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Human microbiome research is moving from characterization and association studies

to translational applications in medical research, clinical diagnostics, and others.

One of these applications is the prediction of human traits, where machine learning

(ML) methods are often employed, but face practical challenges. Class imbalance

in available microbiome data is one of the major problems, which, if unaccounted

for, leads to spurious prediction accuracies and limits the classifier’s generalization.

Here, we investigated the predictability of smoking habits from class-imbalanced saliva

microbiome data by combining data augmentation techniques to account for class

imbalance with ML methods for prediction. We collected publicly available saliva 16S

rRNA gene sequencing data and smoking habit metadata demonstrating a serious

class imbalance problem, i.e., 175 current vs. 1,070 non-current smokers. Three

data augmentation techniques (synthetic minority over-sampling technique, adaptive

synthetic, and tree-based associative data augmentation) were applied together with

seven ML methods: logistic regression, k-nearest neighbors, support vector machine

with linear and radial kernels, decision trees, random forest, and extreme gradient

boosting. K-fold nested cross-validation was used with the different augmented data

types and baseline non-augmented data to validate the prediction outcome. Combining

data augmentation with ML generally outperformed baseline methods in our dataset. The

final prediction model combined tree-based associative data augmentation and support

vector machine with linear kernel, and achieved a classification performance expressed

as Matthews correlation coefficient of 0.36 and AUC of 0.81. Our method successfully

addresses the problem of class imbalance in microbiome data for reliable prediction of

smoking habits.

Keywords: human microbiome, trait prediction, smoking status, prediction modeling, class imbalance, data

augmentation, machine learning, saliva microbiome

INTRODUCTION

In recent years, human microbiome research has elucidated the importance of microbes in the
host’s wellbeing and their interplay with different phenotypes (Cho and Blaser, 2012; Gilbert et al.,
2018). Human microbiome research is currently moving from characterization and association
studies toward translational applications. These include diagnosis of metabolic diseases, such as
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type 2 diabetes (Duvallet et al., 2017; He et al., 2018; Reitmeier
et al., 2020), chronic inflammation disorders (Duvallet et al.,
2017; Zhou et al., 2018; Su et al., 2020), and cancer (Duvallet
et al., 2017; Poore et al., 2020; Su et al., 2020; Zheng et al.,
2020) among others, as well as the prediction of the likely
outcomes in personalized interventions, such as therapeutic
response (Ananthakrishnan et al., 2017; Zhou et al., 2018) and
nutrition (Zeevi et al., 2015; Asnicar et al., 2021). In more
specialized applications, such as forensics, novel uses of the
human microbiome have been reported to help in reconstructing
the crime scene (Díez López et al., 2019, 2020), estimating
the post-mortem interval of corpses (PMI) (Belk et al., 2018),
or identifying the potential perpetrator(s) of crime (Woerner
et al., 2019; Yang et al., 2019a). This current trend is possible
due to advances in high-throughput sequencing technologies
and bioinformatics analysis methods, together with the large
amount of microbiome data that has become available from
public repositories. Often, machine learning (ML) methods
are preferred for data analysis, with the random forest model
standing out as the most often used method so far.

Despite the great promises of ML methods in microbiome
research and their application in trait prediction (Reitmeier et al.,
2020; Su et al., 2020; Zheng et al., 2020), they also face practical
challenges. Heterogeneity in methods, such as nucleic acid
isolation or target region of themarker gene, is often encountered
in cumulative microbiome datasets and is an obstacle for cross-
study applications due to introduced study-specific technical
variation (Debelius et al., 2016). Avoiding the pooling of data
from different studies can bypass the study-specific effect issue,
though greatly reduces the statistical power with negative effects
on the reliability of the outcome. Additionally, microbiome data
commonly suffer from imbalanced sample distribution (Khan
and Kelly, 2020; Poore et al., 2020; Anyaso-Samuel et al., 2021).
Particularly in (binary) classification applications, it is commonly
the case that one class is overrepresented (majority class)
while the other is underrepresented (minority class). This class
imbalance leads to spurious high classification accuracy favoring
the majority class, while research often focuses on the minority
class, and limits the classifier’s generalization (Japkowicz and
Stephen, 2002; Abd Elrahman andAbraham, 2013; Ali et al., 2013;
Thabtah et al., 2020). Some microbiome studies have reported
problems in their classifiers due to the class imbalance issue in
their datasets. These problems include the different classification
performances over different datasets (Wang and Liu, 2020),
the inability to perform accurate classifications (Bokulich et al.,
2022), or even the classification of every sample to the same class
(LaPierre et al., 2019). Therefore, the class imbalance should be
considered in the data analysis approach. However, collecting
data from more samples is often not viable, and therefore many
public datasets come with serious class imbalance problems.
Thus, researchers must explore novel methods for solving the
class imbalance at the data and/or algorithm level (Japkowicz
and Stephen, 2002; Abd Elrahman and Abraham, 2013; Ali et al.,
2013).

At the data level, synthetic sampling methods have been
suggested for microbiome research (Knights et al., 2011), though
studies applying them are scarce. With these methods, to balance

the classes, new samples are synthesized in silico based on
existing minority class samples and added to the training set,
an approach referred to as data augmentation. For example, the
synthetic minority over-sampling technique (SMOTE) (Chawla
et al., 2002) is one of the most widely used methods to deal
with the class imbalance problem in real-life applications, and
has been employed in some microbiome studies (Brooks et al.,
2018;Wingfield et al., 2018; Chen et al., 2020; Gomez-Alvarez and
Revetta, 2020; Mehta et al., 2020). An alternative is the adaptive
synthetic sampling approach for imbalanced learning (ADASYN)
(He et al., 2008). More recently, the tree-based associative data
augmentation (TADA) method (Sayyari et al., 2019) has been
proposed as a microbiome-specific data augmentation method,
since it takes into account the phylogenetic relationship between
the microbial taxa, but has not been widely applied by the
microbiome community as of yet.

In this study, we investigated the predictability of individuals’
smoking habits from saliva using publicly available microbiome
data that unavoidably are class-imbalanced. Smoking is prevalent
in the general population; therefore, smoking prediction from
human biological materials, such as saliva, is useful in
epidemiology and public health research, can be relevant for
medical interventions, and may be of interest to other applied
fields, such as forensics. Typically, in epidemiology, public
health, and medical studies, smoking habit phenotypes are
collected via self-reported questionnaires, which, however, are
known to be unreliable (Rebagliato, 2002). Alternatively, they
are collected via laboratory tests, such as cotinine measurements,
a metabolite of nicotine, in biological samples like the serum,
saliva, or urine. However, cotinine levels are not always
available, or collecting them is not always affordable in clinical
settings, and smoking classification heavily depends on a suitable
threshold. More recently, approaches based on host epigenetics
have been introduced via the detection of smoking-associated
DNA methylation signatures, but issues arise regarding tissue
specificity of epigenetic models, as well as model accuracy and
suitable laboratory test development, given the large number of
epigenetic biomarkers required for accurate predictions (Maas
et al., 2019). Hence, microbiome-based prediction of smoking
habits from saliva may provide a suitable alternative solution.

Previous studies have established the association between
some saliva microbes and the host’s tobacco smoking habit (Kato
et al., 2016; Takeshita et al., 2016; Wu et al., 2016; Rodriguez-
Rabassa et al., 2018; Beghini et al., 2019; Sato et al., 2020). More
specifically, these association studies found that the abundance of
some bacteria, such as those from the Proteobacteria phylum, is
decreased in the saliva of smokers, while that of other bacteria,
such as from the Actinobacteria phylum, is increased. However,
at the lower taxonomic levels, there are some discrepancies
between studies and study-specific associations. Notably, the
largest available studies suffer from class imbalance with a ratio
of about 1:5 between the minority class of current smokers and
the majority class of non-smokers (Takeshita et al., 2016; Wu
et al., 2016). Such class imbalance in the available microbiome
data causes a typical and serious problem that needs to be solved
by developing and applying suitable data augmentation methods
to avoid a negative impact on the final prediction outcome.

Frontiers in Microbiology | www.frontiersin.org 2 July 2022 | Volume 13 | Article 886201

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Díez López et al. Microbiome-Based Prediction of Smoking Habits

In the present study, we deal with class-imbalanced saliva
microbiome data for the purpose of predicting individuals’
smoking habits. Our strategy consists of (i) optimization and
validation of different data augmentation techniques and ML
methods using nested cross-validation, (ii) identifying the best-
performing approach for predicting smoking habits by taking
class imbalance in the underlying microbiome data into account,
and (iii) applying the best-performing approach for prediction
modeling of human smoking habits from saliva microbiome data
despite the underlying class-imbalanced data. The data and the
code used are made publicly available.

METHODS

Datasets
Publicly available 16S rRNA gene amplicon sequencing data and
associated metadata from two different studies were obtained
from the European Bioinformatics Institute (EMBL-EBI). The
first study (Wu et al., 2016) (referred to as dataset S1 in
this study) included two cohorts: the American Cancer Society
(ACS) Cancer Prevention Study II (CPS-II) Nutrition cohort
(N = 543) (Wu et al., 2016) and the National Cancer Institute
(NCI) Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer
Screening Trial cohort (N = 661) (Wu et al., 2016). The
second study (Beghini et al., 2019) (referred to as dataset S2
in this study) included a single cohort from the New York
City Health and Nutrition Examination Survey (NYC HANES)
(N = 297) (Beghini et al., 2019). Dataset S1 comprised 454
pyrosequencing data, whereas dataset S2 comprised Illumina
MiSeq data. We discarded samples based on the following
criteria: (i) samples lacking metadata information for age,
sex, and/or ethnicity, (ii) samples from donors <15 years
old based on microbial community differences between youth
and adults (Burcham et al., 2020), (iii) duplicate samples
from dataset S1 to avoid data redundancy, and (iv) samples
from non-smokers with second-hand exposure and “alternative”
smokers from the dataset S2. The selected characteristics of
the two analyzed datasets are described in Table 1. The setup
of the experimental studies is described in further detail in
Supplementary Table 1.

Processing of 16S rRNA Gene Amplicon
Sequencing Data
The data from the two selected studies were processed separately.
Primer sequences were obtained from the original studies and
were removed from the raw sequencing reads using cutadapt
(v.1.15) (Martin, 2011) by setting the minimum length to >100
bp. The resulting FASTQ files were quality-filtered and de-
noised using DADA2 (v.1.12.1) (Callahan et al., 2016). We
used recommended parameters that we only modified when
needed for our own data. Briefly, in both studies, parameters
maxNN and maxEE were set to 0 to avoid unambiguous
nucleotides and “expected errors” in the sequencing reads,
respectively. Additionally, in dataset S1 (single-end), parameter
maxLen was set to 500, and in dataset S2 (paired-end),
parameter truncLen was set to 200–150 based on the read quality
profiles, making sure to maintain overlap between forward and

TABLE 1 | Characteristics of the two saliva microbiome datasets used in this

study.

Dataset S1

(N = 1,088)

Dataset S2

(N = 157)

Smoking status, N (%)

Never smoker 473 (43.5) 39 (24.8)

Former smoker 519 (47.7) 39 (24.8)

Current smoker 96 (8.8) 79 (50.4)

Sex, N (%)

Female 429 (39.4) 88 (56.1)

Male 659 (60.6) 69 (43.9)

Age group, N (%)

20–29 – 20 (12.7)

30–39 – 31 (19.8)

40–49 – 40 (25.5)

50–59 147 (13.5) 29 (18.5)

60–69 505 (46.4) 21 (13.4)

70–79 377 (34.7) 9 (5.7)

80–89 59 (5.4) 6 (3.8)

≥90 – 1 (0.6)

Ethnicity, N (%)

European 1,028 (94.5) 59 (37.6)

Non-European 60 (5.5) 98 (62.4)

reverse reads to merge them later. After sample inference of
true sequence variants, an amplicon sequence variants (ASV)
table was constructed for each study, and chimeric sequences
were removed using the command removeBimeraDenovo() with
default parameters. Subsequently, the naïve Bayesian classifier
method was employed for taxonomy assignation using the
expanded HumanOral Microbiome Database (eHOMD) (v.15.2)
(Escapa et al., 2018) as reference. At this point, only high-
coverage samples (>1,000 reads) were kept for downstream
analysis, and species with mean relative abundance < 1E−04
across samples were discarded. Taxa counts were normalized
using total-sum scaling (TSS) for relative abundance (Paulson
et al., 2013) (dataset S1 vs. dataset S2; PERMANOVA Bray-
Curtis R2 = 0.20, q < 0.05; PERMANOVA Jaccard R2 = 0.13,
q < 0.05). Moreover, microbiome datasets are normally sparse
and characterized by a zero-inflated distribution, where most
taxa are not shared among the majority of the samples. This is
magnified in cross-study applications with study-specific taxa,
which can limit the generalizability of the applications. Based
on this finding, we merged the two ASV tables from the two
analyzed studies and filtered out study-specific taxa, keeping
124 species from 30 families that were common between the
two datasets for downstream analyses (Supplementary Table 2)
(dataset S1 vs. dataset S2; PERMANOVA Bray-Curtis R2

= 0.14, q < 0.05; PERMANOVA Jaccard R2 = 0.09, q
< 0.05).

Statistical Analyses
The overall differences in the saliva microbial communities
between the smoking classes were calculated in QIIME
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2 (v.2019.10) (Bolyen et al., 2019): current vs. never vs.
former, and current vs. non-current (combined never and
former). For this, the weighted UniFrac distance matrix was
analyzed by analysis of similarities (ANOSIM) and permutation
multivariate analysis of variance (PERMANOVA) where q
values (q < 0.05 for significance) were obtained with default
999 permutations.

Data Augmentation Techniques
For the prediction of an individual’s current smoking habit
(smoker vs. non-smoker), we aimed to employ a binary
machine learning (ML) classifier. For that, data imbalance
was a marked issue in our dataset with a ratio of about
1:6 between the minority class (N = 175 smokers) and the
majority class (N = 1,070 non-smokers) (Table 1). The problem
stems from the ML algorithms that assume an equal number
of samples for each class, which would lead to spurious
high classification accuracy, favoring the majority class and
limiting the classifier’s generalization. Therefore, we applied
different data augmentation techniques to overcome the data
imbalance issue at the data level in our dataset. We used two
techniques commonly employed in different fields to handle
data imbalance, namely, the synthetic minority over-sampling
technique (SMOTE) (Chawla et al., 2002) and the adaptive
synthetic sampling approach (ADASYN) (He et al., 2008), as
well as a recently introduced technique specific for microbiome
data named tree-based associative data augmentation (TADA)
(Sayyari et al., 2019).

The general approaches to deal with data imbalance are over-
sampling (increase the minority class), under-sampling (decrease
the majority class), or a combination of the two. Particularly,
SMOTE and ADASYN techniques differ in the generation of
synthetic samples in the minority class (over-sampling). For
that, SMOTE over-sampling pinpoints the samples belonging
to the minority class in a Euclidean space, and a random
sample is first chosen for which k of its nearest neighbors are
found. A line is drawn between the original sample and one
randomly chosen neighbor, where a new synthetic sample is
generated at a random point along the line (linear combination
of samples). The process is repeated generating the same number
of synthetic samples for each original minority sample until
a specific ratio between the minority and majority classes is
reached or to equal the majority class. On the other hand,
ADASYN adds random small values to the neighbor samples;
hence, they are not linearly correlated to the original sample.
By this, ADASYN considers a density distribution between
the original sample and its neighborhood, which acts as the
criterion to set the number of synthetic samples to be generated
from each original sample. On another point, with the under-
sampling approach, random majority class samples are dropped
out until a specific ratio between the classes is reached. Both
SMOTE and ADASYN techniques were implemented using
the imbalanced-learn Python toolbox (v.0.6.1) (Lemaître et al.,
2017) with default parameters. We employed a combination
of over- and under-sampling methods, indicated as SMOTE-
1 and ADASYN-1 in this study. In order to set the final
ratio between the minority and majority classes, we used the

following equation:

t = |Cmin − Cmax| , over − sampling =
|t − Cmin|

Cmax
,

under − sampling =
Cmax − t

Cmin

where Cmin is the number of the minority class samples,
Cmax is the number of the majority class samples, and
t is the absolute value of the difference between Cmin

and Cmax.
We also used the over-sampling approach alone, indicated

as SMOTE-2 and ADASYN-2 in this study, by which the
number of the samples in the minority class was equaled to the
majority class.

The microbiome-specific TADA technique generates minority
class synthetic samples based on a statistical generative model
that takes into account the phylogenetic relationships between
microbial taxa. We implemented TADA with default parameters,
which equals the number of samples in the minority class with
the majority class. For the rooted phylogenetic tree required as
input, we used the merged ASV table of the two studies to obtain
a single consensus sequence for all those sequences assigned
to the same taxa at the species level. For that, we used the
ConsensusSequence function in DECIPHER (v.2.12.0) (Wright,
2016) and subsequently performed multiple sequence alignment
of the consensus sequences using MAFFT with auto parameter
(v.7.310) (Katoh et al., 2002). A rooted phylogenetic tree was
obtained using FastTree (v.2.1.11) (Price et al., 2010) with a
generalized time-reversible (GTR) model.

Machine Learning Methods
We evaluated seven different ML methods for binary
classification (0: smoker, 1: non-smoker) included in the
scikit-learn (v.0.23.2) Python package (Pedregosa et al., 2011):
logistic regression (LR), k-nearest neighbors (KNN), support
vector machine with linear (SVML) and radial (SVMR) kernels,
decision trees (DT), random forest (RF), and extreme gradient
boosting (XGBoost). LR is a parametric ML model that assumes
a linear dependency between the input features (taxa) and
the categorical outcome. The output of the logistic regression
linear function is a probability x between 0 and 1, where if x
< 0.5, the categorical outcome is 0 (smoker), otherwise it is 1
(non-smoker). KNN is a non-parametric model and as such
supports non-linear solutions. It finds the Euclidean distances
between a query sample and a k number of its closest samples
(nearest neighbors) in the feature space and identifies their
most frequent class label. SVM models take the data points and
find a separating hyperplane between the two classes. SVML
is a linear method that looks for linear dependencies among
the input features to separate classes. SVMR is a non-linear
method that adds an extra dimension to the data (kernel), so they
become linearly separable and then project back the decision
boundary to the original dimension using the dot product of two
vectors in the feature space known as the kernel function. DT
is a tree-based ML algorithm that mimics a decision diagram.
Each input feature constitutes a node in the tree, where based
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upon a certain condition or rule splits into sub-nodes and
extends until the leaf node that represents the classification
decision (0 for smoker or 1 for non-smoker). Finally, RF and
XGBoost are tree-based ensemble models that combine several
models to improve their outcome predictions. RF generates
a large number of decision trees on different subsamples and
combines their outputs using averages at the end of the learning
process. On the contrary, XGBoost combines the decision trees
during the learning process for which it uses a gradient descent
algorithm. By this, the mistakes done in a previous model are
learned and improved in the subsequent model until no further
improvement can be achieved. Hyperparameter optimization
for all the ML models was performed using nested k-fold
cross-validation (Figure 1E).

Nested K-Fold Cross-Validation
Nested cross-validation (nCV) is a resampling procedure that
enables both model optimization and evaluation (Krstajic et al.,
2014). The difference between non-nested and nested CV
approaches is that the former use the same cross-validation set
for hyperparameter optimization and model evaluation, which
biases the model to the dataset and leads to optimistically biased
classifier’s performance; in other words, non-nested approach
leads to over-fitting in model selection. The nCV approach
overcomes this by evaluating the ML algorithm and the model
hyperparameters separately in multiple randomized partitions
of the data (Cawley and Talbot, 2010), though it requires more
computational time. In nCV, apart from splitting the original
training set into k-folds of training and test sets (outer folds)
(Figure 1D), each k training fold is at the same time split into
n-folds of training and validation sets (inner folds) for model
hyperparameter tuning (Figure 1E). The optimized model is
then validated in the corresponding k test fold (Figure 1F).
We employed a 5 × 2 (k × n) nCV where each of the first
splits is named outer-fold (k) and each of the inside splits
for hyperparameter tuning as inner-fold (n). Hyperparameter
optimization for the seven ML models was performed using the
RandomizedSearchCV() function in scikit-learn.

Validation of Data Types With Machine
Learning Methods
Since most ML algorithms operate trying to maximize the
classification accuracy, spurious high classification occurs in
imbalanced datasets by correctly classifying all or almost all the
samples from themajority class at the cost of misclassifying many
samples from the minority class. Hence, performance metrics,
such as accuracy, or F1 score alone can lead to misleading results
in imbalanced datasets (Chicco and Jurman, 2020). In contrast,
the Matthews correlation coefficient (MCC) offers a balanced
metric by considering the four confusion matrix categories: true
positives (TP), true negatives (TN), false positives (FP), and false
negatives (FN), according to the following equation:

MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN)× (TN + FP)× (TN + FN)

For a high MCC score, the classifier has to correctly predict a
high percentage of the samples in both the majority and the
minority classes, independent of their ratios in the overall dataset,
and hence is independent of data imbalance. MCC gives a score
ranging from [−1 to +1], where 1 means perfect prediction, 0
random prediction, and −1 perfect inverse prediction. Based on
this finding, in order to compare all the possible combinations
of input data types, including original non-augmented data
(Figure 1, d= 6) and the ML method (Figure 1,m= 7), we used
the MCC metric. However, we also reported the AUC metric to
show potential misleading results in those models with baseline
non-augmented data (highly imbalanced). Comparisons among
the different data types with a given ML method were performed
in the R environment (v.3.6.1) using the Kruskal–Wallis and
Wilcoxon tests. Significant p-values were determined with a cut-
off value of 0.05 following Benjamini-Hochberg (BH) correction.

Approach Setup
The original dataset (N = 175 smokers and N = 1,070 non-
smokers) was split into a training set (80%) and a holdout
test set (20%) maintaining the sample ratio between the classes
(Figures 1A–C). Data augmentation techniques were applied
to the training split: ADASYN-1 (over- and under-sampling),
ADASYN-2 (over-sampling alone), SMOTE-1 (over- and under-
sampling), SMOTE-2 (over-sampling alone), and TADA. We
evaluated a total of six training data types (d = 6), including
the original non-augmented and the five augmented data types
(Figure 1B). Considering each data type separately, we optimized
and evaluated seven ML methods (LR, KNN, SVML, SVMR, DT,
RF, and XGBoost) (m = 7) using an nCV approach as explained
before (Figures 1D–F). This entire process was repeated 10 times
(i = 10) (Figure 1H), aiming to avoid introduced variation by
the original data partitions. The performance metrics (MCC and
AUC) resulted from the validation of each optimized model in
the five outer test folds (k) over 10 times (i = 10) (total of 50
(5 ∗ 10) resulting values for each metric) (Figure 1G). The best-
performing data type with the ML method was based on the
highest resulting MCC value (Figure 1I), and the final classifier
trained in the final 80% training set (Figure 1I) was validated in
the final 20% holdout test set (Figure 1J).

RESULTS

Saliva Microbiome Data
The data comprised saliva 16S rRNA gene amplicon sequencing
data and associated metadata from two different studies referred
to here as dataset S1 (Wu et al., 2016) and dataset S2 (Beghini
et al., 2019) (see the Datasets in the METHODS section for
more details). Filtering samples for quality-controlled metadata,
de-noising of sequencing reads, and sequencing depth filtering
resulted in a total of 1,245 samples (N = 1,088 from dataset
S1 and N = 157 from dataset S2). In the whole dataset, class
imbalance in smoking habits was large with 512 (44.1%) never
smokers, 558 (44.8%) former smokers, and only 175 (14.1%)
current smokers. Female samples accounted for 41.5% of the
total sample, and the average age (±standard deviation) was
65.2 (±11.0) years. European ancestry of the saliva sample
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FIGURE 1 | Overview of the study’s analytical strategy. (A–C) The original dataset was split into a training set (80%) (purple box in B) and a holdout test set (20%) (red

box in C) by maintaining the original ratio between classes in the partitions. Data augmentation techniques were applied to the training set, making a total of six

different input data types (d = 6), including baseline non-augmented and differently augmented data types. (D) For the nested cross-validation (nCV) approach, the

(Continued)
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FIGURE 1 | training set was split into five outer k-folds of training (80%) (orange box in D) and test (20%) (blue box in D) sets each. (E) Each outer k-fold was split into

two inner n-folds of training (50%) and validation (50%) sets (orange box in E) in which seven different machine learning (ML) models (m = 7) were optimized and

validated (inner models). (F) The best-performing n-fold inner model (green box in F) was applied to the corresponding k-fold test set (green arrow to blue box in F).

(G) For each k-fold test set, two performance metrics were obtained: Matthews correlation coefficient (MCC) and area under the receiver operating characteristic

curve (AUC). Repetition of steps (D) to (G) for all the input data types (d = 6) with ML method (m = 7) (total of 42 different approaches). (H) Repetition of steps (A) to

(G) 10 times (i = 10) to control for introduced variation by data partitions. (I) Selection of the best-performing data type with ML method based on MCC metric and

training on full final 80% training set to create the final prediction model. (J) Validation of final prediction model on final 20% holdout test set.

donors was overrepresented (87.3%), as typically encountered in
human microbiome data publicly available thus far. The selected
characteristics of the two datasets are described in further detail
in Table 1.

Microbial taxonomy assignment using the expanded Human
Oral Microbiome Database (eHOMD) (v.15.2) (Escapa et al.,
2018) as reference (see Processing of 16S rRNA gene amplicon
sequencing data in the Methods section for more details) and
abundance filtering resulted in 200 species from 33 families
in dataset S1 and 168 species from 35 families in dataset S2.
Both datasets were dominated by a few species that comprised
more than 75% of the total microbial composition (21 species
in S1 and 15 species in S2). These species belonged to different
genera, including Streptococcus, Rothia, Haemophilus, Prevotella,
Veillonella, and Actinomyces. Dataset S1 was dominated by
Streptococcus oralis (0.26 of total relative abundance), followed by
S. salivarius (0.09), Rothia mucilaginosa (0.06), S. parasanguinis
(0.05), and Haemophilus parainfluenzae (0.05). Dataset S2 was
also dominated by S. oralis (0.24), followed by S. parasanguinis
(0.06), S. salivarius (0.06), Prevotella melaninogenica (0.06), and
R. mucilaginosa (0.06) (Supplementary Figure 1). These top
abundant species were prevalent in both datasets, appearing in
more than 87% of individuals. Our observations are consistent
with the reported composition of the saliva microbiome
(Segata et al., 2012). For downstream analyses, we selected
124 species from 30 families that were common between
the two datasets, to ensure that our proposed strategy was
generalizable for the prediction of samples from both datasets
(Supplementary Table 2). These common species accounted
for 86% of the sequencing reads in dataset S1 and 61% in
dataset S2.

Classification of Smoking Habits
The overall saliva microbial communities differed with statistical
significance between current and never smokers (ANOSIM R =

0.04, q = 0.03; PERMANOVA pseudo-F = 11.37, q = 0.002),
and current and former smokers (ANOSIM R = 0.04, q =

0.03; PERMANOVA pseudo-F = 11.91, q = 0.002), but not
between never and former smokers (ANOSIM R = 0, q =

0.51; PERMANOVA pseudo-F = 0.64, q = 0.63). Therefore,
we grouped the never and former smokers into a single
category of non-current smokers, which when compared with the
current smokers showed statistically significant differences in the
overall microbial communities (ANOSIM R = 0.04, q = 0.02;
PERMANOVA pseudo-F = 13.26, q = 0.001). Based on these
results, we used two classes of non-current and current smokers
in all downstream analyses.

Validation of Data Types and Machine
Learning Models for Smoking Habit
Prediction
A step-by-step overview of our analytical setup can be found in
Figure 1. For each input data type (d = 6), including augmented
data and baseline non-augmented data, and each ML model (m
= 7), the resulting classifiers’ performance metrics are expressed
as Matthews correlation coefficient (MCC) and area under
the receiver operating characteristic curve (AUC), which are
summarized in Figure 2 and Supplementary Table 3. Overall,
data augmentation techniques combined with ML methods
outperformed baseline methods based on the MCC values,
except for the KNN method. Briefly, the MCC values resulting
from the baseline non-augmented methods increased on average
when applying data augmentation techniques with percentages
of increase as follows: XGBoost (99.8%), SVMR (92.7%), DT
(48.9%), RF (30.6%), and LR (8.8%). The highest increase
was observed with SVML where the baseline non-augmented
method resulted in random prediction (MCC equal or close
to zero), which was highly improved with data augmentation
techniques (MCC values 0.31–0.33). Notably, the AUC baseline
values did not change so drastically when applying data
augmentation techniques [percentage increase or decrease (–)]:
XGBoost (15.8%), SVML (8%), SVMR (null increase/decrease),
RF (−1.0%), KNN (−4.6%), DT (−6.1%), and LR (−10.4%).

The SVML method performed the best in predicting smoking
habits from microbiome data based on the MCC metric.
As the reference metric for comparison purposes, we chose
the MCC, since it is independent of data imbalance, which
is not the case for the AUC metric. MCC values were
significantly higher with each of the five augmented data
types compared to non-augmented data (Wilcoxon test, BH-
adjusted p = 9.93E−20) (Supplementary Table 4). However,
there were no statistically significant differences in the MCC
metric between the augmented data pair comparisons (Wilcoxon
test, BH-adjusted p-values between p = 0.392 and p = 0.882)
(Supplementary Table 4). From these results, we concluded
that SVML with augmented data performed better than with
imbalanced non-augmented data.

For the training (Figure 1I) and the validation in the holdout
test set (Figure 1J) of the final smoking prediction model, we
chose SVML combined with TADA. We based our decision
on the following: (i) the SVML method performed the best
in predicting smoking habits from microbiome data based on
the MCC metric (no statistical difference), and (ii) we selected
TADA as the preferred data augmentation technique since
it takes into account the phylogenetic relationship between
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FIGURE 2 | Validation of data types with machine learning (ML) methods for microbiome-based prediction of smoking habits based on the S1 and S2 datasets

together. For each ML method, we evaluated six types of input data: baseline non-augmented and five augmented datasets based on different methods (ADASYN-1,

ADASYN-2, SMOTE-1, SMOTE-2, and TADA). (A) Matthews correlation coefficient (MCC) and (B) area under the receiver operating characteristic curve (AUC) values

from the 5-fold nested crossed-validation were repeated for 10 times (5 * 10). For MCC, +1 represents a perfect prediction, 0 random prediction, and −1 perfect

inverse prediction. For AUC, 1 indicates perfectly accurate prediction and 0.5 indicates random prediction. ML method abbreviations: DT, decision trees; KNN,

k-nearest neighbors; LR, logistic regression; RF, random forest; SVML, support vector machine with linear kernel; SVMR, support vector machine with radial kernel;

XGBoost, extreme gradient boosting.

the microbial taxa. The average model performance (standard
deviation) metrics were MCC of 0.32 (0.07) and AUC of 0.74
(0.05) in the training set, and MCC of 0.36 (0.06) and AUC of
0.81 (0.04) in the holdout test set.

DISCUSSION

In this study, coming with the available 16S rRNA gene amplicon
microbiome sequencing data, we deal with the common issue

of data imbalance in human microbiome binary classification,
with the aim of unlocking the prediction of human host’s traits
from saliva microbiome. As a data source, we focused on studies
targeting the saliva microbiome and did not use data from studies
targeting other niches in the oral cavity due to known diverse
microbial assemblies on different oral sites (Aas et al., 2005;
Zaura et al., 2009; Segata et al., 2012). We selected publicly
available saliva microbiome data from two studies that might
differ in their experimental setup (Supplementary Table 1) but
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both have large sample sizes, while discarding other studies
with very small sample sizes that could be a source of variation
rather than useful information for the prediction. The lack of
widespread consensus onmicrobiome analysis methods, together
with the variation introduced at each step of the microbiome
pipeline, constitutes hurdles for cross-study applications. This
lack can sometimes outweigh the factor(s) of interest and
limit the statistical power and generalization of the application
(Brooks et al., 2015; Sinha et al., 2015, 2017; Wang and LêCao,
2019). Though we could not control for any potential variation
introduced during the experimental analysis, we aimed to apply
the same or the most similar bioinformatics analysis to the raw
sequencing data to avoid study-specific computational variation,
from which quality control choices are amongst the largest
sources of variation (Sinha et al., 2015, 2017). Moreover, we
only selected the species common between the datasets from the
two studies for downstream analyses. On the one hand, we are
aware that this might have reduced the power of our prediction
analysis by discarding informative species in each of the two
datasets separately. On the other hand, this procedure ensured
that the approach is suitable for the prediction of samples from
both datasets.

Our observations in the overall microbial composition of
saliva were in agreement with the two original studies (Wu et al.,
2016; Beghini et al., 2019), where microbiome variation did not
significantly differ between never and former smokers (ANOSIM
R = 0, q = 0.51; PERMANOVA pseudo-F = 0.64, q = 0.63), but
significantly differed between never and current (ANOSIM R =

0.04, q= 0.03; PERMANOVA pseudo-F = 11.37, q= 0.002), and
between former and current smokers (ANOSIM R = 0.04, q =

0.03; PERMANOVA pseudo-F = 11.91, q = 0.002). One of the
two studies (Wu et al., 2016) also reported significant differences
between current smokers and non-current smokers (combined
never and former) as we observed in this study (ANOSIM R =

0.04, q= 0.02; PERMANOVA pseudo-F = 13.26, q= 0.001).
The available saliva microbiome dataset presents the

problem of data imbalance, which is commonly encountered in
microbiome datasets and in many other real-life applications,
with a ratio of about 1:6 between the minority class of current
smokers and the majority class of non-smokers (Table 1).
Using class-imbalanced data in prediction modeling can lead
to spurious high accuracy based on the correct classification
of most of the samples from the majority class at the cost of
misclassifying many or even most of the samples from the
minority class (Japkowicz and Stephen, 2002; Abd Elrahman
and Abraham, 2013; Ali et al., 2013; Thabtah et al., 2020).
Regarding our study purpose, this would translate in the
classifier’s inability to correctly predict the positive observations
for current smoking habits (minority class). This was seen in the
baseline non-augmented data with the SVML method (Figure 2
and Supplementary Table 3), where we obtained a low MCC of
zero but a medium AUC of 0.7. Besides needing to address the
class imbalance, this also highlights the necessity of not relying
only on a single prediction accuracy score for model validation
when dealing with imbalanced data (Chicco and Jurman, 2020).

TheMCC performancemetric allowed us for fair comparisons
of the validated ML methods for both non-augmented and

augmented data, since MCC is independent of data imbalance
(Boughorbel et al., 2017; Ballabio et al., 2018). For the great
majority of the ML methods, augmented data resulted in
higher MCC scores compared to imbalanced non-augmented
data, thus facilitating improved classification performance. This
demonstrates that microbiome-based classification problems can
benefit from data augmentation techniques, in line with previous
suggestions (Knights et al., 2011). In our dataset, the combined
over- and under-sampling approaches generally performed
slightly better (though not statistically significantly) than the
over-sampling approach alone (Supplementary Tables 2, 3).

The variation in the performance metric values for each input
data type and ML method (Figure 2) highlights the variation
introduced in the optimization and validation procedures
(Figure 1). This underlines the necessity for an nCV approach for
overall model validation and selection that is independent of the
different data partitions (Cawley and Talbot, 2010; Krstajic et al.,
2014). We avoided over-fitting in model validation and classifier
selection as demonstrated by the very similar performance
metrics between the final training (MCC: 0.32 ± 0.07, AUC:
0.74 ± 0.05) and test (MCC: 0.36 ± 0.06, AUC: 0.81 ± 0.04)
datasets, which were very similar to those of the folds in the
nCV (MCC: 0.31 ± 0.06, AUC: 0.75 ± 0.05). As it has been
suggested before (Topçuoglu et al., 2020), with our strategy,
we report the variation in the predictive performance on the
different folds of nCV, as well as on both the final training and
test sets, which unfortunately is not a very common practice in
microbiome-based trait prediction.

With the best data augmentation andML approach chosen, we
predicted individuals’ smoking habits from saliva 16S rRNA gene
microbiome data in the final holdout test set with MCC of 0.36
and AUC of 0.81. Previously, Sato et al. (2020) predicted smoking
habits from class-imbalanced tongue metagenomics data (N =

234 never, N = 52 current smokers) using an RF approach and
conventional non-nested k-fold CV and obtained an AUC of 0.75
from the test set. This prediction was improved to AUC = 0.80–
0.93 when using single-nucleotide variants of single species as
input data instead of relative abundances of all species. More
recently, Carrieri et al. (2021) predicted smoking habits from leg
skin 16S rRNA gene amplicon sequencing data based on a less
class-imbalanced but very small dataset (N = 43 never, N = 19
current smokers) using the XGboost method and conventional
non-nested k-fold CV and reported the F1 performance metric in
the CV folds (F1= 0.72± 0.12), training set (F1= 0.98), and test
set (F1= 0.85). The noted differences in the F1 scoresmight be an
indication of introduced variation by the different data partitions
and bias toward model selection, which can be overcome using
an nCV approach as proposed by us and others. Notably, the
methods applied in both of these previous studies did not take the
class imbalance problem in the used data into account. Therefore,
and because of the small sample size in one of these studies
at least, the previously reported prediction accuracies are not
expected to be reliable, in contrast to the results from our study.

However, in our dataset, we acknowledge some metadata-
related characteristics that might limit the prediction of
microbiome-based smoking habits, even when the data
imbalance issue was accounted for by our approach. Precise
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phenotype descriptions were available in only one of the
two studies (Supplementary Table 1), which is a commonly
encountered problem in cross-study applications and can limit
the interpretation of results (Huttenhower et al., 2014). Also, the
dataset is overrepresented by the age range of 50–79 years old and
European ancestry of the sample donors (Table 1), which might
result in different prediction performances in other age groups
(Lira-Junior et al., 2018; Liu et al., 2020) and ethnicities (Mason
et al., 2013; Yang et al., 2019b). To add, one limitation of the data
augmentation techniques is that synthesized metadata associated
with the synthetically produced data is not reliable. This limits
the possibility of statistically adjusting for covariates (i.e., age, sex,
and ethnicity) in the ML methods, which can ultimately improve
the prediction performance. Hence, the ideal scenario would be
to start from a sample that is a good representation of the general
population, though this is challenging in real-life applications.

To conclude, by testing different data augmentation
techniques and ML methods on class-imbalanced microbiome
data, we established a best-practice approach for reliable
prediction of individuals’ smoking habits from the saliva
microbiome that takes the underlying data imbalance into
account. We found that combining data augmentation with ML
generally outperformed baseline methods in our dataset for our
purpose, as other researchers have also suggested before (Knights
et al., 2011). The prediction accuracies, expressed as MCC of
0.36 and AUC of 0.81, we achieved for our best model in the
final test set implies that predicting human smoking habits from
microbiome data needs further improvement before it can be
considered for practical applications.
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