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Cationic vacancies as defects 
in honeycomb lattices 
with modular symmetries
Godwill Mbiti Kanyolo1* & Titus Masese2,3*

Layered materials tend to exhibit intriguing crystalline symmetries and topological characteristics 
based on their two dimensional (2D) geometries and defects. We consider the diffusion dynamics of 
positively charged ions (cations) localized in honeycomb lattices within layered materials when an 
external electric field, non-trivial topologies, curvatures and cationic vacancies are present. The unit 
(primitive) cell of the honeycomb lattice is characterized by two generators, J1, J2 ∈ SL2(Z) of modular 
symmetries in the special linear group with integer entries, corresponding to discrete re-scaling 
and rotations respectively. Moreover, applying a 2D conformal metric in an idealized model, we can 
consistently treat cationic vacancies as topological defects in an emergent manifold. The framework 
can be utilized to elucidate the molecular dynamics of the cations in exemplar honeycomb layered 
frameworks and the role of quantum geometry and topological defects not only in the diffusion 
process such as prediction of conductance peaks during cationic (de-)intercalation process, but 
also pseudo-spin and pseudo-magnetic field degrees of freedom on the cationic honeycomb lattice 
responsible for bilayers.

Layered materials tend to exhibit a myriad of intriguing crystalline symmetries and topological characteristics 
based on their two-dimensional (2D) geometries and defects.1,2 Since the discovery of graphene-based  systems3 
and layered  materials1 such as honeycomb layered  materials2, a great deal of experimental and theoretical studies 
has been dedicated to illuminating the role the honeycomb lattice plays in the dynamics of electron quasi-parti-
cles and spin degrees of freedom, enriching our understanding of phenomena in materials ranging from high-
temperature superconductors and 2D quantum hall systems to topological insulators and Kitaev materials.2,4–6 
Despite their crystal-structural versatility and compositional tuneability attracting interest in various realms 
of solid-state (electro)chemistry, materials science, condensed matter physics and pioneering the discovery of 
next-generation energy storage  materials2,7–12, theoretical and experimental studies centered on the honeycomb 
lattice have focused mainly on its effect on 2D electron and spin dynamics, thus rendering the behavior of larger 
particles such as positively-charged ions (cations) on the lattice understudied.

In particular, while the honeycomb lattice of graphene is formed by the carbon atoms, the electrodynamics 
studied is often centered around electron quasi-particles and spin degrees of freedom even when curvatures and 
topological defects are considered.3,13,14 By contrast, cations in layered materials can not only form the honey-
comb lattice, but are also responsible for the electrodynamics during cation (de-)intercalation process.15,16 This 
poses a unique challenge to identifying the relevant quantum electrodynamics of cations in layered materials, 
not necessarily faced by other 2D systems. Intuitively (and in the continuum limit of the lattice), the quantum 
problem of electron dynamics in graphene with curvatures and defects is analogous to the problem of 1 + 2 
dimensional quantum electrodynamics in a curved spaces, whereas the quantum problem of cations (charged) 
or their vacancies (uncharged) is analogous to the problem of 2D quantum gravity.17,19,20

A specific class of honeycomb layered materials based on transition metal and semi-metal oxides has recently 
emerged adopting, inter alia, chemical compositions embodied mainly by A4MDO6 , A3M2DO6 or A2M2DO6 
wherein A represents an alkali-ion (Li, Na, K, etc.) or coinage metal ions such as Ag, whereas M is mainly a 
transition metal species such as Co, Ni, Cu, Zn, etc. and D depicts a pnictogen or chalcogen metal species such 
as Sb, Bi, As and Te.21–40 These materials are often referred to as honeycomb layered oxides.2 The structure of 
these honeycomb layered oxides is comprised of localized and de-localized A cations sandwiched between slabs 
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entailing M atoms coordinated with oxygen around D atoms, arranged in a honeycomb fashion (as shown in 
Fig. 1a). Thus, of specific interest to our work is the diffusion dynamics of the de-localized cations when an 
external electric field and non-trivial topology, curvatures and specific defects are present.41,42

Experimental investigations reveal the diffusion of cations to be largely restricted along honeycomb path-
ways in honeycomb layered tellurates such as Na2Ni2TeO6 (as shown in Fig. 1b).15 While computational stud-
ies are consistent with this observation, they further suggest diffusion of cations in honeycomb pathways is 
restricted in honeycomb layered oxides for other materials as well, such as NaKNi2TeO6 and A2Ni2TeO6 where 
A = Na, K, Rb and Cs are cations with a large ionic radius, exhibiting a prismatic coordination with oxygen 
atoms of the Ni and Te octahedra forming the inter-layers.16,43,44 In particular, Van der Waals forces and Coulomb 
repulsive forces tend to localize the cations in honeycomb lattices, creating a loosely-bound 2D non-Bravais 
hexagonal lattice with a two-cation basis known as the honeycomb lattice, which favors de-localization leav-
ing vacancies in the hexagonal vertices only when sufficient activation energy from thermal fluctuations or the 
electric field, �E = (Ex ,Ey , 0) is present.45,46 Consequently, provided the ground state of the system devoid of 
activation energies was initially vacancy-free, the number of vacancies, h in the honeycomb lattice is expected to 
closely correlate with the number of de-localized (mobile) cations, ν ≃ h ∈ N . Whence, the number of vacancies 
directly impacts the performance of the material as an effective cathode.47

Meanwhile, in thin layers of superfluids, superconductors and liquid crystals deposited on curved 2D surfaces, 
topological defects are known to couple to 2D curvature degrees of freedom, leading to the identification of the 
number of topological defects as the Euler characteristic of the surface.48–54 This lends credence to analogous 
treatments for cationic vacancies in layered materials.2,41 Moreover, layered materials demonstrating a bilayer 
arrangement of metal atoms (with each layer arranged in a triangular lattice) have been found, a vast majority 
being Ag-based layered oxides and halides such as Ag2MO2 ( M = Co, Cr, Ni, Cu, Fe, Mn, Rh ), Ag2F , Ag6O2 
(or equivalently as Ag3O ), Ag3Ni2O4 , and more recently Ag2M2TeO6 (where M = Ni, Mg, Co, Cu, Zn).55–66 
Preliminary experimental and computational studies reveal that the bilayers represent a monolayer-bilayer phase 
transition of the honeycomb lattice, with the bifurcation mechanism not clearly understood.63,67

Herein, we consider how the honeycomb lattice of cations and emergent geometry constrains the model of 
cationic diffusion in such honeycomb layered oxides, leading to a rich topological description.41 Consistently 
treating the number of vacancies, h as the number of holes and handles (genus) of an emergent 2D manifold 
with a conformal metric, we conclude that the primitive basis and the corresponding Euler characteristic must 
obey the modular  transformation68, 

(1a)χ(J · k, h) = (γ k + δ)2χ(k, h),

(1b)J · k =
(

α β

γ δ

)

· k =
αk + β

γ k + δ
,

Figure 1.  (a) A schematic representation of the structure of exemplar honeycomb layered materials A4MDO6 , 
A3M2DO6 or A2M2DO6 wherein A represents an alkali ion (Li, Na, K, etc.) or coinage metal ions such as 
Ag, whereas M is mainly a transition metal species such as Co, Ni, Cu and Zn, and D depicts a pnictogen 
or chalcogen metal species such as Sb, Bi and Te. The red rectangle at the base indicates the location of the 
schematic in Fig. 1b; (b) Schematic depicting honeycomb-shaped diffusion pathways with vacant cationic sites 
in exemplar honeycomb layered materials. The maroon line shows a possible random diffusion pathway of the 
cation.
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 invariant under the special linear group with integer entries, J ∈ SL2(Z ) with α,β , γ , δ ∈ Z and 
det(J) = αδ − βγ = 1 , where N = 2k is the total number of cation sites enclosed within the parallelogram 
with the primitive basis labeled by dx and dy as shown in Fig. 2.

In particular, the thermodynamics of the diffusive system of cations can be described by the partition func-
tion, Z of the form, 

which is invariant under the discrete re-scaling ( k → k + 1 ≃ k , for large k) and discrete rotations ( k → −1/k ) 
of the primitive cell for small k, generated respectively by,

when the Euler characteristic can be written in a Fourier series,

q(k) = exp(2π ik) , b(p=0,1,2)
n  is the p-th Betti  number69 associated with the n-th primitive cell and topology labeled 

by h, k = β̄M/2 ∈ N is an integer, M is the average potential energy of the cations (Strictly speaking, it can be 
taken as the inverse of the Green’s function of the system dominated by its potential energy, and hence can be 
complex-valued when the system has a finite life-time.70), β̄ = 1/2πkBT is the ‘reduced’ inverse temperature 
with kB Boltzmann’s constant and fh is a constant independent of k but otherwise is dependent on the topology, 
h and temperature, T = 1/kBβ̄.

The conformal geometry and resultant Betti numbers can be taken to emerge from the underlying matrix 
group field theory of the self-interactions and quantum correlations of the cations in each primitive cell. In par-
ticular, a matrix large N  group field theory can be considered, where N = exp(2πk) is the size of the group.17 
Consequently, this construction effectively treats cationic vacancies in honeycomb layered materials as topologi-
cal defects in the underlying field theory, related to modular symmetries of the honeycomb lattice in the context 
of emergent 2D quantum geometries.19 For instance, we show that Eq. (2a) follows from the partition function of 
k pairs of cations forming the primitive cells of the honeycomb lattice, whereby each pair interacts via the Ising 
Hamiltonian due to emergent pseudo-spin and pseudo-magnetic degrees of freedom associated with the modu-
lar symmetry and broken conformal symmetry respectively. Analogous pseudo-degrees of freedom have also 
been considered in graphene-based systems.13,14 Thus, the framework can be utilized to elucidate the molecular 
dynamics of the cations in exemplar honeycomb layered frameworks and the role of quantum geometry and 
topological defects not only in the diffusion process such as prediction of conductance peaks during the cation 
(de-)intercalation process, but also pseudo-spin and pseudo-magnetic field degrees of freedom on the cationic 
honeycomb lattice whose interactions predict cationic bilayered frameworks.67

Hereafter, we shall set Planck’s constant, the speed of electromagnetic waves in the material, c̄ , Boltzmann’s 
constant, kB and the elementary charge of the cations, qe to unity, � = c̄ = kB = qe = 1 , and employ Einstein 
summation convention unless explicitly stated otherwise.

The model
To build an intuitive geometric and topological picture of cationic diffusion, we begin by summarizing crucial 
results and clues from an idealized model, previously considered by the present authors in a separate publica-
tion.41 Whilst the cations are positively charged, charge conservation requires the cationic vacancies created 

(2a)Z = lim
k→∞

∑

h∈N
fh cosh (2πk χ(k, h)) ≃

∑

h∈N
fh exp (2πk χ(k, h)),

(2b)J =
{

J1 =
(

1 1
0 1

)

, J2 =
(

0 −1
1 0

)}

∈ SL2(Z),

(2c)χ(k, h) = b(0)n + b(2)n −
h

∑

n=1

b(1)n qn(k),

Figure 2.  Unit (primitive) cell ( dx/dy = N/2 = k = 1 ) of localized cations arranged in a honeycomb lattice 
with lattice constant, a showing the primitive vectors, dx and dy. Every primitive cell is a parallelogram 
engulfing two (un-)occupied cationic sites, spanning partial interiors of four cationic-site hexagons.
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through de-localization by the electric field, �E present in the 2D plane to be considered electrically neutral. 
Nonetheless, the vacancies can be treated as possessing a fictitious ‘magnetic moment’ given by, 

where �n is the unit normal vector to the 2D layer comprised of the honeycomb lattice of cations. Thus, the cations 
diffusing through and around the vacancies created by the electric field, �E within the honeycomb lattice will 
introduce the ‘Aharonov-Casher’  phase71,

 where ∂A is the boundary of a 2D patch, A of the manifold associated with the 2D layer spanning the primitive 
cells, where locally the Cartesian coordinates are given by �x = (x, y, z) . Aligning the manifold with the x − y 
plane, the unit normal vector becomes �n = (0, 0, 1).

Applying Stokes’ theorem and substituting respectively Maxwell’s equations (Gauss’ law) and the 
normalization, 

 where ρ(x, y) = ρ2D(x, y)/β̄ , ρ2D(x, y) is the 2D cation number density, β̄ is set as the integration cut-off scale 
in the z-direction and ν is the total number of mobile cations, yields the condition, 

 where ν ≃ h ∈ N ≥ 0 is also the number of vacancies.
Moreover, assuming the diffusion paths trace arc lengths defined by the 2D conformal metric, 

where gab is the 2D metric tensor, �(x, y) must satisfy Liouville’s  equation41,

 with K(x, y) the Gaussian curvature of the manifold. In fact, one can relate the two scalar functions, � and �AC 
by requiring that,

Whence, by Stokes’ theorem, the Euler characteristic of the manifold is given by the Gauss-Bonnet/Poincaré-
Hopf theorem,

where we have used Eqs. (5), (6) and (7) to arrive at our result.
For instance, for a compact orientable 2D manifold homeomorphic to h number of simply-connected 2-tori, 

the Euler characteristic is given by, χ(h) = 2− 2h where h is the genus of the surface given by,

which satisfies ν ≃ h for a large number of diffusing cations, ν → ∞ . Thus, this avails the avenue to treat the 
number of cationic vacancies as the genus, h which uniquely defines the emergent topology of the manifold. 
Moreover, using F0i = �E = (Ex ,Ey , 0) and 12εijkFjk = �B = 0 with εijk the 3D Levi-Civita symbol normalized as 
ε123 = 1 , Eqs. (3) and (7) follow from the phase equations of  motion72,73, 

 on the Minkowski metric,

(3a)�µ = β̄�n,

(3b)�AC

∣

∣

∣

∂A
=

∫

∂A

( �µ× �E) · d�x,

(4a)�∇ · �E(x, y) = 4πρ(x, y),

(4b)
∫ β̄/2

−β̄/2
dz

∫

A

dxdy ρ(x, y) = ν,

(5a)�AC

∣

∣

∣

∂A
= 4πν,

(6a)ds2 = gabdx
adxb = exp(2�(x, y))(dx2 + dy2),

(6b)∇2�(x, y) = −K(x, y) exp(2�(x, y)),

(7)�(x, y) = −
∫

�n× �∇�AC · d�x.

(8)

χ =
1

2π

∫

A

K(x, y)
√

det(gab) dxdy =
1

2π

∫

A

K(x, y) exp(2�(x, y)) dxdy

−
1

2π
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A
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1

2π

∫
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= −
1

2π
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1

2π
�AC
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∣

∣

∂A
= −2ν,

(9)ν = h− 1,

(10a)∂µ� = β̄ξ νησµηρνF
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(10b)∂µ�AC = β̄nν ησµη
∗
ρνF

σρ ,
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where ηµν is the Minkowski metric tensor,

are Maxwell’s equations, ξµ = (1, �0) and nµ = (�0, 1) are time-like and space-like unit normal four-vectors respec-
tively, Fµν = ∂µAν − ∂νAµ is the electromagnetic field strength, Aµ is the electromagnetic (U(1)) gauge field, 
∗Fµν = 1

2εµνσρF
σρ is the dual field strength with εµνσρ the 4D Levi-Civita symbol normalized as ε1234 = 1 and 

Jµ = (ρ, �J) is the current density of the cations. Thus, by Eq. (10), the 2D charge density is related to the Gauss-
ian curvature  by41,

To incorporate diffusion in the formalism, we introduce the diffusion current given by, 

corresponding to Fick’s first law with D the diffusion coefficient and �p the center of mass momentum of the 
cations. Taking the cation number density to satisfy Boltzmann distribution at equilibrium,

 with 12M�AC(x, y) a ‘gravitational’ potential energy governing the diffusion dynamics and M = 2/D a peculiarly 
defined center of mass effective mass using the diffusion coefficient, and applying Eq. (10) yields, 

 Thus, Eq. (14) correspond to the Hamilton-Jacobi equations for the cations with �AC corresponding to Ham-
ilton’s principal function, the second equation to the 2D Langevin  equation74,75 and β̄ to the mean-free time/
path between collisions (friction term). Thus, this serves as the motivation for β̄ appearing as the cut-off time 
and length scale in Eqs. (4) and (10). Moreover, the peculiar relation, M = 2/D can be better understood by 
applying the Virial  theorem76, 

where the averages are evaluated at equilibrium using,

In this study, we shall consider the particular Hamiltonian for the cations,

 with momenta, �pj , displacement vectors, �rj , m̄ = 1/β̄ a mass per cation parameter defined as the inverse of the 
mean time/path between collisions, β̄ and V(rj) ≃ 1

2 m̄µ−1
∑N

k=1 �rk · �rj the leading interaction term in the poten-
tial energy definedproportional to µ , the mobility of the cations. Typically, other terms such as the Vashishta-
Rahman  potential77, which capture interactions of the cations with the slabs atoms especially oxygen, contribute 
higher order terms neglected herein. This requires that the diffusion coefficient, including cation-cation correla-
tion  terms78, satisfy the Einstein-Smoluchowski relation, 

 as β̄ → ∞ , where we have used the result in Eq. (15a). Thus, D = 2/M requires we have µM/2 = β̄.
Observe that, when cation-cation correlation ( j  = k ) terms vanish, the diffusion coefficient becomes the 

self-diffusion coefficient, whereas √µ takes the role of frequency of the harmonic oscillator. Moreover, since the 
mobility is a constant, we can re-define it as 16πG ≡ µ , where G ∼ a2 and a is taken to be the lattice constant 
with dimensions of length. We thus have, β̄ = 8πGM and N = 2k = β̄M = 4GM2 , where G is a gravitational 
constant, in obvious comparison with Schwarzschild black hole thermodynamics.18

ds2M = −ησρdx
σ dxρ = dt2 − dx2 − dy2 − dz2,

(11)∂µF
µν = 4π Jν , ∂µ

∗Fµν = 0,

(12)ρ2D(x, y) = −
1

4π
K(x, y).

(13a)�JAC = −D �∇ρ = ρ2D �p,

(13b)ρ(�AC) ∝ exp

(

−
1

2
β̄M�AC

)

,

(14a)�p = �∇�AC,

(14b)0 =
d�p
dt

= −β̄−1�p+ �n× �E.

(15a)N/β̄ =
N
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〉
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1

2

N
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Results
Conductance spikes. We note that, Eqs. (10) and (13) require that the diffusion current takes the Chern-
Simons  form79, 

where σ = 2πβ̄Dρ = µρ is the conductivity of a single primitive cell, µ = 2πβ̄D is the mobility (Einstein-
Smoluchowski equation) and,

is the Chern-Simons level. However, the current (density) we are interested in is not necessarily the Hall current, 
�JAC but the spatial part of Jµ,

 which couples to the electromagnetic tensor, Fµν in Maxwell’s equations given in Eq. (11). Consequently, this 
predicts conductance spikes whenever k → k + 1 primitive cells containing N = 2k → N + 2 = 2k + 2 cation 
sites are activated in the (de-)intercalation process. However, due to typically low measurement sensitivity in 
existing experimental data, the integer nature of the conductance cannot be ascertained. Nonetheless, distinct 
conductance spikes can be observed at low resolution (i.e k → k + w with w ∈ N ≫ 1 ) at specific voltage values 
as shown Fig. 3.

The low resolution is an artifact of the multi-layered nature of the materials, with each honeycomb lattice not 
only contributing active primitive cells with cationic sites during the extraction but also multiple sites getting 
activated at once at spread out external voltage values. Moreover, experimental data suggests that a large activa-
tion energy, Ea ≫ EKa ≃ 121 meV, where EKa  is the activation energy of potassium, K cations in the honeycomb 
 lattice46 and the presence of cationic vacancies before the extraction process would tend to disfavor the cation 
extraction process from occurring at evenly spread-out (low to high) voltage values during cycling, often lead-
ing to a solitary broad current peak centered at the high voltage regime, for instance, as can be seen in the I–V 
cycling characteristics for A2 Ni2TeO6 with A = Li, Na, K , since the activation energy for Li and Na is vastly 
greater than that of K, i.e. ELia > ENaa > EKa .2 Consequently, we have plotted only the Current, I – Voltage, V 
characteristics of the extraction process for K2Ni2TeO6 in Fig. 3, which exhibits several distinct current peaks 
across varied voltage values.

Moreover, we can employ Eq. (8), which suggests the partition function,

is given by the sum over different geometries of the manifold with distinct topology, 

(17a)�JAC =
k

2π
σ (�n× �E),

(17b)k =
N

2
= β̄M/2 ∈ N,

(17c)�J = �n× �JAC,

(18)Z ∝
∑

A∈h
ρ(�AC)

∣

∣

∣

A∈h
,

(19a)Z =
∑

A∈h
fh exp(2πk χ(N , h)),

Figure 3.  (a) Current, I–Voltage, V characteristics derived from cyclic voltammetry experiment of the K cation 
extraction (charging) process with K2Ni2TeO6 as the cathode in a two-electrode setup. K metal was used as the 
counter electrode and the scanning rate was set to 0.1 mVs−180. The current peaks at varied spread-out voltage 
values reflective of the small activation energy of K cations in the honeycomb layered oxide material. (b) The 
conductance, dI/dV ∼ wσ of K2Ni2TeO6 during the charging process displaying conductance spikes at varied 
spread-out voltage values corresponding to extractions of a large number of K cations from multiple honeycomb 
lattice layers, k → k + w , where the values of w ∈ N ≫ 1 and σ cannot be separately determined from the 
results. Nonetheless, the sharp conductance spikes occur evenly distributed at a rough interval of 0.1 V within 
the voltage interval, 3.2 V to 4.0 V (gray/shaded region)
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 where R = Rabg
ab is the 2D Ricci scalar, Rab = Racbdg

cd is the 2D Ricci tensor and Racbd = K(gabgcd − gadgbc) 
is the general form of the 2D Riemann tensor in Riemannian geometry with the equivalence, 

assumed to be valid. Evidently, Eq. (19) is the partition function of 2D quantum geometry in Euclidean 
 signature19,

 where the coupling constant corresponds to κ = 1/k . It is worth noting that, considering emergent geometries 
within crystals to describe defects is not entirely a novel idea, since it has been considered in great detail for 
disclinations and dislocations within the context of classical geometries with torsion.20,81–85

Finally, we are left to show that Eq. (19) (and equivalently, Eq. (20)) obeys the necessary modular symme-
tries defined in Eq. (2b), which are imposed by the primitive cell of the cations in honeycomb layered materials. 
Nonetheless, Eq. (2) approaches Eqs. (19) and (20) in the limit κ → 0 , as required.

Modular symmetries. The honeycomb lattice is spanned by the primitive basis, dx and dy defining a par-
allelogram enclosing k = 1 pair of cation sites. Since the unit cell in Fig. 2 is a rhombus, we have dx/dy = 1 . 
Moreover, transforming the basis by the matrix, 

where,

 we find that J1 and J2 , given in Eq. (2b), correspond to the re-scaling, dx′/dy′ = dx/dy + 1 = 2 and the discrete 
rotation, dx/dy → dx′/dy′ = −dy/dx = −1 , as illustrated in Figs. 4 and 5 respectively. Moreover, we shall 
consider the modular  form68 defined as, g(dx, dy) =

∫

f (k)dk to completely characterize the honeycomb lattice 
in an invariant manner, under J ∈ SL2(Z) with dx/dy = k . By definition, g(dx′, dy′) = g(dx, dy) is invariant 
under the modular transformations, i.e. k → J · k = (αk + β)/(γ k + δ) . Consequently, f(k) transforms as a 
modular form of weight 2,

Proceeding, we must take the large limit, k → ∞ , which spans the entire honeycomb lattice. Moreover, assuming 
df (k)/dk = 0 , we obtain, g(dx, dy) = kf (k).

Now, consider the diffusion dynamics of the cations given in Eqs. (6) and (14). Defining the velocity, 
�u = β̄�p = exp(�)d�x/ds , where ℓ is the arc length interval along the proper length, ds, we obtain, 

 where we have used β̄M = N = 2k from Eqs. (17b) and (8). Thus, setting f (k) = −2πχ(k) defines the modular 
form as the action of a particle of mass, M/2 in 2D Riemannian geometry, g(dx, dy) = (M/2)

∫

ds or equivalently 
the exponent of Eq. (19) (or Eq. (20)).

Liouville conformal field theory. To elucidate further properties of the formalism, we shall consider the 
Liouville  action86,

where g̃ab = exp(−2ωφ)gab is the 2D metric tensor with gab given in Eq. (6), K is the Gaussian curvature associ-
ated with gab and R̃ is the Ricci scalar associated with g̃ab , Q(ω) is a parameter dependent on k and genus h. Set-
ting � = ωφ and xa = ωXa , the metric in Eq. (24) reduces to the 2D identity matrix, g̃ab = exp(−2�)gab = δab 
requiring that the Ricci scalar vanishes, R̃ = 0 getting rid of the last term even when Q(ω)  = 0.

The Liouville action reduces to,

(19b)χ(N , h) =
1

4π

∫

A∈h
d 2x

√

det(gab)R(N),

(20a)
∑

A∈h
fh ↔

∫

D[gab(A)],

(20b)Z =
∫

D[gab] exp
(

1

2κ

∫

A

d 2x
√

det(gab)R

)

,

(21a)J

(

dx
dy

)

=
(

dx′

dy′

)

,

(21b)J =
(

α β

γ δ

)

∈ SL2(Z),

(22)f (J · k) = (γ k + δ)2f (k).

(23a)

M

2

∫

ℓ

ds =
M

2

∫

ℓ

exp(−�)

√

dx2 + dy2

=
M

2

∫

∂A

�u · d�x = k

∫

∂A

�p · d�x = k

∫

∂A

�∇�AC · d�x

=k�AC

∣

∣

∣

∂A
= −2πkχ ,

(24)Sω =
∫

d 2X

ω

√

det(g̃ab)

(

g̃ab
∂φ

∂Xa

∂φ

∂Xb
+ K exp(2ωφ)+ Q(ω)R̃φ

)
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where 
√

det(gab) = exp(2�) . Thus, for arbitrary Q(ω) , Eq. (25) can be varied with respect to �(�x) to yield Eq. 
(6). Moreover, we define the path integral as, 

which, after summation over j and functional integration over � yields,

 where, 

is the divergent vacuum energy of � with gab and � approximated as separate non-interacting fields, C is a con-
stant that will be set to vanish by regularization, A = 1

2π

∫

d 2x is the area element, A
(2π)2

∫

d 2p →
∑

p , �p are the 
allowed momenta/energies of the bosonic field, � , ωj = (ω, ω̄) , ω = ik and ω̄ = −ik . Thus, Riemann zeta func-
tion regularization  requires87,

 where θ = θ(s = 0).
To elucidate the nature of Eq. (26), we consider the Virasoro  algebra88, 

(25)Sω = ω

∫

d 2x
(

�∇� · �∇�+ K
√

det(gab)
)

,

(26a)Z =
∫

D[gab,�]
∑

j

exp
(

iSωj (�, gab)
)

,

(26b)Z =
∫

D[gab] cosh(2πk(χ + θ)),

(27a)2πθ =
A

2

∫

d 2p

(2π)2
ln p2 → 2π

∑

p

ln p+ C,

(27b)θ(s) =
∑

p

p−s ln p+ C =
∑

p

1

ps−1
,

(27c)C =
∑

p

1

ps−1
−

∑

p

p−s ln p,

Figure 4.  The honeycomb lattice of cations depicting the action of the J1 generator of SL2(Z) on the primitive 
vectors. (a) The primitive vectors dx and dy of the primitive cell of the honeycomb lattice, where dx/dy = 1 is 
the number of pairs of cations enclosed within the primitive cell; (b) J1 transformation corresponding to the 
re-scaling of the dx primitive vector and hence an expansion of the unit cell, dx/dy = 2.
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 spanned by two copies of commuting generators, Ln = L†−n and L̄n = L̄†−n for all integers n ∈ Z , where 
[L̄n, Lm] = 0 , c, c̄ is a real-valued constant (the central charge), satisfying [Ln, c] = [Ln, c̄] = [L̄n, c] = [L̄n, c̄] = 0 
and δm,n is the Kronecker delta. Meanwhile, the representations are characterized by a highest weight primary 
state, |L�, |L̄� satisfying, L0|L� = L|L� , �L|L0 = �L|L or L̄0|L̄� = L̄|L̄� , �L̄|L̄0 = �L̄|L̄ , L|n|�=0|L� = 0 , �L|L−|n|�=0 = 0 
and L̄|n|�=0|L̄� = 0 , �L̄|L̄−|n|�=0 = 0 . The rest, L−|n|�=0|L� �= 0 , L̄−|n|�=0|L̄� �= 0 and �L|L|n|�=0 �= 0 , �L̄|L̄|n|�=0 = 0 can 
be computed by applying the Virasoro algebra in Eq. (28).

Proceeding, it is known that the field V(α) = exp(2αφ) is primary when the conformal dimension is given 
 by89,90, 

 while the marginal condition for the primary field that guarantees conformal invariance of the theory is 
L = L̄ = 1 with α = ω = −ω̄ which yields,

with ω(k) = ik, ω̄(k) = −ik and Q̄(ω̄) = ω̄ + 1/ω̄ . The central charge is given by, 

(28a)[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δ(n+m),0,

(28b)[L̄n, L̄m] = (n−m)L̄n+m +
c̄

12
(n3 − n)δ(n+m),0,

(29a)L(k, h) = α(k, h)(Q(ω(k))− α(k, h)),

(29b)L̄(k, h) = −α(k, h)(Q̄(ω̄(k))+ α(k, h)),

(30)Q(ω) = ω(k)+ 1/ω(k) = i(k − 1/k) = −Q̄(ω̄),

Figure 5.  The honeycomb lattice and discrete rotations ( dx/dy = 1 ) generated by J2 ∈ SL2(Z) acting 
on the primitive cell. The primitive cell is rotated as shown in (a), (b), (c) and (d) by application of the J2 
transformation, such that J2

2
= −I2 corresponds to inversion of (a) to (d) and (b) to (c), where I2 is the 2× 2 

identity matrix, requiring that J4
2
= I2.
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which can be written as,

 where T = 1/β̄ is the temperature, E = M/2 is a defined energy in order for k = E/T = β̄M/2 as required. The 
conformal dimension and spin are given by, 

 respectively. However, the theory is known to be unitary only for c = 1 and c = ∞ corresponding to k = 1 and 
k → i∞ respectively. Since k is considered real, we must have k = 1 . Thus, k → ∞ not only breaks discrete 
rotation symmetry but also breaks unitarity. Indeed, unlike Eq. (30), Q ∼ ik is not invariant under k → −1/k , 
which breaks the discrete rotation symmetry generated by J2 , where k = N/2 is the number of primitive cells 
in the honeycomb lattice.

Now, we consider the partition function,

where q(ωj) = exp(i2πωj) , q̄(ω̄j) = exp(−i2πω̄j) and ωj = (ω, ω̄) , ω̄j = (ω̄,ω) , arriving at the energy, 

with k = β̄M/2 from Eq. (17b). Consequently,

where we have used Eq. (32) and defined the momentum of the primary field, V(α) = exp(2αφ) as,

 Recall that the marginal condition is guaranteed by L = L̄ = 1 , which now translates to,

for which χ(h) = 2− 2h yields, c = c̄ = 1+ 24h or equivalently Q2(k) = −(k − 1/k)2 = 4h.
In this case, unitarity is only achieved for h = 0 , which corresponds to the two-sphere satisfying k = 1 . Moreo-

ver, to reconcile with Eq. (26) the extra factor of −1/12 must correspond to the vacuum energy, θ = θ(s = 0) 
after regularization. This requires the momenta p ∈ N be positive integers, which yields the expression 
θ = 1+ 2+ 3+ · · · = −1/12 by regularization. Note that, for k ≥ 1 , all other positive values of h cannot satisfy 
the marginal condition and hence must break conformal invariance.

Discussion
If the Euler characteristic of the n-th primitive cell can be associated with a manifold defined by the Poincaré 
polynomial,

where b(p=0,1,2)
n  is the p-th Betti number, the Euler characteristic of emergent manifold can be calculated as 

the Euler characteristic of the connected sum of emergent manifolds corresponding to the primitive cells, 
χ(A1# · · ·An=h) = b

(0)
n + b

(2)
n −

∑h
n=1 b

(1)
n  with topology, h, which can be decomposed into a Fourier series 

given by Eq. (2c), where q(k) = exp(2π ik) = 1 with k ∈ N and we have used the fact that only the p = 1-st Betti 
numbers are additive in a connected sum. Consequently, the simplest real-valued partition function that respects 
the modular symmetries, J1 and J2 in their respective limits of k and is proportional to the partition function in 
Eq. (19) (and hence Eq. (20)) corresponds to Eq. (2), where the limit h, k → ∞ breaks the discrete rotation sym-
metry, J2 of the partition function, Z whilst promoting scale invariance, J1 . Mathematically, this is required since 
there exists no holomorphic modular forms of weight 2, invariant under both J1, J2 ∈ SL2(Z) transformations.68

Nonetheless, this can be remedied by considering the Euler characteristic proportional to the almost holo-
morphic modular form of weight 2 in the large genus limit ( h → ∞)68,

where k → k + iǫ = τ,

(31a)c(ω) = 1+ 6Q2(ω) = 1+ 6Q̄2(ω̄) = c̄(ω),

(31b)c(E,T) = 1− 6
(E − T)2

ET
,

(32a)� = L+ L̄ = 2α(Q(ω)− α) = −2α(Q̄(ω̄)+ α),

(32b)σ = i(L− L̄) = 2αi(Q(ω)+ Q̄(ω̄)) = 0,

(33)Z =
1

4

∑

j,h

fh�L, L̄|
(

qL0−c(h)/24(ωj)q̄
L̄0−c̄(h)/24(ω̄j)

)

|L, L̄� =
∑

h

fh cosh(2πβ̄ECFT),

(34a)ECFT(L, L̄, c, c̄) =
M

2
(L+ L̄− c/24− c̄/24),

(34b)ECFT(k, h) = Mα(k, h)(Q(k)− α(k, h))−MQ2(k)/4−M/24 =
M

2

(

χ(h)−
1

12

)

,

(34c)α(k, h) = Q(k)/2± i
√

χ(h)/2.

(35)c = c̄ = 1+ 6Q2(k) = 25− 12χ(h),

(36)Pn(Y) = b(0)n + b(1)n Y + b(2)n Y2

(37)χ(h, τ) = 2

(

E2(h, τ)−
3

πIm(τ )

)

,
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with E2(τ , h → ∞) the second Eisenstein series, σ1(0) = −1/24 and σ1(n > 0) the sum of the divisors of the 
positive integer, n. Thus, the Betti numbers for the emergent geometry of the honeycomb lattice primitive cells 
correspond to the two-torus, 

where for such h primitive cells in a connected sum, we set,

 Thus, unlike in Liouville CFT, modular invariance and hence conformal invariance is guaranteed for all integer 
values of h and k. However, it is broken for the primitive cell when χn  = 0 , corresponding to a phase transition.67

To discuss the effects of such a phase transition, we note that, J22 = −I2 , where,

which implies the unit basis acquires a minus sign under J22 . Since J2 exchanges the basis dx with dy and vice-
versa, it corresponds to a discrete rotation when acting on the primitive cell. There are 4 such discrete rotations 
such that J4n2  correspond to complete 2πn rotations of the primitive cell, where n ∈ N is a real number. In addi-
tion, J2(2n+2)

2  exchanges one cationic site in the primitive cell with the other. Thus, under the exchange of two 
cations belonging to the same primitive cell, the transformation picks up a minus sign. This can be understood 
as the origin of the pseudo-degree of freedom we shall refer to as pseudo-spin, which distinguishes the two sub-
lattices of the honeycomb lattice.13,67

Under specific conditions, the pseudo-spin of the graphene lattice can be linked to the spin of the electrons 
localized on the carbon atoms in the sub-lattice.13 However, for cations in honeycomb layered oxides, no such 
identification can be affirmed. Nonetheless, the pseudo-spin degree of freedom, coupled with the SL2(Z) group 
imply the partition function given in Eq. (2a) that the underlying theory of cations is a conformal field theory 
whose ground state must avoid pseudo-spin frustration by pseudo-spin anti-ferromagnetic behavior, but none-
theless prevents the cations from forming a stable honeycomb lattice due to a repulsive exchange interaction 
which can be offset by pairing of opposite pseudo-spin degrees of freedom.67

The effective theory for two pseudo-spin cations ( j = 1, 2 ) in k = βM/2 = N/2 non-interacting honeycomb 
primitive cells corresponds to the 1D Ising  Hamiltonian91,

where,

B(h) = 2πMχ(h)/2 is the pseudo-magnetic  field14,67 in the z-direction interacting with the pseudo-spins, σz 
which is taken to be proportional to the Euler characteristic, χ(h) , while A(h) is the Heisenberg term represent-
ing the exchange interaction, assumed to depend on the genus, h = ν + 1 with ν the cationic vacancy number.

This Ising model is exactly solvable, where standard calculation for the partition function  yields92,

where Trh,s is the trace over the genus h and spins σ , and �± are the eigenvalues of the transfer matrix,

given by,

with,

Thus, the non-interacting system of k primitive cells occupied by pairs of N = 2k cations interacting via their 
pseudo-spins and the pseudo-magnetic field yields the partition function in Eq. (2a) where fh = 2 exp(β̄A(h)) , 
which takes on varied values for different topology configurations, h. Moreover, the exponents of components of 

(38)E2(h, τ) = −24

h
∑

n=0

σ1(n)q
n(τ ),

(39a)b(0)n = b(2)n = −24σ1(0) = 1, b(1)n = 2,

(39b)ǫ = Im(τ ) =
6/π

2h− 48
∑h

n=1 σ1(n)q
n(k)

.

(40)I2 =
(

1 0
0 1

)

,

(41)HIsing = −
1

2

∑

j,j′=1,2

Ajj′(h)σ
j
zσ

j′
z − B(h)

∑

j=1,2

σ
j
z ,

(42)Ajj′(h) =
(

0 A(h)
A(h) 0

)

,

(43)Z = Trh,σ exp(−β̄HIsing) = Trh,σP =
∑

h

�+(h)+
∑

h

�−(h) =
∑

h

fh exp(2πkχ(h)),

(44)P =
(

exp(−β̄E↑) exp(−β̄E↑↓)
exp(−β̄E↓↑) exp(−β̄E↓)

)

,

(45)�± = exp(β̄A) cosh β̄B±
√

exp(2β̄A) sinh2(β̄B)+ exp(−2β̄A),

(46)E↑↓ = E↓↑ = A, E↑ = −(B+ A), E↓ = (B− A).
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the transfer matrix correspond to the pseudo-spin energy states, where E↑ − E↓ = 2B corresponds to a gapped 
phase where the honeycomb lattice bifurcates into bilayers with energies E↑ and E↑ due to a finite pseudo-
magnetic field, B  = 0 , whereas E↑↓ = E↓↑ = A correspond to the ferromagnetic ( A > 0 ) and anti-ferromagnetic 
( A < 0 ) alignment of the pseudo-spins.

To avoid pseudo-spin frustration when B = 2πMχ(h)/2 = 0 (two-torus, χ(h) = 0 ), the honey-
comb lattice must be anti-ferromagnetic described by the singlet bound state, (| ↑↓� − | ↑↓�)/

√
2 , 

( �σ 1
z σ

2
z � = −3/4, �

∑

j σ
j
z� = 0 ), with A = −|A| < 1 , which disfavors the ferromagnetic condition.93 None-

theless, for a finite pseudo-magnetic field, B  = 0 ( χ(h)  = 0 ) the triplet bound state, (| ↑↓� + | ↑↓�)/
√
2 , 

�σ 1
z σ

2
z � = 1/4, �

∑

j σ
j
z� = 1 ) is allowed, corresponding to other topology configurations. We are interested in 

χ(h) = 2 , corresponding to the unitarity condition for marginal fields in Liouville conformal field theory. In 
this case, 

is the potential energy of the resultant bond, �r = �r↑ − �r↓ is the 3D relative position of the pseudo-spin up and 
down cations, x = |�r| , K = 1/r2 is the Gaussian curvature of the two-sphere ( S2 ) and due to the point like nature 
of the Fermi surface, JRKKY(r) ≡ −2Mr0/3r

3 is taken to be the non-oscillatory Ruderman-Kittel-Kasuya-Yosida 
(indirect exchange) interaction mediated by the conduction electrons of the cations, where r0 ≥ 0 is a distance 
scale to be determined.94,95 Thus, the energy density (integrand),

 corresponds to a metallophilic  interaction67 between the pseudo-spins in the primitive cell separated 
by a distance, r apart in a stable bond forming bilayers. The bilayers are stable when dV(r)/dr = 0 and 
d2V(r)/dr2|r=r0 > 0 , corresponding to the separation distance r = r0 between the honeycomb sub-lattices, 
which can be determined experimentally.63,67 Consequently, this finite distance scale breaks scale/conformal 
invariance of the theory.

In conclusion, we have constructed a consistent framework to treat cationic vacancies in honeycomb layered 
materials as topological defects, h, by relating the Euler characteristic of the manifold to modular symmetries and 
2D quantum geometries.19 The framework predicts integer conductance spikes during (de-)intercalation process, 
proportional to the number of active cation sites, k → k + w participating in the diffusion process at high resolu-
tion, w ∼ 1 ∈ N , which remain unobserved. Nonetheless, the framework greatly elucidates the geometric nature 
of the diffusion process which occur in these novel materials, and the crucial role played by cationic vacancies 
as topological defects, and hence should find great utility in finding avenues for performance optimization of 
such cathode materials for energy storage.42,43 Further theoretical, computational and experimental treatments 
and applications are beyond the scope of the present work.2,17,67
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