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Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex heterogeneous disease for which our pathophysiological 
understanding is still limited and specific prevention and treatment strategies are lacking. HFpEF is characterised by dias-
tolic dysfunction and cardiac remodelling (fibrosis, inflammation, and hypertrophy). Recently, microvascular dysfunction 
and chronic low-grade inflammation have been proposed to participate in HFpEF development. Furthermore, several recent 
studies demonstrated the occurrence of generalized lymphatic dysfunction in experimental models of risk factors for HFpEF, 
including obesity, hypercholesterolaemia, type 2 diabetes mellitus (T2DM), hypertension, and aging. Here, we review the 
evidence for a combined role of coronary (micro)vascular dysfunction and lymphatic vessel alterations in mediating key path-
ological steps in HFpEF, including reduced cardiac perfusion, chronic low-grade inflammation, and myocardial oedema, and 
their impact on cardiac metabolic alterations (oxygen and nutrient supply/demand imbalance), fibrosis, and cardiomyocyte 
stiffness. We focus primarily on HFpEF caused by metabolic risk factors, such as obesity, T2DM, hypertension, and aging.

Keywords  Heart failure with preserved ejection fraction · Coronary microvascular dysfunction · Cardiac lymphatic 
dysfunction · Inflammation · Myocardial fibrosis · Cardiac metabolism

Introduction

More than half of the patients with heart failure (HF), 
notably women, suffer from HF with preserved ejection 
fraction (HFpEF; EF > 50%), a complex cardiovascu-
lar syndrome characterised by diastolic dysfunction and Ilona Cuijpers, Steven J. Simmonds, Elizabeth A. V. Jones and 
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cardiac stiffening, fibrosis, inflammation, and hypertro-
phy. As a consequence of population aging, as well as 
the increases in common comorbidities, such as obesity, 
type 2 diabetes mellitus (T2DM), and hypertension, the 
prevalence of HFpEF is rising [115]. Alarmingly, there 
are no specific treatments for HFpEF, likely due to incom-
plete pathophysiological understanding of the underlying 
mechanisms, patient population heterogeneity, and inad-
equate diagnosis [110]. In this review, we summarize 
current evidence of coronary microvascular dysfunction 
linked to chronic low-grade inflammation, oxidative stress, 
and microvascular wall barrier dysfunction in HFpEF. 
Furthermore, we discuss the potential role of lymphatic 
dysfunction in HFpEF development. We review the role 
of microvascular and lymphatic dysfunction in mediating 
reduced left ventricular (LV) compliance (both cardiomyo-
cyte stiffness and cardiac fibrosis) and cardiac metabolic 
changes occurring during HFpEF development. In each 
case, we will focus on what is known about these topics 
in both HFpEF and the commonly associated comorbidi-
ties. Finally, we highlight possible therapeutic approaches 
for HFpEF.

Coronary microvascular dysfunction 
in HFpEF

Vascular endothelial cells constitute the majority of the 
non-cardiomyocyte population in the healthy heart, there-
fore cardiac endothelial structural and/or functional abnor-
malities have major impacts on cardiac health. Coronary 
macrovascular dysfunction has been scarcely investigated 
in HFpEF. However, the current microvascular paradigm 
proposes endothelial dysfunction as the central mediator 
connecting chronic systemic low-grade inflammation with 
myocardial dysfunction and remodelling in HFpEF (Fig. 1) 
[94]. In this model, metabolic syndrome (MetS)-related 
comorbidities, such as obesity, T2DM, and hypertension, 
trigger chronic systemic low-grade inflammation, charac-
terised by elevated levels of circulating immune cells and 
pro-inflammatory cytokines and upregulation of endothelial 
adhesion molecules, such as intercellular and vascular cel-
lular adhesion molecule-1 (ICAM-1 and VCAM-1), and cor-
responding ligands on circulating leucocytes. The resultant 
increased myocardial infiltration of leucocytes, especially 
monocytes, elevates cardiac transforming growth factor beta 
(TGFβ) levels, thereby inducing cardiac fibrosis. Further-
more, the systemic pro-inflammatory state causes coronary 

Fig. 1   Cardiac and vascular oxidative stress and chronic low-grade 
inflammation in HFpEF. The metabolic syndrome (obesity, type 2 
diabetes mellitus, hypercholesterolaemia, and hypertension) induces 
chronic systemic low-grade inflammation, as well as direct deleteri-
ous effects in the heart (left) and in its coronary endothelium (right). 
Chronic cardiac low-grade inflammation develops due to increased 
transmigration of immune cells across activated endothelial cells 
(EC). Furthermore, endothelial and cardiomyocyte (CM) oxidative 
stress result from an imbalance between antioxidant defences and 
reactive oxygen species (ROS) production. Immune mediators, e.g. 
tumor necrosis factor (TNF)-α, interferon (IFN)-γ, and interleukin 1 
(IL)-1β, further increase ROS production. Prolonged ROS-mediated 
inflammasome activation and the resultant increased transform-
ing growth factor (TGF)-β levels alter the expression of pro-fibrotic 
genes, contributing to cardiac fibrosis. Furthermore, severe oxida-

tive stress causes lipid, protein, and DNA alterations, leading to 
mitochondrial dysfunction ultimately resulting in poor cardiomyo-
cyte ATP production, calcium handling, and contractility. In addi-
tion, ROS-induced protein modifications (e.g. S-nitrosylation) lead to 
sarcomeric myofilament dysfunction and reduced endothelial nitric 
oxide synthase (eNOS)-mediated nitric oxide (NO) production. In 
parallel, oxidative stress leads to eNOS uncoupling, contributing to 
poor flow-mediated vasodilation and cardiac perfusion. This further 
aggravates the cardiomyocyte energy supply-demand imbalance. Fur-
thermore, increased myocardial activation of inducible nitric oxide 
synthase (iNOS) leads to increased nitrosative stress. Finally, persis-
tent vascular pro-inflammatory activation and oxidative stress may 
induce endothelial cell death, contributing to vascular rarefaction and 
reduced cardiac perfusion
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microvascular endothelial cells to produce excessive reac-
tive oxygen species (ROS), contributing to cardiac oxidative 
stress resulting in oxidation of nitric oxide (NO). Conse-
quently, the reduced NO bioavailability leads to impaired 
nitric oxide/cyclic guanosine monophosphate/protein kinase 
G (NO/cGMP/PKG) signalling, causing vascular endothelial 
dysfunction and cardiomyocyte hypertrophy and stiffening. 
Decreased NO bioavailability, increased leucocyte infil-
tration, oxidative stress, and/or neurohormonal activation 
trigger coronary microvascular endothelial dysfunction and 
reduced flow-mediated dilatation, which adversely impact 
cardiac perfusion, as observed in most HFpEF comorbidities 
(Table 1) [34, 94]. 

Coronary microvascular dysfunction may be determined 
by endothelium-dependent and/or -independent mecha-
nisms. Endothelium-dependent dysfunction develops due 
to an imbalance between endothelium-derived relaxing fac-
tors (e.g. NO) and constrictors (e.g. endothelin 1) [127]. 
In HFpEF patients, plasma levels of NO metabolites were 
lower compared to HFrEF subjects, indicating a reduced 
NO bioavailability [19]. In contrast, in moderate regional 
ischemia, the NO production is increased due to elevated 
inducible nitric oxide synthase (iNOS) expression, thereby 
reducing endothelium-dependent vasodilation [46]. Further-
more, HFpEF patients showed increased levels of endothe-
lin-1, a predictor of 1-year HF hospitalisation associated 
with long-term mortality [21]. Endothelium-dependent 
coronary microvascular dysfunction was present in 29% 
of the HFpEF patients, notably those presenting with a 
greater burden of T2DM and lower high-density lipopro-
tein (HDL) levels [133]. On the other hand, endothelium-
independent dysfunction is the result of changes in vascular 
tone mediated by an imbalance between vasoconstrictors 
(e.g. angiotensin II) and vasodilators (e.g. adenosine) acting 
on vascular smooth muscle cells. A recent study showed 
that 33% of the HFpEF patients, mostly older, hypertensive 
subjects, displayed endothelium-independent dysfunction, 

as reflected by reduced coronary flow reserve (CFR) [133]. 
Interestingly, this endothelium-independent microvascular 
dysfunction was associated with a worsened diastolic func-
tion and increased mortality [133]. In experimental swine 
models and diabetic patients, metabolic risk factors (e.g., 
hypercholesterolaemia, T2DM, and chronic kidney disease) 
reduced CFR by increasing the basal blood flow following 
perturbations in myocardial efficiency [9, 41, 96, 121]. Of 
note, increased basal myocardial blood flow correlated with 
diastolic dysfunction in female T2DM patients, while CFR 
did not [41]. As such, basal myocardial blood flow could 
represent a superior marker of coronary microvascular dys-
function in certain pathological settings [8]. Nevertheless, 
while administration of the smooth muscle cell relaxants, 
such as sodium nitroprusside, improves endothelium-inde-
pendent vasodilation in HFrEF [62], its use in HFpEF is 
debated [109].

In parallel to these functional vascular alterations, a 
reduction in myocardial microvascular density, called 
microvascular rarefaction, is observed in HFpEF patients 
(Table 1) [84]. Capillary rarefaction contributes to insuf-
ficient cardiac perfusion by impairing myocardial oxygen 
delivery in HFpEF patients [123]. Rarefaction of resistance 
vessels, including small arteries and arterioles, increases 
microvascular coronary resistance, resulting in reduced 
cardiac perfusion. Interestingly, in a multiple comorbidity 
swine model, experimental reductions in myocardial blood 
flow led to increased myocardial oxygen extraction [121]. 
This increase occurred despite a reduction in coronary cap-
illary density [121]. As such, rarefaction or dysfunction of 
coronary resistance vessels was proposed to be responsible 
for the observed impairment of myocardial blood flow and 
oxygen delivery [121]. Notably, reduced cardiac perfusion 
leads to local blood supply-demand imbalance and energy 
metabolite deficiency, causing cardiac metabolic reprogram-
ming and dysfunction. More than 50% of the patients with 
coronary microvascular dysfunction had an impaired CFR, 

Table 1   Mechanistic 
unravelling in HFpEF and its 
associated comorbidities

Evidence from clinical studies given in bold, while proof from experimental studies is indicated in italic
N.D not determined, FA fatty acid

T2DM Aging Hypertension Obesity HFpEF

Systemic alterations
Inflammation ↑ [98] ↑ [15] ↑ [116] ↑ [51] ↑ [24, 80, 111]
Glycocalyx remodelling ↓ [86] ↓ [75] ↓ [50] ↓ [31] N.D
Vascular hyperpermeability ↑ [79] ↑ [11] ↑ [128] ↑ [55] N.D
Lymphatic dysfunction ↑ [69, 87] ↑ [25] ↑ [134, 135] ↑ [134, 135] N.D
Cardiac alterations
Microvascular density ↓ [7] ↓ [85] ↓ [3, 88] ↓ [16] ↓ [84]
Oxidative stress ↑ [53] ↑ [91] ↑ [17] ↑ [37] ↑ [35]
Fibrosis ↑ [103] ↑ [113] ↑ [99] ↑ [90] ↑ [58, 84, 136]
Metabolic switch to FA beta-

oxidation
↑ [95] ↓ [60] ↓ [28] ↑ [43, 66] N.D
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which was independently associated with a worsened dias-
tolic function and increased hospitalisation for HFpEF [119]. 
Microvascular rarefaction may precede disease development, 
as HFpEF-associated comorbidities show microvascular rar-
efaction (Table 1). For example, microvascular rarefaction is 
suggested to impede insulin delivery to muscles and adipose 
tissue, contributing to poor insulin uptake [7]. In addition, 
in young adults with familial predisposition to hypertension 
and in patients with borderline or established hypertension, 
a reduced dermal capillary density has been shown [3, 88]. 
In obese patients, increased LV filling pressure correlated 
with lower coronary microvascular density, potentially con-
tributing to impaired cardiac metabolism underlying dias-
tolic dysfunction [16]. Furthermore, increased subepicar-
dial and pericoronary adipose tissue, as observed in obese, 
T2DM, and elderly patients, correlated with an impaired 
CFR, microvasculature, and coronary function, leading to 
deteriorated diastolic function [85]. However, despite accu-
mulating evidence for coronary microvascular dysfunction 
and rarefaction during HFpEF development, its exact role in 
disease progression is still unknown.

Inflammation as a trigger of coronary vascular 
dysfunction

The most frequent HFpEF-associated comorbidities are 
all associated with chronic systemic low-grade inflamma-
tion (Table 1 and Fig. 1) [15, 51, 98, 116]. HFpEF patients 
showed elevated systemic inflammatory markers, such 
as acute inflammatory C-reactive protein (CRP), which 
increased with the number of comorbidities, and raised cir-
culating levels of neutrophils and monocytes [24, 30, 38, 
49]. Additionally, in vitro culture of healthy donor mono-
cytes with serum from HFpEF patients promoted alternative 
anti-inflammatory/pro-fibrotic macrophage differentiation 
[38].

Both chronic systemic low-grade inflammation and acti-
vation of the renin–angiotensin–aldosterone axis (RAAS) 
lead to endothelial cell activation by upregulating adhe-
sion molecules. Elevated advanced glycation end products 
(AGEs)/AGE receptor (RAGE) signalling in T2DM stimu-
lates the nuclear factor kappa-B (NFкB) signalling path-
way, inducing pro-inflammatory genes and RAGE, forming 
a vicious cycle of self-renewing pro-inflammatory signals 
[10]. HFpEF patients showed increased expression of adhe-
sion molecules on the coronary endothelium, together with 
elevated myocardial infiltration of CD45+ leucocytes and 
CD3+ T-lymphocytes [129]. Furthermore, there was a posi-
tive correlation between echocardiographic indices of dias-
tolic dysfunction (E/e′) and splenic activation, suggesting a 
role of increased splenic myeloid cell oversupply in HFpEF 
patients [49]. While both systemic and cardiac inflamma-
tion have been observed in HFpEF patients, the causal 

involvement of cardiac inflammation in coronary microvas-
cular dysfunction in HFpEF has never been investigated.

Given the plethora of cardiac detrimental effect triggered 
by chronic low-grade inflammation, the use of cytokine 
inhibitors has been extensively investigated in HF patients 
[77]. The ability to translate this to a drug has not met suc-
cess and in some cases has even led to worsening of HF 
and/or death [77]. Nevertheless, IL-1β blockage (Anakinra), 
for example, improved aerobic exercise capacity in HFpEF 
patients and is currently investigated in a phase 2 clinical 
trial (NCT02173548) [126]. Furthermore, the multi-cytokine 
blocker Pentoxifylline reduced vascular events, systemic 
inflammation, all-cause mortality, and improved the prog-
nosis in HFrEF patients [18]. In addition to anti-cytokine 
therapies, lipid-lowering statins have anti-inflammatory 
effects and are associated with a reduced re-hospitalisation 
and mortality in HFpEF patients [78]. Despite this, cur-
rently no approved effective anti-inflammatory drug has 
been approved for the treatment or prevention of HFpEF.

Oxidative stress as a trigger of coronary vascular 
dysfunction

Oxidative stress is induced by increased ROS production 
and/or reduced antioxidant enzyme levels, leading to both 
endothelial and cardiac dysfunction (Fig. 1). As cardiomyo-
cytes are rich in mitochondria, they have an elevated base-
line ROS production compared to other cell types. Thus, 
altered mitochondrial function and/or reduced antioxidant 
enzyme levels lead to cardiac oxidative stress. Of note, 
risk factors for HFpEF further stimulate ROS production 
(Table 1) [17, 34, 37, 53, 91]. For example, AGE-RAGE sig-
nalling in T2DM induces oxidative stress by directly activat-
ing nicotinamide adenine dinucleotide phosphate oxidases 
(NOX), decreasing the activity of enzymatic antioxidant 
defences, and indirectly by reducing cellular antioxidant 
systems [100]. Consequently, chronic systemic low-grade 
inflammation is proposed as a major trigger, together with 
oxidative stress and NO dysregulation, for the development 
of coronary microvascular dysfunction in HFpEF [94].

Within vascular endothelial cells, elevated ROS produc-
tion triggers canonical NFкB signalling, leading to cytokine 
production and proteasome and inflammasome activation, 
which may cause endothelial cell apoptosis and pyroptosis 
(Fig. 1) [34]. Endothelial oxidative stress accelerates NO 
degradation by superoxide anion (O2

−)-mediated peroxyni-
trite (ONOO−) formation, thereby promoting protein nitros-
ylation, resulting in endothelial dysfunction and cell death 
(Fig. 1) [52]. Increased cardiac levels of hydrogen perox-
ide (H2O2) and reactive oxidative metabolites, endothelial 
nitric oxide synthase (eNOS) uncoupling, and macrophage 
and endothelial NOX2 expression and reduced NO levels 
all indicate the presence of myocardial oxidative stress in 
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HFpEF patients (Table 1) [35]. Beyond oxidation, inhibition 
of NO production could reduce NO bioavailability, by for 
example AGE-induced elevation of asymmetric dimethyl-
l-arginine (ADMA) levels, an eNOS inhibitor, thereby con-
tributing to endothelium-dependent dysfunction associated 
with a worsened prognosis of HFpEF [5]. Despite the signs 
of cardiac oxidative stress in HFpEF patients, the causal 
involvement of cardiac oxidative stress in the development 
or aggravation of coronary microvascular dysfunction is not 
well understood.

In HF patients and experimental mouse models, several 
anti-oxidative stress therapies have been investigated that 
either (1) inhibit oxidative stress producers, (2) improve 
endogenous antioxidant capacity, or (3) supplement exog-
eneous antioxidants. Mitochondria Szeto-Schiller-31 (SS-31; 
Elamipretide) attenuated cardiac remodelling in hyperten-
sive cardiomyopathy and is currently investigated as a novel 
therapeutic in phase II trials for HFpEF (NCT02814097). 
Furthermore, treatment with the mitochondria-targeted anti-
oxidant MitoTEMPO or N-acetylcysteine (NAC) prevented 
diastolic dysfunction in rodent models of diabetes and 
hypertensive cardiomyopathy [74, 130]. Supplementation 
with an antioxidant cocktail, containing alpha lipoic acid, 
vitamin C, and E, also reduced systemic inflammation and 
improved conduit artery endothelium-dependent vasodila-
tion in HFpEF patients [101]. In summary, therapies target-
ing oxidative stress could be a potential therapy for HFpEF. 
However, their underlying mechanism needs to be further 
elucidated.

Microvessel wall barrier dysfunction in HFpEF

The microvascular endothelium is a barrier opposing free 
exchange between blood and tissues, which tightly regulates 
transport of plasma constituents and immune cells in most 
organs. Events such as ischaemia cause increased vascular 
endothelial growth factor (VEGF)-A levels, leading to vas-
cular barrier breakdown, increased extravasation of immune 
cells, and oedema. In addition to its well-known occurrence 
in HFrEF, there is accumulating evidence of microvascular 
wall barrier dysfunction in HFpEF-associated comorbidities 
[11, 55, 79, 128], while its role in the development of coro-
nary microvascular dysfunction has been scarcely addressed 
in HFpEF (Table 1).

Vascular barrier function is controlled on several levels 
by different cell types. For example, the endothelial gly-
cocalyx covers the luminal surface of vascular endothelial 
cells and together with cell–cell junctions serves as a bar-
rier for solute and macromolecule exchanges. It is also a 
mechanotransducer, which senses endothelial shear stress, 
attenuates coagulation and leucocyte adhesion to the 
endothelium, and affects vasoregulatory responses to flow. A 
damaged glycocalyx induces the production of pro-adhesion 

mediators, thereby triggering the adherence of neutrophils 
to the endothelium (Fig. 2) [54]. Thinning of the glycocalyx 
occurs in several HFpEF-associated comorbidities (Table 1 
and Fig. 2) [31, 50, 75, 86]. In HFpEF patients, increased 
circulating levels of syndecan-1, a glycocalyx shedding bio-
marker, were associated with endothelial dysfunction and a 
doubling of plasma syndecan-1 levels increased risk of all-
cause mortality and rehospitalisation [120]. Interestingly, 
exogenous NO administration during reperfusion preserved 
vascular integrity and attenuated cardiac oedema formation 
though protection of the glycocalyx in guinea pigs subjected 
to ischemia/reperfusion injury [14].

Vascular endothelial hyperpermeability has been shown 
to occur in the microvasculature of peripheral tissues of 
hypertensive or diabetic patients, as well as obese or elderly 
rodent models [11, 55, 79, 128]. Disruption and remodel-
ling of cell-cell junctions is a major cause of vascular bar-
rier integrity loss and occurs in murine models of diastolic 
dysfunction and MetS and in aged endothelial cells (Table 1 
and Fig. 2) [55, 64, 89, 106]. A number of pro-permeabi-
lizing stimuli, including VEGF-A and inflammatory agents 
(e.g. histamine and bradykinin), stimulate hyperphospho-
rylation of vascular endothelial (VE)-cadherin, resulting in 
the breakdown of junctional contacts [23]. Moreover, the 
VEGFA-, histamine-, and serotonin-stimulated formation 
of trans-endothelial channels from coalesced vesicles or 
vacuoles, called vesiculo-vacuolar organelles (VVOs) is 
another proposed route of transcytosis-mediated extravasa-
tion during vascular leakage (Fig. 2). Vascular hyperperme-
ability by trans- or paracellular pathways leads to increased 
influx of solutes, macromolecules, and immune cells to the 
interstitium.

Beyond endothelial cells, pericytes, the main mural cell 
type of microvessels, are crucial for regulating vascular 
blood flow and microvascular stability. Cardiac pericytes are 
involved in many processes regulating cardiac homeostasis, 
such as vascular maturation, supply of trophic substances, 
fibrosis, and blood flow. HFpEF-diseased ZSF1 rats showed 
disorganized accumulation of vascular pericytes in suben-
docardial hyperproliferative (inflamed) foci, while vascular 
pericyte coverage was reduced compared to controls [122]. 
Further investigations of microvascular barrier dysfunction 
in HFpEF are warranted with the aim to develop novel tools 
for diagnosis or target-specific therapy to limit vascular 
dysfunction.

Lymphatic dysfunction in HF

The heart has an extensive lymphatic network that relies on 
cardiac contractions to propel lymph fluid towards draining 
cardiac lymph nodes [33]. Cardiac lymphatic drainage is 
essential for cardiac fluid balance [82]. Insufficient cardiac 
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lymphangiogenesis contributes to myocardial oedema, 
inflammation, and fibrosis following experimental myocar-
dial infarction in rodents, and it has been shown that cardiac 
oedema subseqeuntly adversely affects heart function [13, 
47]. However, it is unknown whether the same is true for 
HFpEF. HFpEF patients show increased interstitial water in 
the lungs, suggesting impaired lymphatic drainage [102]. In 
addition, decreased left ventricular contractility and relaxa-
tion was observed in a canine model of acute lymphatic 
obstruction, suggesting a role for lymphatic dysfunction 
in diastolic dysfunction [73]. Furthermore, the generalized 
oedema that accompanies advanced HFpEF further indicates 
that lymphatic dysfunction may be involved in HFpEF devel-
opment and/or progression.

Lymphatic dysfunction and remodelling has been shown 
to occur in experimental models of multiple HFpEF-associ-
ated comorbidities (Table 1 and Fig. 3) [25, 134, 135]. For 
example, murine genetic- or diet-induced obesity models 
showed reduced dermal lymphatic collecting vessel pumping 
rates, as well as reduced lymphatic capillary density with 
accumulation of pro-inflammatory cells around lymphatic 
vessels [69, 87]. These lymphatic-associated immune cells 
may further reduce collector vessel pumping rates by exces-
sive production of NO via iNOS [69, 87]. Another exam-
ple is hypercholesterolaemia, which was associated with 
lymphatic capillary regression, dermal backflow of lymph, 

dilation of initial lymphatics, and reduced muscular layer 
coverage in collecting ducts in mice, which all were revers-
ible upon cholesterol-lowering treatment [70]. Rodent mod-
els of T2DM showed reduced lymphangiogenesis and lym-
phatic vascular integrity and function, with insufficient NO 
bioavailability and poor lymphangiogenesis, contributing to 

Fig. 2   Microvessel wall barrier dysfunction in HFpEF. The meta-
bolic syndrome induces via chronic systemic low-grade inflammation 
deleterious effects in coronary endothelial cells (EC). It leads to the 
degradation of the endothelial glycocalyx layer, thereby promoting 
endothelial immune cell adhesion and transmigration. Furthermore, 
metabolic syndrome-induced cellular oxidative stress may lead to gly-
cocalyx damage and cell death of both endothelial and mural cells. 
In addition, pro-inflammatory mediators, such as tumor necrosis fac-

tor (TNF)-α and interleukin (IL)-1β, together with oxidative stress, 
increase vascular growth factor (VEGF)-A levels. Increased VEGF-A 
signalling weakens vascular barriers (e.g. loss of cell–cell junctions), 
which facilitates paracellular passage of immune cells and trans-vas-
cular transport by transcellular vesiculo-vascular organ (VVO) forma-
tion. VEGF-A also stimulates vascular basement membrane remodel-
ling through extracellular matrix (ECM) proteases activation, leading 
to reduced vascular stability and vascular regression

Fig. 3   Lymphatic vasculature in the metabolic syndrome. The lym-
phatic system is composed of highly permeable blunt-ended lym-
phatic capillaries, which drain into larger collecting lymphatic vessels 
endowed with valves to prevent backflow and a muscular layer that 
propulses the lymph towards draining lymph nodes. Experimental 
models of metabolic syndrome components showed lymphatic dys-
function, including rarefaction, and dilation of initial lymphatic capil-
laries, but also enlargement, hyperpermeability, and poor contraction 
of collecting ducts, together resulting in reduced lymphatic transport 
capacity
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lymphatic permeability and delayed wound healing, respec-
tively [20, 108]. In contrast, T2DM patients had increased 
dermal lymphatic density and lymphatic endothelial prolif-
eration [42]. Furthermore, canine models of chronic hyper-
tension showed increased myocardial blood capillary perme-
ability accompanied by elevated cardiac lymphatic transport 
[65]. Interestingly, spontaneously hypertensive rats showed 
increased VEGF-C-mediated cardiac lymphangiogenesis 
accompanying LV remodelling [132]. Collectively, these 
studies indicate an increased demand on the lymphatic sys-
tem in these HFpEF-associated comorbidities, resulting in 
maladaptive lymphangiogenesis, as well as hyperperme-
ability and integrity loss in lymphatics, together leading to 
lymphatic transport dysfunction. Several studies have shown 
that immune cells actively participate in lymphangiogenesis 
and alter lymphatic function [1, 61, 117]. Pro-inflammatory 
immune cells have been shown to accumulate around lym-
phatic vessels and reduce lymphatic transport during acute 
inflammation in models of obesity [69, 87]. Furthermore, 
while B-cells and neutrophils stimulate lymphangiogenesis, 
Th2-skewed CD4+ helper T-cells have been found to inhibit 
lymphangiogenesis in tissues such as lymph nodes, skin, 
and lung [2, 4, 59, 112, 118]. The complexity of immune-
lymphatic interactions is further highlighted by the role of 
the lymphatic system in limiting immune cell residence in 
tissues [6, 40, 56]. Accordingly, many studies have shown 
that inhibition of lymphangiogenesis prolongs the inflam-
matory response and increases oedema at the inflammatory 
site [6, 40, 56], suggesting that increasing lymphangiogen-
esis might be a potential novel therapeutic option to reduce 
chronic inflammation in HFpEF.

Therapeutic lymphangiogenesis induced by lymphangi-
ogenic growth factors VEGF-C and -D has shown some 
potential in terms of treating HFpEF-associated comorbidi-
ties. For example, overexpression of VEGF-D increased 
renal lymphangiogenesis and prevented salt- and NOS 
inhibition-induced hypertension in mice [72]. Similarly, 
systemic delivery of VEGF-C lowered blood pressure and 
preserved cardiac function in salt-sensitive hypertensive 
rats, while neutralization of both VEGF-C and -D aggra-
vated hypertension and cardiac dysfunction [131]. Finally, 
therapeutic lymphangiogenesis has been shown to acceler-
ate the resolution of both acute and chronic inflammation 
in various settings [61]. This shows the potential of thera-
peutic lymphangiogenesis in treating certain HFpEF-related 
comorbidities but also highlights lymphatic function and 
lymphangiogenesis as one of the most underappreciated and 
unstudied therapeutic opportunities.

Reduced LV compliance in HFpEF: cardiac 
fibrosis and cardiomyocyte passive stiffness

Diastolic dysfunction is caused by impaired active relaxation 
and/or reduced compliance of the ventricle. Both increases 
in extracellular matrix deposition (fibrosis) and cardiomyo-
cyte passive stiffness (titin modifications) reduce LV compli-
ance, as observed in HFpEF patients [36].

Increased cardiomyocyte stiffness: titin 
post‑translational modifications and isotype 
switching

The giant sarcomeric protein titin, a force-transducing bidi-
rectional spring, is the main determinant of cardiomyocyte 
stiffness. Alternative splicing of titin mRNA creates iso-
forms with differential stiffnesses: the short, stiffer N2B 
isoform, and the longer, more compliant N2BA isoform. 
Extension of the elastic I-band region in both titin isoforms 
supports myocardial passive relaxation during diastole. Post-
translational modifications of titin rapidly alter cardiomyo-
cyte stiffness. In HFpEF patients, hypophosphorylation of 
N2B and ex vivo administration of PKG are associated with 
increased LV stiffness [12, 125]. Interestingly, PKG activity 
is reduced in HFpEF as a result of reduced NO bioavailabil-
ity due to oxidative stress, leading to impaired NO/cGMP/
PKG signalling [94]. This suggests that oxidative stress, 
NO bioavailability, and PKG play a crucial role in regu-
lating cardiomyocyte stiffness. Furthermore, other protein 
kinases, such as PKA, PKC, extracellular signal-regulated 
kinase-2 (ERK2), and Ca2+/calmodulin-dependent kinase-
II (CAMKII) also modify passive stiffness [36]. HFpEF 
patients showed increased site-specific titin phosphorylation 
on PEVK (a region rich in specific amino acids) S11878 and 
reduced phosphorylation on N2B unique sequence (N2Bus) 
S4185, which was associated with increased LV stiffness 
[136]. In addition to these post-translational modifications 
of titin, alteration of the N2BA/N2B isoform ratio occurs 
in pathology [76]. However, HFpEF patients do not con-
sistently show isoform changes, with only some exhibiting 
increased levels of the stiff N2B isoform [124]. Altogether, 
increased cardiomyocyte stiffness in HFpEF may be medi-
ated by short term post-translational modifications, which 
are interconnected with the oxidative state, and by isotype 
switching in the long term.

Collagen quantity, type, and cross‑linking are 
altered during HFpEF

Myocardial fibrosis and extracellular matrix accumulation 
are hallmarks of adverse cardiac remodelling associated with 
HFpEF and its comorbidities (Table 1) [58, 84, 90, 99, 103, 
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113, 136]. The quantity, type, and degree of crosslinking of 
collagen influences tissue stiffness. Increased collagen deposi-
tion, switching from more flexible collagen III to stiffer colla-
gen I, and collagen cross-linking is associated with worse dias-
tolic function in HFpEF patients [58, 84, 136]. Furthermore, 
collagen cross-linking also correlates with increased LV filling 
pressures and elevated risk of hospitalisation in hypertensive 
HF patients [39].

Lysyl oxidases (LOXs) are the main enzymes involved in 
collagen and elastin cross-linking during cardiac remodelling 
[105]. Upregulation of LOX expression and collagen cross-
linking is associated with impaired diastolic tissue Doppler 
parameters (e.g. E/E′) in HFpEF patients [58]. Furthermore, 
AGE-mediated cross-linking of collagen was also observed in 
aged and T2DM patients, resulting in reduced vascular elas-
ticity and myocardial flexibility, contributing to vascular and 
myocardial stiffness, and ultimately diastolic dysfunction [29]. 
Cardiac fibrosis is also associated with cardiac microvascular 
rarefaction in HFpEF patients, indicating that insufficient car-
diac perfusion may cause excessive collagen deposition [84]. 
Pro-inflammatory mediators (e.g. IL-6, TNFα, CCL2, and 
TGFβ) participate in fibrosis regulation, and pharmacological 
prevention of cardiac infiltration of pro-inflammatory mono-
cytes attenuates fibrosis development in murine hypertension 
[32]. The role of specific cytokines in cardiac fibrosis is, how-
ever, debated. Interestingly, cardiac oedema increased collagen 
production, whereas reduction of cardiac oedema attenuated 
interstitial cardiac fibrosis in rodent myocardial infarction, sug-
gesting a potential role of oedema and poor lymphatic trans-
port in regulating cardiac interstitial fibrosis [47].

Several anti-fibrotic therapeutics, focused on inhibit-
ing aldosterone signalling with mineralocorticoid receptor 
antagonists (MRA), have been trialled in patients with in 
HFpEF [63]. Promisingly, MRA improved cardiac fibrosis 
markers and diastolic function [92]. Another anti-fibrotic 
therapy is the AGE-crosslink breaker alagebrium chloride 
(ALT-711), which improved diastolic function by reducing 
cardiac stiffness in elderly HFpEF patients (NCT01014572) 
[71]. While antifibrotic therapies show clinical efficacy in 
HFrEF patients [93], their effects are more limited in HFpEF 
patients. One reason for this discrepancy could be the varia-
tion in fibrosis pathophysiology found between HFrEF and 
HFpEF. Indeed, while HFrEF patients present with scar 
development or “reparative fibrosis” [83], HFpEF patients 
are much more likely to show interstitial “reactive fibrosis” 
and perivascular fibrosis [27]. Differences in the mecha-
nisms underlying fibrosis deposition could thus explain 
why interventions targeting the type of fibrosis that occurs 
in HFrEF have had limited success in HFpEF patients [57]. 
Innovative approaches to reduce cardiac stiffening, however, 
are expected to provide significant benefit in HFpEF.

Impact of microvascular and lymphatic 
dysfunction on cardiac metabolism

The healthy heart requires a large, constant supply of energy 
of which 30% is provided by carbohydrate oxidation (mainly 
glucose and lactate) and 70% by beta-oxidation of free fatty 
acids (FFAs) at rest. Cardiac metabolic alterations in HFpEF 
patients have been poorly investigated and current hypothe-
ses are largely based on metabolic alterations observed in the 
separate comorbidities (Table 1). For example, in aging and 
hypertensive LV hypertrophy, there is a decreased reliance 
on cardiac FFA utilization and beta-oxidation observed [28, 
60]. In contrast, insulin resistance and increased circulat-
ing triglyceride and FFA levels make cardiac ATP synthesis 
more dependent on FFA oxidation [43, 66]. Indeed, animal 
models of obesity and T2DM with diastolic dysfunction 
show reduced cardiac glucose uptake and increased FFA 
beta-oxidation [22]. The increased dependence on FFA oxi-
dation in obese and T2DM patients in combination with car-
diac microvascular dysfunction and rarefaction might result 
in a mismatch between oxygen supply and demand [95, 104]. 
Some studies reported a maintained cardiac creatine phos-
phate/ATP ratio in T2DM patients, whereas others demon-
strated a reduction, suggesting that cardiac energy depletion 
may occur in T2DM [67, 104]. Impaired cardiac lymphatic 
transport, as seen in experimental models of HFrEF [47], 
could cause a build-up of waste products influencing energy 
metabolism. Intriguingly, whereas angiogenesis depends 
on active glycolysis, lymphangiogenesis depends on FFA 
beta-oxidation. It is conceivable that metabolic impairment 
and increased FFA beta-oxidation in cardiomyocytes during 
HFpEF may limit substrate availability in cardiac lymphatic 
endothelial cells, limiting lymphangiogenic responses during 
cardiac hypertrophy.

Interventions, such as caloric restriction, and insulin-
sensitizing or glucose-lowering agents, such as metformin, 
dipeptidyl peptidase-4 (DPP-4) inhibitors, and glucagon-
like peptide-1 (GLP-1) receptor agonists, all improve 
murine diastolic function [45]. In HFrEF patients, meta-
bolic therapies that limit cardiac FFA beta-oxidation and 
promote glucose oxidation are promising [45]. Till now 
only sodium-glucose transport protein 2 (SGLT2) inhibi-
tors (Dapagliflozin) have been proven to be beneficial in 
HFrEF patients, whereas its therapeutic benefit in HFpEF 
is currently being investigated [81]. To develop innova-
tive metabolic therapies, further investigations are required 
to delineate the nature and cause of the alterations in car-
diac metabolism in HFpEF and their links to other cardiac 
changes, such as insufficient perfusion and chronic low-
grade inflammation.
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Conclusion

Currently, effective and specific therapies for HFpEF are 
lacking due to incomplete understanding of disease mecha-
nisms. Advances in this area are hindered in part by the 
limited number of adequate animal models. Indeed, the 
disease mechanisms that were discovered in experimental 
animal studies may be influenced by the short-comings to 
account for comorbidities, age, gender, and hormonal status 
of current experimental animal models. Given that HFpEF 
is such a clinically heterogeneous disease, there may not 
be one single uniting pathological mechanism driving the 
disease and, therefore, having multiple pre-clinical animal 
models that can be compared to human pathophysiology is 
critical. Due to their similarity to human disease progres-
sion, large animal models, such as the multiple comorbidity 
swine model [114], are especially attractive.

Symptoms of HFpEF are not disease-specific and are 
often difficult to interpret in patients, leading to inadequate 
or late diagnosis [26, 44, 107]. Echocardiography alone 
often fails to demonstrate diastolic dysfunction, resulting in 
the need for invasive cardiac functional assessment. While 
multiple algorithms and clinical definitions have been pro-
posed, risk stratification of patients in several HFpEF sub-
group has not yet been achieved [97]. As such, there is an 
urgent need for an improved clinical definition of HFpEF, 
likely to be driven by the development of novel diagnostic 
tools, such as cardiac and non-cardiac imaging strategies and 
early biomarkers for risk stratification.

Nevertheless, it is envisaged that therapies targeting gen-
eralized vascular dysfunction, such as (1) anti-inflammatory 
drugs, (2) antioxidants, (3) anti-vascular permeability drugs 
(such as glycocalyx, pericyte, and cell–cell junction stabi-
lizers), and/or (4) anti-vascular rarefaction drugs (such as 
angiogenic therapy) might prevent or treat HFpEF by restor-
ing cardiac perfusion and attenuating cardiac inflammation. 
The translation of vascular drugs to clinical practice in 
HFpEF, as well as HFrEF, is still difficult due to the com-
plex and multifactorial pathophysiology of the coronary cir-
culation [48, 68]. In parallel, treatments targeting systemic 
lymphatic dysfunction, such as VEGF-C or -D lymphangi-
ogenic therapy, might be considered to limit oedema and 
chronic low-grade inflammation in HFpEF. These vascular 
therapies are expected to complement other current major 
therapeutic targets in HFpEF, such as cardiac fibrosis target-
ing with aldosterone pathway inhibitors, or directly targeting 
chronic low-grade inflammation and oxidative stress (e.g. 
pirfenidone). Finally, it remains to be determined if cardiac 
metabolism in HFpEF patients could benefit from (1) FFA 
beta-oxidation antagonists (2) glucose uptake agonists, or 
(3) AMPK agonists.

Notably, as HFpEF is a multifactorial disease, combined 
personalized medicine targeting cardiac vascular and lym-
phatic dysfunction, fibrosis, inflammation, and metabolic 
flux alterations may be needed to limit diastolic dysfunction 
and improve quality of life.
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