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ABSTRACT: An environmentally benign protocol for the generation of nitrones from
benzylic secondary amines via catalyst-free oxidation of secondary amines using H2O2 in
MeOH or CH3CN is described. This methodology provides a selective access to a variety of
C-aryl nitrones in yields of 60 to 93%. Several studies have been performed to shed light on
the reaction mechanism and the role of the solvent.

The development of highly efficient and environmentally
friendly methodologies for the preparation of nitrones is

of great importance since this kind of compounds are valuable
synthetic intermediates and useful scaffolds in drug discovery.1

Nitrones are found in numerous natural products2 and many
studies have demonstrated the interest of benzylic nitrones as
therapeutic agents for several pathologies including athero-
sclerosis, septicaemia, stroke, and Alzheimer3 (Figure 1).
In addition, nitrones have been used as ligands in

organometallic chemistry4 and as spin traps in biological
studies.5 The diastereo- and enantioselective nucleophilic
additions to nitrones is a fundamental tool in organic
synthesis.6 Furthermore, the 1,3-dipolar cycloaddition reaction
of nitrones with alkenes has become one of the methods of
choice for the preparation of isoxazolidines, and a wide variety
of natural products has been prepared using this reaction as
key step.7

Among the available methodologies for the preparation of
nitrones, the condensation of carbonyl compounds with
hydroxylamines has arguably been the most used.8 However,
this procedure presents several limitations, such as the
availability of the hydroxylamines and the low reactivity
observed using ketones as carbonyl partner. Otherwise, nitro
compounds can be used as an alternative to hydroxylamines
under reductive conditions.9

Another main process for the synthesis of nitrones consists
of the oxidation of secondary hydroxylamines,10 imines (either
preformed11 or generated in situ form primary amines and
aldehydes12), isoxazolidines,13 N-alkyl-α-amino acids14 (via
regioselective decarboxylative oxidation), and secondary
amines. The great availability of secondary amines has made
the last option one of the most convenient. In fact, this
methodology has been used for preparative scale and as key
step in the synthesis of several natural products.15

Among all the oxidants used for nitrone synthesis from
amines, hydrogen peroxide is one of the most attractive for the
development of environmentally friendly processes since water
is the only by product of its reduction. In 1984, Murahashi and
co-workers reported the first example of catalytic direct

oxidation of secondary amines to nitrones with H2O2 in the
presence of Na2WO4/H2O.

16 Since then, several general and
efficient procedures have been developed using hydrogen
peroxide or its urea complex (UHP) as oxidant in combination
with different catalysts such as SeO2,

17 methyltrioxorhenium,18

and titanium19 or platinum20 complexes. In addition, several
heterogeneous catalysts have also been used.21 Alternatively,
the reaction can be also carried out in the presence of alkyl
hydroperoxides,22 oxone,23 dimethyldioxirane,24 m-CPBA,25

Davis oxaziridine,26 or molecular oxygen27 as oxidant.
To the best of our knowledge, most of the procedures

described to date for the preparation of nitrones from amines
using H2O2 as oxidant require the presence of a metal catalyst,
which is usually expensive and present environmental
problems. Herein, we report a facile and clean catalyst-free
oxidation protocol for the efficient preparation of nitrones
from benzylic secondary amines using hydrogen peroxide as
oxidant.
1,2,3,4-Tetrahydroisoquinoline was selected as the model

substrate for the oxidation process. This substrate is useful for
comparative purposes since its oxidation to nitrone with the
combination of different oxidants and catalytic systems has
been extensively studied.1 Initially, the reaction was performed
in the presence of four equivalents of H2O2 30% v/v in MeOH
at room temperature, leading to the formation of the nitrone
with a 27% of conversion after 24 h (Table 1, entry 1). An
increase of the equivalents of hydrogen peroxide leads to
complete conversion (entries 2 and 3). Higher reactivity was
observed at 50 °C allowing reducing the amount of H2O2 from
10 to 4 equiv and the reaction time to 12 h (entry 4). Further
decreasing the amount of hydrogen peroxide revealed that the
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reaction proceeded with a significant erosion of the reactivity
(entries 5 and 6). Similar results were obtained using EtOH as
solvent (entry 7). On the other hand, using less polar aprotic
solvents, such as CH2Cl2 or toluene, no conversion was
observed (entries 8 and 9). Interestingly, a very significant
improvement of the reactivity was observed using CH3CN as
solvent, complete conversion was achieved in only 2 h at room
temperature (entry 10). A similar outcome was observed using
only 2 equiv of H2O2 (entry 11). Finally, no reaction was
observed using a solvent with similar dielectric constant such a
DMF (entry 12).
With the optimized reaction conditions on hands, we then

investigated the scope of this oxidation reaction (Table 2). A
remarkably broad range of benzylic secondary amines could be
converted into the corresponding nitrones with good yields
using either MeOH (conditions A) or CH3CN (conditions B)
as solvent.
In general, better reactivity and slightly superior yields were

observed using CH3CN as solvent in most of the examples
studied. The influence of electronic character of the
substituents was first evaluated. Tetrahydroisoquinolines 1b
and 1c with strong electron donating substituents like methoxy
afforded the corresponding nitrones with high yields both
using conditions A or B (Table 2, entries 1 and 2). The
reaction also tolerates electron withdrawing groups. For
instance, 6-nitrotetrahydroisoquinoline effectively provides
the desired nitrone 2d in high yield (75% conditions A or
81% conditions B; entry 3). 1,2,3,4-Tetrahydroisoquinolines

with alkyl (2e) or aryl (2f) substituents at position 1 were
selectively oxidized in the benzylic more substituted position to
the corresponding nitrone derivatives under both conditions
(Table 2, entries 4 and 5). Dibenzylamine 1g was cleanly
converted to nitrone 2g in 71% (MeOH) or 73% (CH3CN)
yield(entry 6). Interestingly, this methodology also allowed the
straightforward preparation of chiral nitrone 2h,28 which has
been extensively employed in diastereoselective 1,3-dipolar
cycloadditions (entry 7). In this example, under both
conditions, the reaction takes place in the less hindered site,
suggesting kinetic control. Acyclic N-benzyl-N-alkyl substituted
amines 1i,j,k were selectively oxidized only on benzyl position
to nitrones 2i,j,k in good yields (entries 8, 9, and 10), although
it is required to carry out the reaction at 50 °C in both
solvents. The oxidation of 2-phenylpyrrolidine 1l and 2-
phenylpiperidine 1m also proceeded efficiently, leading to
nitrones 2l and 2m in comparable yields (entries 11 and 12).
Benzylic secondary amine 1n was also a suitable substrate,
albeit the process occurred with a somewhat lower yield. No
formation of nitrone 2o was observed when less nucleophilic
N-benzylaniline was tested under the same reaction conditions
and most of the starting material was recovered unaltered.
Dialkylamines are not suitable substrates for this trans-
formation, the reaction did not occur with cyclic (piperidine)
or acyclic (dioctylamine) substrates. In these examples,
complex reaction mixtures were obtained under optimized
reaction condition using MeOH or CH3CN as solvent.
To demonstrate the robustness and the synthetic utility of

the method, we scaled up the oxidation reaction either in
CH3CN or MeOH using 15 mmol of tetrahydroisoquinoline 1.
In both cases, the desired nitrone 2 was isolated in excellent
yields (Scheme 1, eq A). The reaction can also be carried out
using the urea-hydrogen peroxide adduct (UHP), a safe source
of hydrogen peroxide. UHP is cheap, easy to handle, and can
be stored for long periods without any change of the oxygen
content29,11a (Scheme 1, eq B).
Hydrogen peroxide has been extensively used as primary

oxidant in tertiary amine oxidations under either heteroge-
neous or homogeneous catalytic conditions.20 Nevertheless,
the reaction of tertiary amine 3 or electron richer trialkylamine
4 with H2O2 in MeOH at 50 °C did not show the N-oxide
formation (Scheme 2, eq A). Taking advantage of this
chemoselectivity, a secondary amine could be selectively
oxidized to nitrone in the presence of a tertiary amine. Thus,
oxidation of tetrahydroisoquinoline 1o exclusively afforded
nitrone 2o in 79% yield (Scheme 2, eq B).
Next, to gain some insights into the reaction mechanism

some experiments were performed. It is well stablished that
hydrogen peroxide could be activated toward nucleophilic
attack by the formation of a hydrogen bond.30 We

Figure 1. Examples of biologically active nitrones.

Table 1. Optimization of the Reaction Conditions

entry equiv T (°C) solvent time (h) conversion (%)a

1 4 rt MeOH 24 27c

2 8 rt MeOH 24 60
3 10 rt MeOH 24 >99
4 4 50 MeOH 12 >99 (91)b

5 2 50 MeOH 12 45c

6 3 50 MeOH 12 73c

7 4 50 EtOH 12 >99
8 4 50 CH2Cl2 24
9 4 50 toluene 24
10 4 rt CH3CN 2 >99 (93)b

11 2 rt CH3CN 2 >99 (90)b

12 2 rt DMF 12
aDetermined by 1H NMR in the crude reaction mixture. bYield after
chromatographic purification. cNitrone is the only observed product
in the 1H NMR spectra.
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hypothesized that H2O2 could be electrophilically activated by
MeOH, the OH moiety of the solvent forms a hydrogen bond
with H2O2 increasing the electrophilic character of the oxygen.

Accordingly, H2O2 did not oxidize secondary amines in aprotic
solvents such as CH2Cl2 or toluene. However, using UHP as
hydrogen peroxide source the reaction can be performed in

Table 2. Scope of Oxidation of Benzylic Secondary Amines to Nitrones

aConditions A: H2O2 30% v/v (4 equiv), MeOH, 50 °C, 12 h. bConditions B: H2O2 30% v/v (2 equiv), CH3CN, rt.
cYield after chromatographic

purification. dReaction at 50 °C. e4 equiv of H2O2 is used.
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toluene probably because the urea is able to activate H2O2 by
hydrogen bonding formation. Furthermore, reactions in
hexafluoro 2-propanol (HFIP) are faster than in MeOH
since the hydroxyl proton of HFIP forms a stronger hydrogen
bond because of the electron-withdrawing character of CF3
group.31 Interestingly, the use of HFIP as solvent allowed the
reduction of the number of equivalents of hydrogen peroxide
from 4 to 2 without erosion in reactivity. However, only 40%
of conversion was observed when the reaction was performed
at room temperature (Scheme 3).

On the other hand, it has been reported that the rate of
several oxidation reactions using aqueous H2O2 is significa-
tively increased in the presence of a nitrile in basic media via
the formation of a peroxymidic acid intermediate which rapidly
reacts with the secondary amine to afford the corresponding
nitrone and acetamide.32 The oxidation of 1a in acetonitrile as
solvent was monitored by ESI-MS detecting small amounts of
the ion [M + H+] (60.0446 m/z) that correspond to
acetamide. This oxidation process provides similar results
using only 2.5 equiv of acetonitrile or 4-bromobenzonitrile in

toluene as solvent (Scheme 4, eq A). However, only 5% of
conversion of the 4-bromobenzonitrile into the 4-bromophe-

nylacetamide was observed in the crude 1H NMR. In addition,
4-bromobenzonitrile was recovered unaltered after 12 h of
reaction with 2 equiv of H2O2 in toluene at room temperature
(Scheme 4, eq B). These results suggest that the
peroxyacetimidic acid is not the major oxidizing species in
these reactions.
It has been proposed that the oxidation of secondary amines

to nitrones is a two-step sequence involving an initial
formation of a hydroxylamine followed by oxidation of the
latter to nitrone.20 Alternatively, nitrones can also be prepared
by oxidation of imines.11,12 In our case, the reaction of imine 5
under the optimized oxidation conditions did not give the
corresponding nitrone, recovering the starting material
together with degradation products. On the other hand, the
oxidation of commercially available dibenzylhydroxylamine 6
took place with complete conversion to the corresponding
nitrone 2g. These results suggested that the hydroxylamine and
not the imine is the intermediate in the reaction pathway
(Scheme 5).

As mentioned before, 1,3-dipolar cycloaddition of nitrones is
one of the most straightforward methodologies for the
preparation of isoxazolidines. We next studied the possibility
of carrying out a one pot 1,3-dipolar cycloaddition of the
obtained nitrones with alkenes. Tetrahydroquinoline 1a was
treated with H2O2 in MeOH at 50 °C for 12h, subsequent
addition of N-methyl or N-phenyl maleimide to the reaction
mixture afforded the corresponding cycloadduct exo-7 or exo-8,
as a single diastereomer, in high yield, after 4 h.33 (Scheme 6).
We have developed a novel procedure for the selective

oxidation of benzylic secondary amines to nitrones using H2O2
as the sole oxidant in MeOH or CH3CN. An important
advantage of this methodology is that the reaction can be
performed under mild reaction conditions without any catalyst
or additive. It is also possible to carry out the reaction using
UHP as a safe source of anhydrous hydrogen peroxide.
Remarkably, the system allows the selective oxidation of

Scheme 1. Scale-up of the Oxidation of 1a and Use of UHP
as the Source of Hydrogen Peroxide

Scheme 2. Selective Oxidation of Secondary Amines in the
Presence of Tertiary Amines

Scheme 3. Reaction Using HFIP as Solvent

Scheme 4. ESI-MS Experiment and Reaction with 2.5 equiv
of Nitrile

Scheme 5. Control Experiments
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secondary amines in the presence of tertiary amines. Several
studies were performed in order to shed light on the ability of
MeOH and CH3CN to activate H2O2.

■ EXPERIMENTAL SECTION
General Methods. Dichloromethane and toluene were dried over

the PureSolv MD purification system. Reactions were monitored by
thin-layer chromatography carried out on 0.25 mm silica gel plates
(230−400 mesh). Flash column chromatographies were performed
using silica gel (230−400 mesh). NMR spectra were recorded on AU-
300 MHz instrument and calibrated using residual undeuterated
solvent (CDCl3) as internal reference. MS spectra were recorded on a
VG AutoSpec mass spectrometer.
All the chromatographic columns were carried out using

deactivated silica gel. Deactivated silica gel preparation: Et3N (5 mL)
was added to a suspension of 300g of silica gel in cyclohexane; the
mixture was stirred for 1 h, filtered, and dried under reduced pressure
on a rotary evaporator.
Nitrones 2a,23 2b,34 2c,35 2d,36 2e,37 2f,38 2g,23 2h,39 2i,40 2j,41

2l,42 2m,43 and 2n42 and cycloadducts 6 and 733 have been previously
described. Spectroscopic data match those previously reported.
General Procedure 1 (Conditions A). To a stirred solution of

amine (1 mmol) in MeOH (3 mL) H2O2 30% v/v (4 mmol, 453 μL)
was added. The resulting solution was stirred at 50 °C (oil bath) for
12 h, after cooling at room temperature CH2Cl2 (10 mL) and water
(10 mL) were added. The organic layer was separated, and the
aqueous phase was extracted with dichloromethane (10 mL). The
combined organic layers were washed with brine, dried over MgSO4,
and evaporated under reduced pressure. The crude mixture was
purified by flash column chromatography over deactivated silica gel to
afford the corresponding nitrone.
General Procedure 2 (Conditions B). To a stirred solution of

amine (1 mmol) in CH3CN (3 mL) H2O2 30% v/v (2 mmol, 227 μL)
was added. The resulting solution was stirred at room temperature for
the time indicated in Table 2, and CH2Cl2 (10 mL) and water (10
mL) were added. The organic layer was separated, and the aqueous
phase was extracted with dichloromethane (15 mL). The combined
organic layers were washed with brine, dried over MgSO4, and
evaporated under reduced pressure. The crude mixture was purified
by flash column chromatography over deactivated silica gel to afford
the corresponding nitrone.
N-4-Fluorobenzylideneisopropylamine N-Oxide (2k). Fol-

lowing the general procedure A, the reaction of N-(4-fluorobenzyl)-2-
propanamine (1k) (217 mg, 1.30 mmol) with H2O2 (5,2 mmol, 554
μL) in MeOH (4 mL) at 50 °C (oil bath) afforded after purification
by silica gel flash chromatography (EtOAc) the nitrone 2k (193 mg,
82%, yellow oil). Following the general procedure B, the reaction of
N-(4-fluorobenzyl)-2-propanamine (1k) (250 mg, 1.50 mmol) with
H2O2 (3 mmol, 340 mL) in CH3CN (4 mL) at rt, afforded after
purification by silica gel flash chromatography (EtOAc) the nitrone
2k (241 mg, 89%, yellow oil). 1H NMR (300 MHz, CDCl3): δ 8,34−
8.32 (m, 2H), 7.49 (s, 1H), 7.25−7.23 (m, 2H), 4.24 (sep, J = 7.1 Hz,
1H), 1.57 (d, J = 7.1 Hz, 6H). 13C{1H} NMR (75 MHz, CDCl3): δ
164.8, 161.5, 130.7, 130.6, 115.6, 115.4, 67.7, 20.9. HRMS (TOF MS
EI+): calculated for C10H12NOF, 181.0903; found, 181.0902 ([M+],
56).
6-Dimethylamino-3,4-Dihydroisoquinoline N-Oxide (2o).

Following the general procedure A, the reaction of 6-(dimethylami-
no)-1,2,3,4-tetrahydroisoquinoline (174 mg, 1 mmol) with H2O2 (4
mmol, 453 μL) in MeOH (4 mL) at 50 °C (oil bath) afforded after

purification by silica gel flash chromatography (CH2Cl2/MeOH 9/1)
the nitrone 2o (150 mg, 79%, yellow oil). 1H NMR (300 MHz,
CDCl3): δ 7,68 (s, 1H), 7.12−7.08 (m, 1H), 6.57−6.54 (m, 2H), 4.12
(t, J = 7.1 Hz, 2H), 3.15 (t, J = 7.1 Hz, 2H), 3.01 (s, 6H).
13C{1H}NMR (75 MHz, CDCl): δ 151.1, 135.5, 131.5, 127.3, 116.0,
110.6, 57.2, 39.8, 28.2. HRMS (ESI+): Calculated for C11H15N2O,
191.1181; found, 191.1179 ([M + H], 100).

Typical Procedure for the Cycloaddition Reaction. Cyclo-
aduct (7). To a stirred solution of tetrahydroisoquinoline 1a (0.5
mmol, 66 mg) in MeOH (2 mL) H2O2 30% v/v (2 mmol, 277 μL)
was added. The resulting solution was stirred at 50 °C (oil bath) for
12 h and N-methyl maleimide (0.5 mmol, 56 mg) was added. The
reaction was stirred at 50 °C (oil bath) for 4 h, and CH2Cl2 (10 mL)
and water (10 mL) were added, the organic layer was separated, and
the aqueous phase was extracted with dichloromethane (10 mL). The
combined organic layers were washed with brine, dried over MgSO4,
and evaporated under reduced pressure. The crude mixture was
purified by flash column chromatography (CH2Cl2/MeOH 99/1) to
afford nitrone 7 (97 mg, 75%, yellow oil). Spectroscopic data match
those previously reported.33
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