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Background
Non-negative matrix factorization (NMF) techniques have emerged as powerful tools to 
identify the cellular and molecular features that are associated with distinct biological 
processes from single cell data [3–5, 7, 14, 16]. Bayesian factorization approaches can 
mitigate local optima and leverage prior distributions to encode biological structure in 
the features [9, 12]. However, the computational cost of implementing these approaches 
may be prohibitive for large single cell datasets. Many NMF methods can be run in 
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parallel, and thereby leverage the increasing availability of suitable hardware to scale for 
analysis of large single cell datasets [1, 8, 10].

Previously, we developed CoGAPS as a sparse, Bayesian NMF approach for bulk [6, 9, 
13] and single-cell genomics analysis [3, 11]. Comparison studies to gradient-based NMF 
[9, 11] and autoencoders [11] demonstrated the unique robustness of this approach to 
initialization and its inference of dynamic biological processes in bulk and single cell 
datasets. Further comparison of this approach to principal component analysis and 
independent component analysis demonstrated the unique ability of this approach to 
infer transcriptional signatures unique to specific individuals and tissues in GTEx [12]. 
CoGAPS was designed to perform Gibbs sampling for a unique prior distribution that 
adapts the level of sparsity to the distribution of expression values in each gene and cell. 
While this design allows CoGAPS to adapt to different types of data, it also imposes a 
constraint on the algorithm that requires the update steps to be proposed sequentially. 
While the sequential updates of CoGAPS limit implementation of embarrassingly paral-
lel computational approaches, we present a new method for isolating the sequential por-
tion of CoGAPS so that the majority of the algorithm can be run in parallel. Additionally, 
we derive an optimization for sparse data in order to take advantage of the nature of 
many single-cell data sets. In combination, these new features in CoGAPS version 3.2 
allows for efficient Bayesian NMF analysis of large single cell data sets.

Implementation
The CoGAPS algorithm

The input for CoGAPS is a data matrix of single-cell data with N measures (e.g., genes, 
genomic coordinates, proteins) and M cells, D ∈ R

N×M , and a number of patterns (fea-
tures) to learn, K  . It factors D into two lower dimensional matrices, A ∈ R

N×K  and 
P ∈ R

K×M . The columns of the A matrix contains relative weights of each measurement 
for the learned features and the corresponding rows of the P matrix contains the relative 
expression of those features in each cell [12]. CoGAPS assumes the elements of D are 
normally distributed with mean AP and variance proportional to D . The algorithm has 
a Gamma prior on each element of A and P whose shape hyper parameter has a Poisson 
prior. This model encodes a sparsity constraint that adapts to the relative sparsity of each 
gene or cell in the data [11]. In version 3.2 of CoGAPS, the input matrix D can now be 
passed as either a data matrix or a Single Cell Experiment object. The output for A and P 
is stored in a Linear Embedding Matrix to enable compatibility with emerging single-cell 
workflows Bioconductor.

Asynchronous updates

Although the algorithm that determines the order of the matrix updates in CoGAPS 
must be run sequentially, the large number of measurements in genomics data pro-
vide feasibility for running the most computationally intensive portion of the algo-
rithm in parallel. Notably, the proposal for which matrix element to update can 
be made efficiently, whereas evaluating the new value for that element requires an 
expensive calculation across a row or column of the data. We take advantage of this 
fact with an asynchronous updating scheme that yields a Markov chain that is equiva-
lent to the one obtained from the standard sequential algorithm [6]. In order to do 
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this, we build up a queue of proposals using the sequential algorithm until a conflict-
ing proposal is generated, at which point we evaluate the entire queue of proposals in 
parallel.

The asynchronous updating scheme heavily relies on the designation of conflicting, 
or dependent, proposals. Specifically, if two proposals are independent, they must be 
able to be evaluated in any order without one impacting the sampling distribution of 
the other. This allows a queue of independent proposals to be evaluated in parallel and 
still produce a deterministic result. One example of dependent proposals is given here 
(Fig. 1) and a full accounting of all possible conflicts can be found in Additional file 1.

Sparse data structures

Single-cell data tends to be sparse. Therefore, the natural solution for reducing mem-
ory overhead is to use sparse data structures to represent the data D in the analysis. 
While the data, D , may be very sparse, the weights in A and P correct for dropout 
and therefore have a product that may be largely non-zero. Traditionally, CoGAPS 
caches this product to reduce the number of calculations at each step. However, cach-
ing AP introduces an unacceptable memory overhead when the data is stored in a 
sparse format. To address this, we separate the matrix calculations into terms that can 
be efficiently calculated using only the non-zero entries of D and terms that can be 
precomputed before each batch of updates as described in detail in Additional file 1. 
By doing this, we can make the computation time proportional to the sparsity of the 
data. However, since storing the data in a sparse format requires the calculation of AP 
during the update steps, there is a performance trade-off that needs to be considered. 
Typically, when the data is more than 80% sparse it is more efficient to use the sparse 
optimization, even though it requires calculating AP.

Fig. 1  Schematic for the asynchronous updating scheme used in CoGAPS. Updates are proposed 
sequentially until a conflicting proposal is generated, at which time the existing queue of proposals is 
evaluated in parallel. In this case, proposed change #4 is conflicting since it is in the same row as #2. When 
evaluating a proposal, an entire row or column of AP is used in the calculation of the conditional distribution 
used to perform Gibbs sampling. When a change is made in row n of A , the entire nth row of AP changes. 
So, if another change is later proposed in row n , the value of AP used will depend on the previous proposal 
thereby changing the conditional distribution for this new proposal. This is exactly the case here for #2 and 
#4. Changes #1, #2, #3 can be processed in parallel since they do not conflict with each other
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Results
We simulated three sparse single-cell datasets with the R package Splatter [15]. We var-
ied the level of sparsity in each data set and tested the amount of memory used with 
and without the sparse optimization enabled. We also measured the run time in both 
the single-threaded and multi-threaded case. Table 1 gives a high-level overview of the 
performance differences. For example, with 2000 genes and 2000 cells when the data is 
90% zeroes, using the sparse optimization and 4 threads will give identical results to the 
standard algorithm in 1/5 of the time while using 1/25 of the memory.

We also tested the performance on a single-cell 10X data set generated at the Broad 
Institute [2]. We ran a benchmark on a subset of 37,000 human immune cells (umbili-
cal cord blood) and only kept the 3000 highest variance genes. In this case, enabling the 
sparse optimization reduced memory overhead by 82% and cut the run time by 74%. 
When using 4 threads instead of 1, the run time was cut by an additional 36%. We fur-
ther ran this benchmark on random subsets of this data to benchmark performance as 
a function of number of genes and number of cells (Fig. 2). We observe that the running 
time in these simulations increases linearly with both the number of cells and the num-
ber of genes as expected.

Conclusions
In this paper, we present an algorithm and software to enable parallelization of CoGAPS 
to enable analysis of large single cell datasets. This parallelization was done by combining 
existing methods for Gibbs sampling [1, 8, 10] with a new infrastructure for the updat-
ing steps in CoGAPS. Prior to the implementation of an asynchronous updating scheme, 
CoGAPS was applied to large data sets by using a distributed version of the algorithm, 
GWCoGAPS, that performed analysis across random sets of genes [13] or random sets 
of cells [11]. This distributed version leveraged the observation that the learned values of 
A and P are robust across these random sets. Future work combining the asynchronous 
and distributed parallelization methods will be critical to further enhance performance 
by utilizing all CPU cores efficiently.

Availability and requirements

Project name: CoGAPS
Project home page: https​://doi.org/doi:10.18129​/B9.bioc.CoGAP​S
Operating systems: Platform independent
Programming languages: R and C++

Table 1  Relative performance of  the  sparse optimization on  2000 genes and  2000 cells, 
baseline is the standard algorithm with 1 thread and no sparse optimization

Data sparsity (%) Memory (MB) Runtime (1 thread) Runtime 
(4 
threads)

70 0.14 1.92 0.62

80 0.09 1.24 0.42

90 0.04 0.42 0.20

https://doi.org/doi:10.18129/B9.bioc.CoGAPS
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Other requirements: R version 3.6 or higher
Any restrictions to use by non-academics: None

Supplementary information
Supplementary information accompanies this paper at https​://doi.org/10.1186/s1285​9-020-03796​-9.

Additional file 1: Extended methods describing the asynchronous update algorithm to enhance parallelization and 
efficiency for the Bayesian NMF in Version 3.0.

Abbreviations
CoGAPS: Coordinated Gene Activity in Pattern Sets; CPU: Central processing unit; NMF: Non-negative matrix factorization.
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