
CoGAPS 3: Bayesian non‑negative
matrix factorization for single‑cell analysis
with asynchronous updates and sparse data
structures
Thomas D. Sherman1, Tiger Gao2 and Elana J. Fertig1,3,4* 

Background
Non-negative matrix factorization (NMF) techniques have emerged as powerful tools to
identify the cellular and molecular features that are associated with distinct biological
processes from single cell data [3–5, 7, 14, 16]. Bayesian factorization approaches can
mitigate local optima and leverage prior distributions to encode biological structure in
the features [9, 12]. However, the computational cost of implementing these approaches
may be prohibitive for large single cell datasets. Many NMF methods can be run in

Abstract 

Background:  Bayesian factorization methods, including Coordinated Gene Activity
in Pattern Sets (CoGAPS), are emerging as powerful analysis tools for single cell data.
However, these methods have greater computational costs than their gradient-based
counterparts. These costs are often prohibitive for analysis of large single-cell datasets.
Many such methods can be run in parallel which enables this limitation to be over-
come by running on more powerful hardware. However, the constraints imposed by
the prior distributions in CoGAPS limit the applicability of parallelization methods to
enhance computational efficiency for single-cell analysis.

Results:  We developed a new software framework for parallel matrix factorization in
Version 3 of the CoGAPS R/Bioconductor package to overcome the computational
limitations of Bayesian matrix factorization for single cell data analysis. This paralleliza-
tion framework provides asynchronous updates for sequential updating steps of the
algorithm to enhance computational efficiency. These algorithmic advances were cou-
pled with new software architecture and sparse data structures to reduce the memory
overhead for single-cell data.

Conclusions:  Altogether our new software enhance the efficiency of the CoGAPS
Bayesian matrix factorization algorithm so that it can analyze 1000 times more cells,
enabling factorization of large single-cell data sets.

Keywords:  Single cell, Matrix factorization, Pattern detection, Unsupervised learning

Open Access

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat​iveco​mmons​.org/licen​ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/publi​
cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Sherman et al. BMC Bioinformatics (2020) 21:453
https://doi.org/10.1186/s12859-020-03796-9

*Correspondence:
ejfertig@jhmi.edu
1 Department of Oncology,
Johns Hopkins University
School of Medicine,
Baltimore, MD, USA
Full list of author information
is available at the end of the
article

http://orcid.org/0000-0003-3204-342X
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-020-03796-9&domain=pdf

Page 2 of 6Sherman et al. BMC Bioinformatics (2020) 21:453

parallel, and thereby leverage the increasing availability of suitable hardware to scale for
analysis of large single cell datasets [1, 8, 10].

Previously, we developed CoGAPS as a sparse, Bayesian NMF approach for bulk [6, 9,
13] and single-cell genomics analysis [3, 11]. Comparison studies to gradient-based NMF
[9, 11] and autoencoders [11] demonstrated the unique robustness of this approach to
initialization and its inference of dynamic biological processes in bulk and single cell
datasets. Further comparison of this approach to principal component analysis and
independent component analysis demonstrated the unique ability of this approach to
infer transcriptional signatures unique to specific individuals and tissues in GTEx [12].
CoGAPS was designed to perform Gibbs sampling for a unique prior distribution that
adapts the level of sparsity to the distribution of expression values in each gene and cell.
While this design allows CoGAPS to adapt to different types of data, it also imposes a
constraint on the algorithm that requires the update steps to be proposed sequentially.
While the sequential updates of CoGAPS limit implementation of embarrassingly paral-
lel computational approaches, we present a new method for isolating the sequential por-
tion of CoGAPS so that the majority of the algorithm can be run in parallel. Additionally,
we derive an optimization for sparse data in order to take advantage of the nature of
many single-cell data sets. In combination, these new features in CoGAPS version 3.2
allows for efficient Bayesian NMF analysis of large single cell data sets.

Implementation
The CoGAPS algorithm

The input for CoGAPS is a data matrix of single-cell data with N measures (e.g., genes,
genomic coordinates, proteins) and M cells, D ∈ R

N×M , and a number of patterns (fea-
tures) to learn, K  . It factors D into two lower dimensional matrices, A ∈ R

N×K and
P ∈ R

K×M . The columns of the A matrix contains relative weights of each measurement
for the learned features and the corresponding rows of the P matrix contains the relative
expression of those features in each cell [12]. CoGAPS assumes the elements of D are
normally distributed with mean AP and variance proportional to D . The algorithm has
a Gamma prior on each element of A and P whose shape hyper parameter has a Poisson
prior. This model encodes a sparsity constraint that adapts to the relative sparsity of each
gene or cell in the data [11]. In version 3.2 of CoGAPS, the input matrix D can now be
passed as either a data matrix or a Single Cell Experiment object. The output for A and P
is stored in a Linear Embedding Matrix to enable compatibility with emerging single-cell
workflows Bioconductor.

Asynchronous updates

Although the algorithm that determines the order of the matrix updates in CoGAPS
must be run sequentially, the large number of measurements in genomics data pro-
vide feasibility for running the most computationally intensive portion of the algo-
rithm in parallel. Notably, the proposal for which matrix element to update can
be made efficiently, whereas evaluating the new value for that element requires an
expensive calculation across a row or column of the data. We take advantage of this
fact with an asynchronous updating scheme that yields a Markov chain that is equiva-
lent to the one obtained from the standard sequential algorithm [6]. In order to do

Page 3 of 6Sherman et al. BMC Bioinformatics (2020) 21:453 	

this, we build up a queue of proposals using the sequential algorithm until a conflict-
ing proposal is generated, at which point we evaluate the entire queue of proposals in
parallel.

The asynchronous updating scheme heavily relies on the designation of conflicting,
or dependent, proposals. Specifically, if two proposals are independent, they must be
able to be evaluated in any order without one impacting the sampling distribution of
the other. This allows a queue of independent proposals to be evaluated in parallel and
still produce a deterministic result. One example of dependent proposals is given here
(Fig. 1) and a full accounting of all possible conflicts can be found in Additional file 1.

Sparse data structures

Single-cell data tends to be sparse. Therefore, the natural solution for reducing mem-
ory overhead is to use sparse data structures to represent the data D in the analysis.
While the data, D , may be very sparse, the weights in A and P correct for dropout
and therefore have a product that may be largely non-zero. Traditionally, CoGAPS
caches this product to reduce the number of calculations at each step. However, cach-
ing AP introduces an unacceptable memory overhead when the data is stored in a
sparse format. To address this, we separate the matrix calculations into terms that can
be efficiently calculated using only the non-zero entries of D and terms that can be
precomputed before each batch of updates as described in detail in Additional file 1.
By doing this, we can make the computation time proportional to the sparsity of the
data. However, since storing the data in a sparse format requires the calculation of AP
during the update steps, there is a performance trade-off that needs to be considered.
Typically, when the data is more than 80% sparse it is more efficient to use the sparse
optimization, even though it requires calculating AP.

Fig. 1  Schematic for the asynchronous updating scheme used in CoGAPS. Updates are proposed
sequentially until a conflicting proposal is generated, at which time the existing queue of proposals is
evaluated in parallel. In this case, proposed change #4 is conflicting since it is in the same row as #2. When
evaluating a proposal, an entire row or column of AP is used in the calculation of the conditional distribution
used to perform Gibbs sampling. When a change is made in row n of A , the entire nth row of AP changes.
So, if another change is later proposed in row n , the value of AP used will depend on the previous proposal
thereby changing the conditional distribution for this new proposal. This is exactly the case here for #2 and
#4. Changes #1, #2, #3 can be processed in parallel since they do not conflict with each other

Page 4 of 6Sherman et al. BMC Bioinformatics (2020) 21:453

Results
We simulated three sparse single-cell datasets with the R package Splatter [15]. We var-
ied the level of sparsity in each data set and tested the amount of memory used with
and without the sparse optimization enabled. We also measured the run time in both
the single-threaded and multi-threaded case. Table 1 gives a high-level overview of the
performance differences. For example, with 2000 genes and 2000 cells when the data is
90% zeroes, using the sparse optimization and 4 threads will give identical results to the
standard algorithm in 1/5 of the time while using 1/25 of the memory.

We also tested the performance on a single-cell 10X data set generated at the Broad
Institute [2]. We ran a benchmark on a subset of 37,000 human immune cells (umbili-
cal cord blood) and only kept the 3000 highest variance genes. In this case, enabling the
sparse optimization reduced memory overhead by 82% and cut the run time by 74%.
When using 4 threads instead of 1, the run time was cut by an additional 36%. We fur-
ther ran this benchmark on random subsets of this data to benchmark performance as
a function of number of genes and number of cells (Fig. 2). We observe that the running
time in these simulations increases linearly with both the number of cells and the num-
ber of genes as expected.

Conclusions
In this paper, we present an algorithm and software to enable parallelization of CoGAPS
to enable analysis of large single cell datasets. This parallelization was done by combining
existing methods for Gibbs sampling [1, 8, 10] with a new infrastructure for the updat-
ing steps in CoGAPS. Prior to the implementation of an asynchronous updating scheme,
CoGAPS was applied to large data sets by using a distributed version of the algorithm,
GWCoGAPS, that performed analysis across random sets of genes [13] or random sets
of cells [11]. This distributed version leveraged the observation that the learned values of
A and P are robust across these random sets. Future work combining the asynchronous
and distributed parallelization methods will be critical to further enhance performance
by utilizing all CPU cores efficiently.

Availability and requirements

Project name: CoGAPS
Project home page: https​://doi.org/doi:10.18129​/B9.bioc.CoGAP​S
Operating systems: Platform independent
Programming languages: R and C++

Table 1  Relative performance of the sparse optimization on 2000 genes and 2000 cells,
baseline is the standard algorithm with 1 thread and no sparse optimization

Data sparsity (%) Memory (MB) Runtime (1 thread) Runtime
(4
threads)

70 0.14 1.92 0.62

80 0.09 1.24 0.42

90 0.04 0.42 0.20

https://doi.org/doi:10.18129/B9.bioc.CoGAPS

Page 5 of 6Sherman et al. BMC Bioinformatics (2020) 21:453 	

Other requirements: R version 3.6 or higher
Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03796​-9.

Additional file 1: Extended methods describing the asynchronous update algorithm to enhance parallelization and
efficiency for the Bayesian NMF in Version 3.0.

Abbreviations
CoGAPS: Coordinated Gene Activity in Pattern Sets; CPU: Central processing unit; NMF: Non-negative matrix factorization.

Acknowledgements
The authors thank Genevieve Stein-O’Brien, Emily Davis-Marcisak, Loyal Goff, and Ted Liefeld for helpful discussions and
benchmarking algorithm performance.

Authors’ contributions
TDS and EJF designed the study and algorithms. TDS and TG implemented all algorithms and developed all software.
EJF oversaw the study. TDS, TG, and EJF wrote and edited the manuscript. All authors have read and approved the
manuscript.

Funding
This work was supported by grants from the NIH (NCI R01CA177669, U01CA196390, U01 CA212007, P30 CA006973, and
a Pilot Project from P50 CA062924; NIDCR R01 DE027809), the Chan-Zuckerberg Initiative DAF (2018-183444) an advised
fund of the Silicon Valley Community Foundation, the Johns Hopkins University Catalyst and Discovery awards, the Johns
Hopkins University School of Medicine Synergy Award, the Lustgarten Foundation, and the Allegheny Health Network-
Johns Hopkins Cancer Research Fund. The funders provided salary support and compute costs for the experiments, and
did not influence the design or analyses performed in this study.

Availability of data and materials
The datasets analyzed during the current study are available from Bo Li et al. Census of Immune Cells. Broad Inst. Mass.
Inst. Technol. Howard Hughes Med. Inst. Retrieved from https​://data.human​cella​tlas.org/explo​re/proje​cts/cc95f​f89-2e68-
4a08-a234-480ec​a21ce​79.

Fig. 2  Run time (in hours) of CoGAPS on random subsets of cells for a subset of 1000 genes (left) and
random subsets of genes for a subset of 1000 cells (right) from the Li et al. [8] umbilical cord blood single
cell dataset. Dotted line in the left plot corresponds to the values in the right plot and is included for scale
reference

https://doi.org/10.1186/s12859-020-03796-9
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79

Page 6 of 6Sherman et al. BMC Bioinformatics (2020) 21:453

Ethics approval and consent to participate
This research involved neither human nor animal subjects.

Consent for publication
Not applicable.

Competing interests
The authors declare they have no competing interests.

Author details
1 Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. 2 Department of Com-
puter Science, Johns Hopkins University, Baltimore, MD, USA. 3 Department of Applied Mathematics and Statistics, Johns
Hopkins University, Baltimore, MD, USA. 4 Department of Biomedical Engineering, Johns Hopkins University School
of Medicine, Baltimore, MD, USA.

Received: 30 November 2019 Accepted: 1 October 2020

References
	1.	 Ahn S, et al. Large-scale distributed Bayesian matrix factorization using stochastic gradient MCMC. In: Proceedings

of the 21th ACM SIGKDD international conference on knowledge discovery and data mining—KDD’15. Sydney:
ACM Press; 2015. p. 9–18.

	2.	 Bo Li, et al. Census of immune cells. Broad Inst. Mass. Inst. Technol. Howard Hughes Med. Inst. https​://data.human​
cella​tlas.org/explo​re/proje​cts/cc95f​f89-2e68-4a08-a234-480ec​a21ce​79. Accessed 2019

	3.	 Clark BS, et al. Single-cell RNA-seq analysis of retinal development identifies NFI factors as regulating mitotic exit
and late-born cell specification. Neuron. 2019;102:1111-1126.e5.

	4.	 Cleary B, et al. Efficient generation of transcriptomic profiles by random composite measurements. Cell.
2017;171:1424-1436.e18.

	5.	 Duren Z, et al. Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations. Proc
Natl Acad Sci. 2018;115:7723–8.

	6.	 Fertig EJ, et al. CoGAPS: an R/C++ package to identify patterns and biological process activity in transcriptomic
data. Bioinform Oxf Engl. 2010;26:2792–3.

	7.	 Kotliar D, et al. Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-
Seq. eLife. 2019;8:e43803.

	8.	 Li F, et al. A fast distributed stochastic gradient descent algorithm for matrix factorization. In: JMLR: workshop and
conference proceedings. 2014;36:77–87.

	9.	 Ochs MF, Fertig EJ. Matrix factorization for transcriptional regulatory network inference. In: 2012 IEEE symposium on
computational intelligence in bioinformatics and computational biology; 2012. p. 387–96.

	10.	 Schmidt MN, et al. Bayesian non-negative matrix factorization. In: Adali T, et al., editors. Independent component
analysis and signal separation. Lecture notes in computer science. Berlin: Springer; 2009. p. 540–7.

	11.	 Stein-O’Brien GL, et al. Decomposing cell identity for transfer learning across cellular measurements, platforms, tis-
sues, and species. Cell Syst. 2019;8:395-411.e8.

	12.	 Stein-O’Brien GL, et al. Enter the matrix: factorization uncovers knowledge from omics. Trends Genet.
2018;34:790–805.

	13.	 Stein-O’Brien GL, et al. PatternMarkers & GWCoGAPS for novel data-driven biomarkers via whole transcriptome NMF.
Bioinform Oxf Engl. 2017;33:1892–4.

	14.	 Welch JD, et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell.
2019;177:1873-1887.e17.

	15.	 Zappia L, et al. Splatter: simulation of single-cell RNA sequencing data. Genome Biol. 2017;18:174.
	16.	 Zhu X, et al. Detecting heterogeneity in single-cell RNA-Seq data by non-negative matrix factorization. PeerJ.

2017;5:e2888.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79
https://data.humancellatlas.org/explore/projects/cc95ff89-2e68-4a08-a234-480eca21ce79

	CoGAPS 3: Bayesian non-negative matrix factorization for single-cell analysis with asynchronous updates and sparse data structures
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Implementation
	The CoGAPS algorithm
	Asynchronous updates
	Sparse data structures

	Results
	Conclusions
	Availability and requirements
	Acknowledgements
	References

