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Abstract

Fluxes are the central trait of metabolism and Kinetic Flux Profiling (KFP) is an effective method of measuring them. To
generalize its applicability, we present an extension of the method that estimates the relative changes of fluxes using only
relative quantitation of 13C-labeled metabolites. Such features are directly tailored to the more common experiment that
performs only relative quantitation and compares fluxes between two conditions. We call our extension rKFP. Moreover, we
examine the effects of common missing data and common modeling assumptions on (r)KFP, and provide practical
suggestions. We also investigate the selection of measuring times for (r)KFP and provide a simple recipe. We then apply
rKFP to 13C-labeled glucose time series data collected from cells under normal and glucose-deprived conditions, estimating
the relative flux changes of glycolysis and its branching pathways. We identify an adaptive response in which de novo serine
biosynthesis is compromised to maintain the glycolytic flux backbone. Together, these results greatly expand the
capabilities of KFP and are suitable for broad biological applications.
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Introduction

In recent years there has been renewed interest in metabolism

resulting from discoveries of its connections to gene regulation [1],

epigenetics [2], immunity [3], and pathogenesis of diseases such as

cancer [4–6]. Independently, technological advances in metabo-

lomics promise great improvement of our capabilities in metab-

olism studies and drug development [7–10]. However, despite the

surge of interest and technological advances, quantitative systems-

level characterization of the central trait of metabolism, metabolic

flux, has been scarce and challenging. This is in part due to the

mathematical nature of flux: rather than the amount of something

that is experimentally measurable, it is defined as the rate of

change in that amount and has to be inferred through modeling.

Several modeling frameworks exist for the purpose. First, the

century-old enzyme kinetics [11] and its systems analog, kinetic

models of metabolic networks, offer a natural bridge from amount

to flux, but unfortunately suffer from the ‘‘parameter problem’’

[12,13] of depending on many and usually poorly-characterized

kinetic parameters. Second, structural models such as Flux

Balance Analysis ambitiously aim to predict global distributions

of fluxes with minimal data, but the prediction accuracy is still at a

stage where validation against more direct estimation results is

necessary. Third, isotope-based methods exploit the elegant and

powerful experimental design of isotopes, and are the workhorse

for reliable flux estimations.

Among the isotope-based methods, Kinetic Flux Profiling (KFP)

[14,15] has been proven to be powerful [16–19], with a good

balance between experimental ease, model simplicity, and

prediction accuracy. In many ways complementary to Metabolic

Flux Analysis (MFA) [20], another major isotope-based method

which typically uses stationary isotopomer distribution data and is

good at estimating relative flux distributions at branch points, KFP

uses kinetic isotopomer distribution data and is good at estimating

absolute flux scales along linear pathways.

The basic idea of KFP can be illustrated using a toy metabolic

network. Consider a system of only one metabolite A connected to

the environment by an influx J1 and an outflux J2; the system is at

steady state so J1~J2~J (Figure 1a). KFP works by switching the

system from a 12C-labeled environment to a 13C-labeled one at

time t~0, measuring the concentrations of 13C-labeled A (termed

A�) at several time points thereafter, and estimating J from the

time series data of A�. After the switching of environment, A� will

gradually infiltrate the pool of A as a result of A�-carrying influx,

with the dynamics described by

dA�

dt
~J{J

A�

A
, with the initial condition A�(0)~0: ð1Þ

The two terms J and J
A�

A
in the right-hand side respectively

describe the infiltration of A� into the A pool by the influx and the
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opposing depletion by the outflux, and their net difference

describes the rate of change of A�. The equation is a first-order

linear ordinary differential equation (ODE), and can be solved

using standard techniques (see Text S1). Its solution is the simple

exponential approach function

A�(t)~A(1{e{Jt
A), ð2Þ

and geometrically corresponds to a family of curves parameterized

by A and J (Figure 1b).

With some measurements of A� along the curve, parameters A

and J can be estimated in a standard way: a least-squares fitting

algorithm gives the best fit, and sensitivity analysis or Monte Carlo

simulations give the uncertainties. However, it helps to understand

why KFP should work in this case. First, it is easy to see from Eq. 2

that parameter A determines the saturation level of A� and J=A

determines the rate at which the saturation level is approached; in

other words, A determines the scale and J=A determines the rate.

To highlight this, we define a rate parameter, m:J=A; its inverse,

tc:1=m~A=J , is conventionally called the characteristic time-scale

Figure 1. Understanding KFP and rKFP. (a) A schematic diagram of KFP applied to a toy metabolic network. At t~0, the system is switched from
a 12C-labeled environment to 13C-labeled one, and A� is measured at a few time points thereafter. (b) For a given trajectory of A�(t) (the black solid
curve), the three time regimes (linear, mixed and constant) are marked and three measurements are made (two in the mixed regime and one in the

constant). Normalizing it gives ÂA�(t) between 0 and 1 (the black dashed curve), parameterized by a single parameter m, which can be estimated by

comparing the normalized measurements to ÂA� ’s of different m’s (the red and blue dashed curves). (c) A schematic diagram of rKFP applied to the
same network in (a). Relative quantitation is performed on A� in two conditions (with subscripts x and y respectively) with the goal of estimating
rJ~Jy=Jx. (d) The ratio in m between âa�x(t) and âa�y(t) is rJ=rA (Eq. 6), and since m’s and rA are identifiable from relative quantitation, so is rJ .

doi:10.1371/journal.pcbi.1003958.g001

Author Summary

Metabolism underlies all biological processes, and its
quantitative study is crucial for our understanding. The
central trait of metabolism, metabolic fluxes, cannot be
directly measured and are estimated usually through
modeling. Existing modeling methods, however, are
limited by poorly-characterized parameters, crude preci-
sion, or labor-intensiveness. Motivated by these limita-
tions, and recognizing a most common goal in the field of
comparing the fluxes between two conditions, we develop
an extension of an existing method that takes in time-
series relative-quantitation data of isotope-labeled metab-
olites (a kind of data that modern metabolomic technol-
ogies readily generate), and outputs the relative changes
of fluxes in the metabolic networks of interest. We also
carefully examine some issues on model construction and
experimental design, and improve the reliability and
strength of the method. We apply our method to data
collected from cells in normal and glucose-deprived
conditions, demonstrate the efficacy of the method and
arrive at new biological insight.

Relative Changes of Metabolic Fluxes
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and numerically corresponds to the time needed to go from the

initial condition to 1{
1

e
(&0:63) of the saturation level. Second,

like the familiar Michaelis-Menten hyperbolic curves, the exponen-

tial approach curves can also be thought as having three regimes,

defined with respect to the characteristic time-scale: the linear

regime when t%tc, the constant regime when t&tc, and the mixed

regime in between when t*tc (Figure 1b). Measurements of A� in

the linear regime are informative of only J (for the slope of that

regime is J ), the constant regime of only A (for A� in that regime is

constantly A), and the mixed regime of both. In practice, however,

usually only the constant and mixed regimes are measured due to

their experimental accessibility. Finally, after A is estimated from

measurements in the constant regime, the estimation of J from

measurements in the mixed regime can be understood in the

following way: normalize all measurements by the estimated A to

describe the normalized variable ÂA�:A�=A~1{e{mt; parame-

terized only by m and now increasing from 0 to 1, ÂA� changes from a

sharply rising curve to a gently rising one as m decreases; the

normalized measurements in the mixed regime nail down the

specific ÂA� within the family of curves, together with m and J
(Figure 1b). The discussion above can be succinctly summarized as

‘‘parameters A and J are identifiable when applying KFP to the

system in Figure 1a’’. Later in the paper we will see how the

reasoning described here in terms of normalization and rate can be

used again to understand the estimation of relative changes of

fluxes and the ratios of pool sizes, and the selection of measuring

times.

Applying KFP to systems of arbitrary size and network topology

and with multiple influxes is less straightforward and requires care

[17]. When a reaction involves more than one substrate, the

labeling states are no longer just labeled or unlabeled as in KFP,

and tracing the origins and fates of 13C labels requires the

knowledge of Carbon Transition Map [21] of the reactions. The

assumption of irreversibility can eliminate this complication for

decomposition reactions, but is only valid for far-from-equilibrium

ones. Also, multiple influxes to a system complicate modeling the

dynamics of 13C-labeled metabolites in the same way as multi-

substrate reactions do. For this reason, KFP works best for systems

consisting of mono-molecular reactions, and works for general

systems only through gathering additional information, making

assumptions, or using only part of the data that is more amenable

to model. The last strategy corresponds to the idea used in an

extension of KFP called extended KFP (or eKFP) [17], and is

relevant in our later discussion on the capacity of KFP and our

extension of it in studying metabolic cycles.

Two considerations motivate us to extend KFP beyond its

current scope. First, KFP requires absolute quantitation of

metabolites, meaning that their absolute concentrations have to

be measured, while many experimental techniques such as mass

spectrometry can only perform relative quantitation readily,

meaning that the measurement output is scaled from the absolute

concentration by a metabolite-specific unknown constant; going

from relative quantitation to absolute quantitation typically requires

performing relative quantitation on some reference samples whose

absolute concentrations are known, which can often be a challenge

due to the increased effort of both additional experiments and

procurement of reference samples. Second, often it is the relative

changes of fluxes (or biological quantities in general) between two

conditions that are of interest or biological relevance (e.g., wildtype

vs. mutant, control vs. drug-treated; [16,22]), and estimating the

absolute fluxes of the two conditions only to get their ratios is

inefficient (the information regarding their scales is eventually

discarded) and roundabout (three rounds of estimation are carried

out, one for each condition and one for their ratio).

In this paper, we report an extension of KFP that can estimate

the relative changes of fluxes using only relative quantitation,

which we call rKFP, hence addressing the two considerations

above. To improve the reliability and strength of KFP and rKFP,

we examine some issues in the application of the methods, on both

setting up models and selecting measuring times. Finally, we apply

rKFP to experimental data collected in normal and glucose-

deprived conditions, estimating the relative flux changes in

glycolysis and its branching pathways and arriving at new

biological insight.

Results/Discussion

Extending KFP to Estimate Relative Flux Changes
Consider again the toy system in Figure 1a, now in two different

conditions; the same experimental procedures of switching

environment at t~0 and subsequent measurements of A� apply,

but only with relative quantitation (Figures 1c and 1d). The aim is

to estimate the relative change of J between the two conditions.

We start by writing down the relationship between the relative

quantitation measurements (which we call signals) and the absolute

quantitation measurements (concentrations) for the two conditions:

a�i ~pAA�i , i~x,y, ð3Þ

where an upper-case letter denotes concentration and lower-case

signal, p their ratio, superscript � a labeled quantity, and subscripts

x and y quantities for the two conditions respectively (a list of

notation can be found in Table 1). Since now we can only perform

relative quantitation and hence a�i becomes the measurable, we

establish its dynamics by plugging in the dynamics of A�i which we

have solved in studying KFP:

a�i (t)~pAAi(1{e{Jit=Ai ), i~x,y: ð4Þ

The above two equations highlight a simple but important fact:

a�i (t) is simply A�i (t) scaled by an unknown constant pA, and they

share the same intrinsic dynamics. Therefore, the reasoning of

normalization and rate described in the discussions of KFP in the

introduction appears even more natural in this situation: although

relative quantitation leaves us oblivious to the scale, we can still

normalize the measurements to uncover the rate.

âa�i (t):
a�i
ai

~1{e{Jit=Ai ~1{e{mi t, i~x,y: ð5Þ

Defining the relative changes of pool size rA:Ay=Ax and flux

rJ:Jy=Jx, the relative change of m can then be expressed in terms

of rA and rJ :

my~
Jy

Ay

~
rJJx

rAAx

~
rJ

rA

mx: ð6Þ

Since mx and my are identifiable using normalized measure-

ments in the same way as m described in the introduction, and rA is

obviously identifiable (Figure 1d), so is rJ . This concludes our

explanation of why rKFP should work for the toy system in Figure 1c.

Relative Changes of Metabolic Fluxes
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To summarize the mechanics of rKFP for the system, one sets

up the following two equations:

d a�x
dt

~pA(Jx{Jx
a�x
ax

)~pA(Jx{Jx
a�x

AxpA

),

d a�y
dt

~pA(Jy{Jy

a�y
ay

)~pA(JxrJ{JxrJ

a�y
AxrApA

),

8>>><
>>>:

ð7Þ

which form a model that is parameterized by h~(Ax,
Jx,pA,rA,rJ ), and predicts a�x(t) and a�y(t) (the solutions are Eq.

4); measurements of a�x(t) and a�y(t) allow for estimating rJ (and rA)

with precision (identifiable). Two remarks follow: first, while

parameters Ax, Jx and pA are obviously non-identifiable, two of

their functions, ax~pAAx and mx~Jx=Ax, are, amounting to two

constraints on (Ax,Jx,pA); second, in light of the constraints, the

model can be parameterized in other natural ways: for example,

one can replace Ax with ax, or Jx with mx, and the resulting new

parameterization would be as interpretable.

For larger networks consisting of single-substrate reactions

arranged in linear pathways and branch points, rKFP proceeds in

a similar way: equations like Eq. 7 are constructed for each

metabolite in the network, and relative quantitation measurements

of the metabolites allow for estimating the relative changes of all

the independent fluxes with precision. However, for metabolic

networks involving reactions of multiple substrates, especially

cycles (multi-substrate reactions are usually present in cycles as

part of the network design; see supplementary Text S1), rKFP in

its above form cannot handle the situation. Fortunately, a variant

of KFP, termed extended KFP (or eKFP), has been developed to

overcome the problem [17], and its rKFP version, which we term

reKFP, can estimate the relative flux changes for cycles without

having to deal with the complications of modeling carbon

transitions that arise in multi-substrate reactions [23]. The

essential idea of eKFP is that while there can be multiple labeled

states for the reactants in multi-substrate reactions and keeping

track of their transitions can be complicated, there is always only

one unlabeled state and modeling its dynamics is relatively simple

and stays within the KFP framework; the downsides are that only a

fraction of the information in the data is used and that the

measurements of the unlabeled metabolites have to be accurate

which sometimes can be nontrivial to achieve due to media

contamination. A detailed discussion of how reKFP can be applied

to cycles is contained in supplementary Text S1.

Before we conclude the discussion of rKFP, we mention one

more nontrivial quantity identifiable from relative quantitation,

the ratio of pool sizes. As an illustrating example, consider a

metabolic pathway of two metabolites with relative quantitation;

we again normalize the measurements to uncover the intrinsic

dynamics. The idea is that the further the second metabolite lags

behind the first one, the more abundant it is compared to the first

one (Figure S1a).

Formally, one can plug rA1,A2
:r:A2=A1 and m1:J=A1 into

the normalized A�2(t) (Text S1 contains a derivation of A�2(t)):

ÂA2
�
(t)~1{

A1

A1{A2
e
{ Jt

A1z
{A2

A1{A2
e
{ Jt

A2

� �

~1{
1

1{r
e{m1tz

{r

1{r
e
{

m1t
r

� �
:

Since m1 is identifiable from relative quantitation of A�1, the

single parameter that is left, r, determines how much ÂA2
�

lags

behind ÂA1
�

and is identifiable from the comparison (Figure S1b).

In the introduction we discussed the general challenge of absolute

quantitation, but here we show that if absolute quantitation can be

performed on, or good prior knowledge exists for, some
metabolites (e.g., the cellular glucose concentration is known to

be about 5 mM [24]), this information of scale can be propagated

across the network to other metabolites through the estimates of

Table 1. Definitions of variables and their identifiabilities in rKFP.

Symbol Meaning Identifiable in rKFP

A (uppercase) metabolite A or it pool size (absolute quantitation)1 No

a (lowercase) signal of the pool size (relative quantitation) Yes

A� concentration of 13C-labeled A (absolute quantitation) No

a� signal of 13C-labeled A (relative quantitation) Yes

ÂA� the fraction of A� in A, ÂA�:A�=A Yes

âa� the fraction of a� in a, âa�:a�=a Yes

J flux No

m rate, m:J=A Yes

pA proportionality constant between signal (relative quantitation) and concentration (absolute
quantitation) of A, pA:a=A~a�=A�

No

.x (subscript x) a quantity of control –

.y (subscript y) a quantity of condition –

rA relative change of pool size, rA:Ay=Ax Yes

rJ relative change of flux, rJ:Jy=Jx Yes

rAi ,Aj
ratio of pool size, rAi ,Aj

:Aj=Ai Yes

1: Which one of the two possible meanings is meant should be inferable from the context when not specified; it is a slight abuse of notation customary in the field (e.g.,
[46]).
doi:10.1371/journal.pcbi.1003958.t001
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pool size ratios, estimating absolute concentrations from relative

quantitation.

Missing Data: Effects and Pitfalls
Despite the great advances in metabolomic technologies, it is

nevertheless common to have missing data. It is a result of the

chemical properties of metabolites: some are too unstable to be

accurately measured, and some isomers are too similar to each

other to be distinguishable. To set up a computational model for

KFP or rKFP under missing data, one in principle has the

following options: (1) use a reduced model where the network

components corresponding to the missing data are removed; (2)

use a full model where all components are kept and the part of the

model corresponding to missing data represents additional degrees

of freedom unconstrained by data; (3) use the full model but

incorporate prior information for the part of model uncovered by

data; (4) spend additional effort to collect all data and use the full

model. We observe that a common practice in applying KFP is to

choose the first option and use reduced models when there is

missing data (e.g., [16]). We acknowledge that this option is

tempting and reduced models do offer many advantages such as

conceptual simplicity and computational manageability (after all,

‘‘all models are wrong; some are useful’’); however, because of the

potential bias reduced models might introduce to parameter

estimation and model prediction, we believe that their use would

be better justified after a careful consideration of their effects.

Consider the following example. Figure 2a provides a cartoon

of a typical situation in applying KFP: in a linear pathway of three

metabolites, A2 is hard to measure and therefore constitutes

missing data. The above four options concretize to the followings:

(1) use the reduced model consisting of only A1 and A3; (2) use the

full model consisting of all three metabolites with A2 uncovered by

data; (3) use the full model but put a prior distribution (in the

Bayesian sense) on the A2 pool size based on previous knowledge;

(4) try to collect A2 to complete the data and use the full model.

We note that the desirability of option (3) depends on what prior

distribution is available and how close it is to the true value, i.e.,
how well one a priori knows the missing piece. Hence it has to be

judged on a case-by-case basis and cannot be discussed generally.

We therefore exclude option (3) in our subsequent analysis, and

only note that in the limit of a correct tight prior the case

converges to option (4) of completing the data, and in the limit of a

loose prior the case converges to option (2) of effectively having no

prior information.

We call this scenario of missing data in Figure 2a missing
metabolite, and the corresponding procedure of constructing

reduced models metabolite removal. We identify and name three

additional common scenarios of missing data with their associated

reduction procedures: first, missing pathway, where a branching

pathway has poor data coverage with most metabolites unmea-

sured, associated with pathway removal, where the branching

pathway is removed from the model; second, undistinguished
metabolites, where the individual identity of a set of metabolites in

a measurement cannot be resolved, associated with lumping,

where the undistinguished metabolites are lumped into a single

pool; third, unknown reversibility, where the extent of reversibility

of a reaction is unknown, associated with assuming irreversibility,

where potentially reversible reactions are modeled as irreversible

for simplicity. In the remainder of this section, we describe in

details the effects of metabolite removal on both KFP and rKFP,

for this case is the simplest and hence most illustrative, and also for

this case turns out to be important (see below); after that we briefly

describe the results on pathway removal and lumping, leaving the

details to the supplementary text; results on assuming irreversibility

are discussed in the next section.

Back to Figure 2a, intuitively, using the reduced model with A2

removed would underestimate J , for two reasons. First, since the

influx J is 13C-saturated and constant with time, after time t one

would expect Jt amount of 13C in the system, distributed across

different metabolite pools; removing A2 from the network excludes

the 13C in that pool, causing an underestimation of the 13C in the

system and hence an underestimated J . Second, the presence of

any metabolite pool slows down the infiltration process of 13C

along the network, and if the slow-down of the infiltration by the

A2 pool is concealed by removing A2 from the network, the slowed

infiltration would be attributed to a lower J . Both factors become

more pronounced as the pool size of A2 increases, and so should

be the underestimation.

Figure 2b shows the results for the three options. First, using the

reduced model indeed underestimates J , and it worsens as A2

increases (the blue solid curve), confirming our intuition. Second,

using the reduced model decreases the goodness-of-fit between the

model and the data, quantified by the cost of fitting, and it

increases with A2 as well (the blue dashed curve). Third, using full

models causes no bias or cost (red/green and solid/dashed curves).

Fourth, the extra hard work of collecting the data of A2 pays off by

shrinking the uncertainties of the estimated J (the red vs. the green

error bars). These observations suggest the following three

summary statistics:

N bias, defined as (~hh{h)=h, where ~hh and h are respectively the

estimated and true value of a parameter (J in this case).

N cost, the cost of fitting using the reduced model.

N error ratio, defined as sc=sp where s is the standard error of

the parameter estimate and subscripts c and p refer respectively

to the cases of complete and partial data.

These statistics summarize the effects and pitfalls of missing

data: error ratio quantifies their adverse effects on parameter

estimation (or, looking optimistically, the reward of completing

them), and bias and cost quantify the harm of using reduced

models. Figure 2c re-plots the results in Figure 2b in terms of the

three summary statistics. From these plots we can see that KFP is

rather sensitive to metabolite removal: in the case of the toy model,

a missing metabolite of pool size equal to others causes roughly a

50% bias. The same should hold for general pathways: if the total

pool size of the missing metabolites in a pathway is relatively large,

the bias should be considerable. For this reason, we give the general

suggestion that, unless the missing metabolites are known a priori to

have small pool sizes, one should use full models in KFP.

We next examine how metabolite removal affects rKFP

(Figure 3a). We have concluded that removing A2 in KFP

underestimates J and the underestimation worsens as A2

increases. Since rJ is the ratio between Jy and Jx, we expect

that the bias in rJ depends on A2 in the two conditions, A2x and

A2y: if A2x is large and A2y small, Jx is implicitly more

underestimated than Jy (implicitly as rKFP does not explicitly

estimate J), giving an overestimated rJ , and in the same way a

small A2x and a large A2y give an underestimated rJ . Like KFP,

we expect the bias to increase with the pool size difference of A2

between two conditions.

Figure 3b plots the bias of rJ , and confirms our intuition.

However, an important feature distinguishes the case in rKFP

from KFP. Figure 3b shows a red line where the relative change of

A2 is the same as A1 and A3, and above the red line rJ is

underestimated and below overestimated; in other words, when

the relative change of A2 pool size exactly matches the others in

Relative Changes of Metabolic Fluxes
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the pathway, rJ is estimated without bias. This hints at another

important advantage of rKFP over KFP: bias can be introduced to

the two conditions in such a similar way that some of it is canceled

out. The question remains of how likely the pool size of a

metabolite changes in a similar way to all others in a pathway.

Figure S3 plots the fitting of experimental data of glycolysis in two

Figure 2. Metabolite removal in KFP. (a) A schematic diagram of getting the reduced model through metabolite removal in KFP. Dashed squares
represent metabolites removed in the reduced model; thick dark arrow represents reduction; ~JJ represents the estimated J (potentially biased). (b)

The estimation results for the three options. The solid curves represent ~JJ , the dashed curves represent the cost of fitting (normalized by the number
of data points to be comparable across options), and three colors represent the three options. Parameter values used for generating the simulated
data: A1~A3~J~1 (overall patterns independent of the choice here). (c) The estimation results in (b) in terms of the three summary statistics.
doi:10.1371/journal.pcbi.1003958.g002

Figure 3. Metabolite removal in rKFP. (a) A schematic diagram of getting the reduced model through metabolite removal in rKFP. The same
figure scheme as in Figure 2a applies here. Parameter values used in generating the simulated data: A1x~A3x~Jx~1, A1y~A3y~3, and Jy~2. (b)
Dependence of bias on the pool size of the missing metabolite in two conditions. (c) Dependence of error ratio on the pool size of the missing
metabolite in two conditions.
doi:10.1371/journal.pcbi.1003958.g003

Relative Changes of Metabolic Fluxes
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conditions, and shows that the relative changes in pool size of all

metabolites in the pathway fall within a factor of five. From an

enzyme kinetic perspective, this says that the reactions along the

pathway are in similar elasticity regimes [25], which is also

consistent with the consensus that reactions in a pathway in

general share the flux control [26]. We hence believe that in rKFP

some of the bias is indeed canceled out which makes it more robust
to metabolite removal than KFP. However, we also note in

Figure 3b that the bias worsens quickly as the relative change in

pool size of different metabolites diverge: when it is off by a factor

of three, say, rA2
~1 (while rA1

~rA3
~3), the bias becomes about

40%. This implies that in a typical situation despite the canceling

the remaining bias is still too large to justify using the reduced

model, and hence we again suggest using full models in rKFP for

missing metabolites. The ideas of canceling and metabolites along

a pathway changing pool sizes similarly, however, find their use in

the next section where they serve to justify using reduced models

for unknown reversibility.

To summarize, we have demonstrated above the effects of

missing metabolites on (r)KFP and the pitfalls of removing them;

we suggest that unless one has good prior knowledge about the

missing pool size or its relative change between two conditions that

ensures a small bias, full models should be used. The approach we

use for the demonstration is an intuitive and computational one,

and in supplementary Text S1 we outline a complementary and

analytical method that allows for a more precise description and

deeper insight into the dependence of bias on relevant parameters.

Also included there are some detailed studies of how two other

reduction scenarios, pathway removal and lumping, might affect

KFP and rKFP. We summarize the results in the following: first,

both KFP and rKFP are rather robust to the removal of a minor

branching pathway (that is, a branching pathway that does not

carry the majority of the flux), while using the full model greatly

inflates the confidence interval of the parameter estimates due to

the additional degrees of freedom; second, since lumping is usually

applied to isomers which are often close to chemical equilibrium, it

is generally rather innocuous in light of the results in the next

section. In a later section on data analysis, we see that the results in

this section are verified by comparing the estimation results of

different models.

Modeling Reversible Reactions
Biochemical reactions often operate close to equilibrium [27]

(for example, it is conventionally thought that this applies to seven

out of the ten reactions in glycolysis [28]), and a reaction’s distance

to equilibrium is commonly quantified by the difference in Gibbs

free energy, DG, between substrates and products: the closer DG is

to zero, the closer the reaction is to equilibrium. One of the

properties of a close-to-equilibrium reaction is that both of its

forward and backward fluxes are large and most of them are

canceled out to give a much smaller net flux; quantitatively this is

described by the flux-force relationship: Jz=J{~e{DG
RT , where Jz

and J{ are the forward and backward flux respectively, R the gas

constant and T the temperature [29]. Quantity
JzzJ{

Jz{J{
, the total

flux over the net flux, therefore describes how much ‘‘futile’’ work

the reaction does compared to ‘‘useful’’ work, and predicts from

the flux-force relationship that as the reaction approaches

equilibrium, exponentially more fluxes simply go back and forth

compared to the net flux (Figure S2a). This has an important

implication in the context of (r)KFP: when the reversible fluxes are

large compared to the net flux, the time-scale of the mixing of

substrate and product pools is much shorter than that of the

infiltration of the 13C-labeled metabolites in each pool, making the

two pools effectively one as far as (r)KFP is concerned (Figure S2b).

This suggests another potential issue in setting up models for

KFP or rKFP: ignoring the reversible fluxes when the reaction is

close to equilibrium, as is commonly done, might introduce bias.

To check this, we again use a toy system (Figure 4a) and, similar to

the case of missing metabolite, conceive three options for modeling

a reversible reaction: (a) model it as irreversible; (b) model it as

reversible and let DG be a free parameter; (c) model it as reversible

and measure DG to some precision (which typically requires

absolute quantitation). Figure 4b plots the summary statistics for

KFP, which shows that there is a small bias and a moderate cost

when a highly reversible reaction is assumed irreversible. It

suggests that KFP might be robust to assuming irreversibility;

however, even the small bias can be avoided since in KFP DG can

be calculated and is not missing information: KFP uses concen-

tration data, which can be used to calculate DG through its

definition (see below); therefore one can explicitly incorporate in

the model Jz and J{ which depend on the parameter J through

the relationships Jz~
J

e{DG
RT{1

and J{~
Je{DG

RT

e{DG
RT{1

. Also plotted

is the estimated pool size ratio between A1 and A2 with one being

the true value (the purple dashed line), which shows a vast

underestimation when the reaction is close to equilibrium; this can

be explained by the following: as the reaction becomes more

reversible, A�1 and A�2 share the dynamics to a greater extent

(Figure S2b), and A�2 closely following behind A�1 is interpreted by

the algorithm as resulting from A2%A1 (Figure S1a).

Figure 4c illustrates how ignoring reaction reversibilities biases

rKFP, which can be understood in a similar way as Figure 3b in

using reduced models. First, the direction of the bias depends on

DG’s of the two conditions; since ignoring reaction reversibilities

underestimates J in KFP (Figure 4b), if the reaction is more

reversible in control (x) than in condition (y), then J would be

more underestimated in control, giving an overestimated rJ (the

red region), and vice versa. Second, if DGx~DGy, then rJ is

estimated without bias (the red line).

We naturally wonder how likely the change of DG falls around

the red line, and find that its definition offers the clue. Since

DG:DGozRT ln Q, where DGo is the standard Gibbs free

energy change and Q the reaction quotient defined as the product

concentrations divided by the substrate concentrations. For a

mono-molecular reaction with S the substrate and P the product,

DGx and DGy can be related in the following way:

DGy{DGx~RT( ln Qy{ ln Qx)~RT( ln
Py

Sy

{ ln
Px

Sx

)

~RT ln
PySx

PxSy

~RT ln
rP

rS

:

ð8Þ

In other words, the change in DG depends on the relative

changes in pool size of P and S. In the previous section we

conclude that the relative changes in pool size of the metabolites

along a pathway are likely to be similar, and Figure 4c shows that,

unlike the case of metabolite removal, the bias increases slowly as

the relative pool size changes of different metabolites diverge (the

red dashed curves correspond to a five-fold difference in the

relative pool size changes, a range of variation we observe in our

glucose-deprivation data, and delineate a region surrounding the

diagonal line of very small bias). We therefore conclude rKFP

should be robust to assuming irreversibility and reduced models

can be used.
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We last note that, like the case of pathway removal discussed in

the supplementary text, using the full model in this case and

incorporating DG’s as free parameters would leave the model

underconstrained by data and lead to huge uncertainties in

parameter estimates, since one additional parameter would be

accumulated for each reaction modeled as reversible. Incorporating

prior information on DG’s would help, but at a systems level the

information is scarce as it requires accurate absolute quantitation

[27] and predictive computational methods are still being developed

[30]. It is also our experience that rKFP models constructed this way

with additional DG parameters are prone to numerical problems in

data fitting and parameter sampling, since for each reaction

modeled as reversible two copies of DG (DGx and DGy) need to be

made and they are entangled with parameters of relative pool size

changes through Eq. 8. In light of all these challenges, the robustness

of rKFP to assuming irreversibility is advantageous.

Selecting Measuring Times
In addition to the issues on setting up models as discussed in the

previous two sections, we have also investigated the experimental

design issue of selecting measuring times for a metabolic pathway

in (r)KFP. We list below the main conclusions, and leave the

derivation details to the supplementary text.

First, we note that the problem can be formulated as a classical

experimental design one [31]: select a set of measuring times such

that the errors of the estimated parameters (J ’s in KFP and rJ ’s in

rKFP) are the smallest. However, such an approach suffers from

computational intractability, physical uninterpretability and un-

realisticness (Text S1).

We choose to adopt an alternative approach for which there is a

physical intuition: since the dynamics of the metabolites in a

pathway are linear combinations of exponential functions (Text

S1), and in the introduction we show that for a single exponential

function, there is a well-defined characteristic time-scale, we

wonder if we can make use of this special mathematical structure

and target the measuring times on the different time-scales.

We show that for the first metabolite in a pathway, if a late time

has been measured so that its (relative) scale is estimated, the

optimal measuring time would be around tc~A1=J, the

characteristic time-scale. This highlights another significance of

tc: if the curve of A�(t) in Figure 1b is held fixed at two ends and

the middle left wiggling as m changes, placing a pin at the

characteristic time-scale leaves the least wiggle room.

We also show by using a similar reasoning that for the second

metabolite in a pathway the optimal measuring time is around

(A1zA2)=J , and similarly for the k-th metabolite aroundPk
i~1 Ai=J . That is, the measuring time for the k-th metabolite

should be around the sum of the characteristic time-scales of all the

metabolites up to the k-th one; this makes intuitive sense, given

that the dynamics of A�k is a mixture of k time-scales due to the

actions of the k pools. We therefore provide the following practical

suggestion: for a metabolic pathway of n metabolites with a rough

prior guess of the flux (and pool sizes for rKFP), after measuring at

a late time so that the (relative) scales of all metabolites can be

estimated, other measurements should go to
Pk

i~1 Ai=J,

k~1, . . . ,n. Given this scheme of selecting measuring times, it is

calculated through simulation and shown in the supplementary

text how the precision of estimated parameters depends on the

number of data points and how those data points should be

optimally distributed across different metabolites and times.

We last note that a typical metabolic network exhibits strong

separation of concentration scales. For the example of glycolysis,

one source reports that the most abundant metabolite (glucose) is

Figure 4. Modeling reversible reactions in KFP and rKFP. (a) A schematic diagram of the toy system considered here; for rKFP two copies of
each network are similarly made as in Figure 3a. Parameter values used in generating the simulated data: A1~A2~A1x~A2x~J~Jx~1,
A1y~A2y~3, and Jy~2. (b) Dependence of the summary statistics on DG in KFP. (c) Dependence of the bias of rJ on DG of the two conditions in
rKFP. The red solid diagonal line corresponds to DGx~DGy where there is no bias. The red dashed curves correspond to a five-fold difference in the
relative pool size changes between the substrate and product, a range we observe in our data.
doi:10.1371/journal.pcbi.1003958.g004

Relative Changes of Metabolic Fluxes

PLOS Computational Biology | www.ploscompbiol.org 8 November 2014 | Volume 10 | Issue 11 | e1003958



about 35 times more than the second most abundant one and the

full range of variation spans over three orders of magnitude [28].

This has an important implication: the most abundant metabolite

dominates the numerator of
Pk

i~1 Ai=J , and hence the sampling

time. If the dominant metabolite happens to be the first one, as is

suggested for glycolysis in [28], then the whole pathway effectively

shares one dynamics and measuring time.

Applying rKFP to Glucose Deprivation Data
In this last section, we apply rKFP to experimental data

collected on glycolysis and its two main branching pathways

(pentose-phosphate pathway, or PPP, and serine synthesis

pathway) from cells in normal (5 mM glucose) and glucose-

deprived (0.5 mM glucose) media conditions, and estimate the

relative changes in the fluxes of the three pathways.

Figure 5a shows the diagram of the network, where the upper

pathway branching off glycolysis at G6P is (part of) the PPP, and

the lower pathway branching off glycolysis at 3PG is (part of) the

serine synthesis pathway; two additional branching pathways,

glycogen synthesis pathway and glycerol synthesis pathway,

emanating from G6P and DHAP, respectively, are also portrayed

(the dashed arrows). Further described in the network diagram is

our data coverage, which contains all types of missing data we

have considered: data of metabolites BPG and a few others in

branching pathways are missing, data of the glycogen and glycerol

synthesis pathways are missing, isomers such as G6P/F6P, GAP/

DHAP and 3PG/2PG are not distinguished, and the extent of

reversibility of the reactions is not known.

We set up three computational models for rKFP, corresponding

to three different choices of treating missing data as discussed in

earlier sections, and the estimation results of all three models are

shown in Figure 5c: dark blue histograms correspond to the choice

recommended in the earlier sections, namely, using the full model

only for missing metabolite, light green the choice of using the

reduced model for all types of missing data, and light red the

choice of using the full model for both missing metabolite and

pathway. We make two observations from the comparison of the

histograms: the green histograms are tighter than the blue but

shifted, and the red histograms have similar averages to the blue

(except for PPP) but much larger variances.

The observations support our recommended choice. The shifted

green histograms relative to the blue suggest that metabolite

removal introduces significant bias, likely because the pool sizes of

the missing metabolites change differently from the other

metabolites. The flattened red histograms relative to the blue

suggest that keeping in the model the missing pathways with no

data leaves the estimation greatly underconstrained; on the other

hand, their similar averages suggest that the bias introduced by

pathway removal is small in this case, likely because the missing

pathways have much lower fluxes than the main glycolysis

pathway (see the supplementary text) which is consistent with

some previous studies (e.g., [16,32]; also see Figure S3) and that

the cell line in our study exhibits the Warburg effect [4] with most

of the glycolytic flux going to lactate fermentation. In summary,

through the comparison of different models for both toy and real

networks, we have chosen the following choice: in the face of

missing data, we keep the model components that matter

(metabolites) and leave out those that do not and would make

the estimation underconstrained or numerically unstable (path-

ways, distinct pools and reversibilities). For future applications of

rKFP, we suggest users either follow our recommended choice, or,

better yet, set up different models and compare the results to verify

the choice as is done here.

From the parameter distributions under our recommended

model choice, we observe that, despite a 10-fold decrease in the

media glucose concentration, glycolysis and PPP fluxes are

reduced by about 40% and 60% respectively, while the serine

pathway is basically incapacitated by the glucose deprivation. We

make the following interpretation of the results. As it is generally

believed that tumor cell proliferation sometimes requires meta-

bolic adaptation to a microenvironment deprived of glucose, the

effect of glucose deprivation on metabolism has been of interest

[33–35]. Also of interest is the activity of serine biosynthesis

pathway for its implication in tumorigenesis [36]. Here we show

that when the external glucose source is depleted, the cells adapt

their metabolism by largely maintaining the backbone of glycolysis

flux at the expense of serine biosynthesis flux. This suggests the

possibility of additional contextual requirements of PHGDH, the

enzyme that diverts flux from glycolysis into de novo serine

biosynthesis, and the possibility of other mechanisms for serine

utilization in the condition of low glucose availability.

Materials and Methods

Computation
Individual steps of the computation in this study are listed and

explained below using KFP as the example (many of them use

SloppyCell, a Python package originally developed for analyzing

biochemical networks [37]). Relevant Python codes are deposited

at http://github.com/leihuang/rkfp.

N Encoding models: models are encoded in an SBML-compliant

format [38] in SloppyCell and mathematically correspond to

systems of ODEs of A�, the concentration vector of labeled

metabolites.

N Simulating models: daskr, an algebraic-differential equation

solver [39] used in SloppyCell numerically integrates the

models.

N Generating simulated data: given the integrated trajectories of

A�, simulated data are generated by a selection of measuring

times following the suggestions in the section on selecting

measuring times, and the associated noise is generated by

choosing a constant value when deriving analytical results for

its tractability and assuming to be proportional to data when

carrying out simulations for its realisticness (a proportionality

constant of 0.2 is used).

N Estimating parameters: letting Yik be the measurement of the

model prediction A�i (tk) and sik be the noise associated with

Yik, one defines the cost of fitting as a function of parameter h:

C(h):
P
i,k

A�i (tk,h){Yik

sik

� �2

(also known as x2); SloppyCell

uses the Levenberg-Marquardt algorithm [40] to minimize

C(h) and find the parameter estimate ~hh. In our analysis of

experimental data where the model is large and the data is

noisy, we find that having a good initial guess is crucial [41]

and having a large L-M parameter l and a small trust region

helps.

N Integrating sensitivity curves: SloppyCell calculates
LA�i
Lha

as a

function of t in an accurate way (more details in Text S1),

which is important for calculating Jacobian and errors (below);

N Estimating errors: (1) construct the Jacobian of the model,

D~
LA�i
Lha

(tk)

� �
ik,a

by filling a matrix with the sensitivities at

the assumed measuring times along the sensitivity curves; (2)

normalize each entry by sik; (3) perform the singular value

Relative Changes of Metabolic Fluxes

PLOS Computational Biology | www.ploscompbiol.org 9 November 2014 | Volume 10 | Issue 11 | e1003958

http://github.com/leihuang/rkfp


decomposition D~USVT ; (4) the square roots of the diagonal

entries of the matrix V(SS){1VT give the estimates of errors.

N Generating posterior distribution: assuming Gaussian-

distributed measurement noise, the measurement of A�i (tk) is

also Gaussian distributed: Yik*N (A�i (tk,h),sik); treating the

parameter estimation problem in the Bayesian framework and

assuming an uninformative prior, h has a posterior distribution

with a probability density proportional to that of observing Yik

in N (A�i (tk,h),sik), following the Bayes’ rule: p(hDY)!
pN (YDh); Metropolis algorithm [42] is used to sample the

posterior distribution in SloppyCell, and parameters of

100,000 steps, 1% burn-in and 50-step thinning interval [43]

are used for generating the distributions in Figure 5c.

Note that the last two points constitute the two standard ways of

estimating parameter uncertainties: the first one also goes by the name

of sensitivity analysis or delta method, and is computationally cheap but

less accurate; the second one is also known as ensemble method [44],

and is computationally expensive but more accurate. In this study,

simulations intended to illustrate basic principles use the first method,

and data analyses intended to draw realistic conclusions use the second.

Figure 5. Analysis of experimental data. (a) The diagram of glycolysis and its two branching pathways used in the analysis, where dashed
squares (e.g., BPG) represent missing metabolites, dashed arrows represent missing pathways, and dashed rectangles containing solid squares
represent undistinguished metabolites. Abbreviations for metabolites: GLU: glucose; G6P: glucose-6-phosphate; F6P: fructose-6-phosphate; FBP:
fructose-1,6-bisphosphate; DHAP: dihydroxyacetone phosphate; GAP: glyceraldehyde-3-phosphate; BPG: 1,3-biphosphglycerate; 3PG: 3-phospho-
glycerate; 2PG: 2-phosphoglycerate; PEP: phosphoenolpyruvate; PYR: pyruvate; PGL: 6-phosphogluconolactone; 6PG: phosphogluconate; R5P: the
pool of ribose 5-phosphate, ribulose 5-phosphate and xylulose 5-phosphate; PHP: phosphohydroxypyruvate; 3PS: 3-phosphoserine; SER: serine; GLY:
glycine. (b) An exemplary plot of the data of a metabolite and its fit. Plots of all metabolites and their fits can be found in Figure S3. (c) Histograms of
rJ ’s as generated by sampling the corresponding posterior distributions in a way detailed in the Methods. Glycolysis flux refers to J3 in the diagram,
PPP flux J1{J2, and serine synthesis flux 2J2{J3 . The three histograms for each flux correspond to three different modeling choices described in the
text.
doi:10.1371/journal.pcbi.1003958.g005
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Experiments
Experimental procedures of cell culture, metabolite extraction,

mass spectrometry, liquid chromatography and data processing

follow those in [45]. On the procedures specific to rKFP, HCT116

human colon cancer cells cultured in 6 well dishes with RPMI

1640 were washed with PBS and transferred to two media with
12C-glucose of concentrations 5 mM and 500 mM respectively,

where they were incubated for 2.5 hours before switching to

media with 13C-glucose of the same concentrations; relative

quantitation of triplicates were then performed on the cells at 0,

2.5, 5, 10 and 15 minutes after the switching.

Supporting Information

Text S1 A file containing three supplementary figures, a

derivation of the solution for KFP applied to a linear metabolic

pathway, a discussion on applying (r)KFP to metabolic cycles, the

description of an analytical approach to studying the effects of

removing metabolites and pathways, and effects of pathway

removal in KFP and rKFP, and some detailed results on the effects

of missing data and selecting measuring times.

(PDF)

Dataset S1 13C-labeled relative-quantitation data collected from

cells in normal and glucose-deprived media used for the analysis.

(CSV)
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