ai. It was superimposed
onto Aj using the Cα coordinates of equivalent residues.
Then, an rms coordinate deviation was computed for Bi
and Bj. This deviation measures the displacement of the
smaller domain, Bj, at the surface of the larger, Aj, when
going from the Ai:Bi complex to Aj:Bj. The rms deviation is
computed for all equivalent residues, defined by the larger
alignment (structural alignment, plus sequence alignment
of flanking residues). We refer to this deviation measure as
an "interaction rmsd", or Irmsd [48]. Occasionally, we
also employ a deviation computed for interface residues
only.

Measuring the stabilities of the complexes
An energy function is used to compare the different com-
plexes. We rely on pairwise statistical potentials derived in
previous studies [40,43]. The stability of a given complex
can be characterized by the total energy of interaction
between the partners. Alternate structures will be con-
structed for each dimer using as templates other, homolo-
gous dimers from the same ISG. Therefore, a method is
also needed to thread the sequence of a given complex
onto the structure of another, homologous complex.

Statistical energy function for protein-protein interactions
For a complex A:B, an energy score Eint is defined:

Here, C is an atomic or residue contact map describing the
A:B interface; l, m are amino acid positions in A and B,
respectively; Sl, Sm are the corresponding amino acid
types; and U is a table of interaction parameters. This
score is computed using either of two knowledge-based
energy functions. The first is a residue-based energy func-
tion described earlier [40]. It uses a residue-residue con-
tact map. If two nonhydrogen atoms from two residues
belonging to the two proteins are less than 4.5 Å apart, the
residues are said to be in contact. The interaction parame-
ters form a 6 × 6 table, corresponding to six groups of
amino acids: {LVIMCAGSTPFYW}, {ASTP}, {FYW},
{EDNQ}, {KRH}, and {G}. This very simple energy func-
tion performed well in several applications [40]. The sec-
ond energy function is atom-based. It is taken from the

DFIRE potentials developed by Zhou and coworkers
[42,43]; the protein structures are reduced to their back-
bone and Cβ atoms. We refer to it as the DFIREβ potential.

Threading a sequence onto a structure
Each experimental, or "native" complex is compared to a
series of modelled complexes. Modelling is done by
threading the sequence of the native complex, Ai:Bi, onto
the structures of homologous complexes Aj:Bj. Hence, the
target dimer Ai:Bi and the template structure Aj:Bj are
always part of the same ISG. An interaction energy is com-
puted for each modelled complex. Ideally, templates that
are structurally close to the native complex should lead to
models with strong interaction energies. Templates that
are structurally more distant should lead to poorer ener-
gies.

Mapping the Ai:Bi sequence onto the Aj:Bj template struc-
ture is a classic threading problem [49-52]. Here, thread-
ing is performed very simply, by changing each amino
acid type in Aj:Bj to the type found at the equivalent posi-
tion in Ai:Bi. Equivalency of positions is defined by the
alignment described above. Gaps are handled as follows.
When a residue R of the template Aj:Bj is aligned with a
gap, we add a distance-dependent energy penalty P to its
other interactions. By trial and error, we found that the
following form worked well:

where the sum is over the atoms k of the "gapped" residue
R and all the atoms l of the target protein. A is a real
number, empirically set to 10 kcal/mol and α is a dimen-
sionless DFIRE scaling factor, α = 0.0157 [43]. With this
form, the penalty P is roughly equivalent to applying a 4.6
kcal/mol cost for removing a residue from the rim of a
protein-protein interface [53]. No penalty is applied for
the opening or extension of gaps at the beginning or the
end of either polypeptide chain (Aj or Bj). Indeed, the def-
initions of domain boundaries within SCOP are some-
what imprecise, so that differences at the beginning or the
end of a domain should not be penalized.

For each threading of a pair of sequences Ai:Bi onto a tem-
plate complex Aj:Bj, a score Sthread is computed, based on
the protein-protein interaction energy:

Sthread = Eint(si, Cj) - Eint(si, Ci). (3)

Here, Eint(si, Cj) is the interaction energy of the Ai:Bi
sequence, si, in its threaded conformation, Cj (i.e.,
threaded onto the Aj:Bj structure). Eint(si, Ci) is the energy
of the si sequence in its own, native conformation, Ci. If
the sequence si is threaded onto its own, native structure,
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the score is zero. If the sequence si is poorly suited to the
threaded conformation Cj, the score is positive. Occasion-
ally, one can obtain a negative score, in which case the
threaded conformation may represent a superior mode of
interaction for the Ai, Bi proteins. This might occur if the
"native" Ai:Bi structure is, in fact, an artefact of the crystal
environment.

Basic criteria detecting crystal interfaces
By inspecting all the complexes with PQS [31] and apply-
ing a threshold of ten for the minimal number of contacts
in a complex (see above), we eliminated many spurious
interactions from our dataset. However, large and physi-
cally-plausible interfaces that are, in fact, crystal contacts
remain in the dataset. This is actually useful, since they
provide alternate models that can be compared to even
larger, biological interfaces. Following previous studies
[29,30], three main indicators are used above to differen-
tiate crystal and biological interfaces: the DFIREβ interac-
tion energy Eint, the number of interfacial contacts, and
the total surface buried upon dimerization.
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